
Finding and Moving Constraints in Cyberspace
P. M. D. Gray, K. Hui and A. D. Preece

Abstract

Agent-based architectures are an effective method for
constructing open, dynamic, distributed information
systems. The KRAFT system exploits such an archi-
tecture, focusing on the exchange of information -- in
the form of constraints and data -- among participat-
ing agents. The KRAFT approach is particularly well-
suited to solving design and configuration problems, in
which constraints and data are retrieved from agents
representing customers and vendors on an extranet net-
work, transformed to a common ontology, and pro-
cessed by mediator agents. This paper describes the
KRAFT system, discusses the issues involved in joining
a KRAFT network from tile point-of-view of informa-
tion providers in Cyberspace, and examines the role of
autonomous and mobile agents in KRAFT.

Department of Computing Science
King’s College

University of Aberdeen
Aberdeen AB24 3UE

Scotland
United Kingdom

{pgraylkhuilapreece}@csd.abdn.ac.uk
http://www.csd.abdn.ac.uk/research/kraft.html

constrain each t in tutor
such that astatus(t)="research"

no s in advises(t) has grade(s) =<

Introduction

Traditional distributed database systems provide uni-
form and transparent access to data objects across the
network. These systems, however, are focused on the
utilisation of data instead of other semantic knowledge
stored in the database. One type of stored knowledge
is constraints. Although traditionally used as data-
base state restrictors, constraints as an abstraction con-
stitute an important part of the semantics in a data
model. We are interested in a declarative representa-
tion of quantified constraints which are self-contained
abstract objects, because they can be used to repres-
ent domain-specific knowledge, partially solved solu-
tions and intermediate results.

When used as mobile knowledge which is exported
and attached to data, constraints restrict the way in
which the data can be used and form relationships with
other objects. This mobility, together with its declar-
ativeness, allows constraints to be transported, trans-
formed, combined and manipulated in a distributed en-
vironment.

Recently, it has been realised that constraints are a
highly suitable representation for knowledge in distrib-
uted agent-based applications (Eaton, Freuder, & Wal-
lace 1998), enabling novel approaches to the solution of
design and configuration problems.

constrain each r in residue to have
distance (atom(r, "st"),

atom(disulphide(r),"sg")) <

Figure 1: The above examples demonstrate how
Daplex/Colan (Bassiliades ~ Gray 1995) expresses
constraint on a university database containing student
records. The same constraint language is applicable to
the domain of protein structure modelling, as in the ex-
ample restricting bond lengths.

Background & Related Work

The KRAFT system (Gray et al. 1997) focuses on the
utilisation and reuse of constraint knowledge held in
distributed sources, by transforming it for use in various
ontologies. Quantified constraints (Bassiliades & Gray
1994) (see figure 1) are a very general declarative form
of predicate definition which can also compute using
functions. They are effectively recipes for selecting or
calculating things; they can be passed between agents,
and may then be fused together or transformed into new
recipes. This is the heart of the KRAFT architecture
and it opens up many new possibilities.

Agent-based architectures are proving to be an ef-
fective approach to developing distributed information
systems (Bayardo et al. 1997), as they support rich
knowledge representations, meta-level reasoning about
the content of on-line resources, and open environ-
ments in which resources join or leave a network dy-
namically (Wiederhold & Genesereth 1995). KRAFT
employs such an agent-based architecture (Gray et al.
1997) to provide the required extensibility and adaptab-
ility in a dynamic distributed environment. Unlike most
agent-based distributed information systems, however,
KRAFT focuses on the exchange of data and constraints
among agents in the system.

The design of the KRAFT architecture builds upon
recent work in agent-based distributed information sys-

121

From: AAAI Technical Report SS-99-03. Compilation copyright © 1999, AAAI (www.aaai.org). All rights reserved.

Key
Non-KRAFT components

I--~ UserAgent

[~ Resource

KRAFT facilities

Wrapper

Facilitator

Mediator

Auxiliary

Figure 2: A conceptual view o/ the KRAFT architec-
ture.

tems. In particular, the roles identified for KRAFT
agents are similar to those in the InfoSleuth system (Ba-
yardo et aL 1997); however, while InfoSleuth is primar-
ily concerned with the retrieval of data objects, the
focus of KRAFT is on the combination of data and
constraints. KRAFT also builds upon the work of
the Knowledge Sharing Effort (Neches et aL 1991),
in that some of the facilitation and brokerage meth-
ods are employed, along with a subset of the 1997
KQML specification (Labrou 1996). Unlike the KSE
work, however, which attempted to support agents com-
municating in a diverse range of knowledge repres-
entation languages (with attendant translational prob-
lems), KRAFT takes the view that constraints are
good compromise between expressivity and tractabil-
ity. In its emphasis on constraints, KRAFT is sim-
ilar to the Xerox Constraint Based Knowledge Brokers
project (Andreoli, Borghoff, & Pareschi 1995); the dif-
ference is that KRAFT recognises the need to trans-
form constraints when they are extracted from local
resources, typically for reasons of ontological or schema
mismatch (Gray et aL 1997) (Visser et al. 1997).

System Architecture

User agents and resources in KRAFT (figure 2) are in-
terfaced to the KRAFT domain via wrappers. Wrap-
pers provide translation services between the internal
data representation (described in a local schema) of user
agents and resources and the data representation (ef-
fectively an integration schema acting like a shared on-
tology) used within the KRAFT domain. If a resource
is not sharable, or is incapable of handling asynchron-
ous communication, then it is the responsibility of the
wrapper to handle the necessary buffering and schedul-
ing of requests to that resource. A KRAFT user agent
serves the same purpose as an InfoSleuth (Bayardo et
aL 1997) User Agent while a KRAFT wrapper is called
a Resource Agent in the InfoSleuth terminology.

Facilitators provide internal routing services for mes-
sages within the KRAFT domain. They maintain dir-

ectories of KRAFT facilities, their locations and what
services they provide, and also details of their availab-
ility, load and reliability. Their principal function is to
accept messages from other KRAFT facilities and route
them appropriately. In particular, facilitators provide
content-based routing services, so that they are able to
route messages which are only partially addressed (or
even wholly unaddressed) based upon the content of
the message, or the service required. A KRAFT facilit-
ator corresponds to an InfoSleuth Broker Agent and a
KQML facilitator (Labrou 1996).

The primary focus in KRAFT is on "knowledge level
mediation". In particular, we are aiming to provide a
range of mediators which are specialised in the manip-
ulation of knowledge in the form of constraints. Given
the problem of deciding which catalogue to order a
particular component from, we might first use a con-
straint extraction mediator to generate descriptions of
the available components as conjunctions of constraints.
These would then need to be translated into the do-
main ontology used by our design database, using one
or more ontological mediators. The resulting collection
of constraints must then be transformed into a single
constraint representing the available options, and this
must be fused into our existing set of design constraints.
Finally, we ask one or more constraint solver mediators
to coordinate the search for solutions to our problem, in
a way that makes the best possible use of the available
solving resources. KRAFT mediators are comparable
to Task Execution Agents in InfoSleuth, and are an in-
stance of Wiederhold’s mediator concept (Wiederhold
& Genesereth 1995).

Configuration Problems

One obvious area of application is in configuration prob-
lems. Traditionally these have been tackled by Rule-
based Systems such as the famous XCON system, used
for configuring VAX computers. Nowadays we tackle
them more as Constraint Satisfaction problems. In
the KRAFT architecture the domains of many of the
variables will be entities stored in remote databases.
Constraints on these entity types may be set by their
makers, and stored with them in the database, as in
the example given below. The constraints can then
be found by a mediator and passed to a constraint
solver together with other problem-specific restrictions.
The solver then has to find feasible values to satisfy
the constraints, as is common in engineering problems.
However, note that the problem is complicated by con-
straints that refer to related instances of other entity
types, whose values must be extracted from the data-
base and checked for compatibility.

Usually configuration problems are solved by spe-
cially written pieces of software including pre-
programmed constraints that take their parameter val-
ues from a number of flat files prepared by the designer.
The KRAFT architecture generalises this to allow both
the parameters and the constraints representing the
problem to be searched for and selected and brought

122

together, over a network of nodes that may develop
in various unanticipated ways. The agent architecture
looks to be the best hope for coping with evolutionary
change and the autonomy of different resource nodes.

For an example of the use of a KRAFT system, con-
sider the problem of finding a number of parts that fit
together to make something, or that work together in
some way. Suppliers of these parts make catalogues, in
the form of database tables, available over the Internet.
However, the tables may have different semantics and
hidden assumptions. These assumptions are often con-
tained in an asterisked footnote or small print in the
catalogue, for example: this part must be mounted in a
housing of adequate size. Thus it is not enough just to
make a distributed database query to find a list of pos-
sible parts; we must also ensure that these parts satisfy
various constraints.

It is the knowledge in these constraints which we aim
to reuse by transforming it to work in the context of a
shared ontology that is being used to integrate the data.
Thus we might have a constraint stored as metadata in
the database for the AbComponents catalogue:

constrain each w in widget
to have width(housing(w)) >= width(w)

and width(housing(w)) =< width(w)

This constraint is expressed in the KRAFT Con-
straint Interchange Format (CIF), the first version
which is based on the CoLan language used to ex-
press semantics in the object database P/FDM (Em-
bury & Gray 1995c). However, within the AbCompon-
ents database, the constraint might actually have been
represented in some other form (as a trigger on a frame
structure, for example) - it must be translated into
CIF constraint before it can be used by the KRAFT
network. To make use of widgets from the AbCompon-
ents catalogue, we must translate this constraint into a
form consistent with a shared ontology. This requires
an understanding of the different terminologies used in
the AbComponents database and the shared ontology:

constrain each w in wotsit
such that source(w) -- "AbComponents"

to have distance(left_neighbour (w),
right_neighbour(w)) >= width(w)

and distance (left_neighbour (w),
right_neighbour(w)) =< width(w) +

There are various ways to use the transformed con-
straint; in a design, for example, it Could be transformed
and fused with another constraint on a particular usage
of the widgets/wotsits as parts of containers:

constrain each c in container so that
each p in parts(c) such that p is a wotsit

and source(p) = "AbComponents"
has internal_diameter(c) >= width(p) + 2

internal_diameter(c) =< width(p)

Alternatively we could represent the fused constraints
as a collection of clauses in normal form. We can now

use this fused information in various ways as explain
later.

Roles of Constraints in KRAFT
A constraint is an excellent declarative way to specify
domain-specific semantic features in a particular data
model. It is an important abstraction which extends a
data model in various ways so that it can address ques-
tions of importance today, in the era of the Internet.

We have chosen to use the Colan language developed
for the P/FDM functional database system because it is
based on Shipman’s Daplex language (Shipman 1981),
which is being used for its original purpose of integ-
rating data expressed in different local databases using
different local schemas. We have found this constraint
language (figure 1) to be independent of the problem
domain and able to represent the knowledge stored in
a variety of local data models. It has the power of first
order logic with safe expressions restricted by mixed
quantifiers over finite domains of objects stored in data-
bases or finite subranges of integers. It also has much
of the power of a functional programming language for
recursive computation.

Constraints in KRAFT come from various sources.
The first kind of constraint is stored in a database in
association with class descriptors for data objects, and
it can be viewed as an attachment of instructions on
how a data object should be used. They represent the
small print conditions referred to earlier. Thus, data
objects are annotated with declarative knowledge which
can be transformed and processed.

These constraints are generic to all application prob-
lems that utilise the data. When a data object is re-
trieved, these attached instructions must also be ex-
tracted and satisfied to ensure that the data is prop-
erly used. Note that constraints are actually stored
with a class descriptor but selection conditions in the
constraint (e.g. t in tutor such that name(t)="h.
Smith") can be used to make it specific to a particular
object.

The second type of constraint represents domain spe-
cific problem solving knowledge by imposing constraints
on a solution database, which can be visualised as a
database storing some or all the results that satisfy the
application problem. These constraints are specific to
the application problem and a potential candidate has
to satisfy all of them in order to qualify as a solution. In
its initial state, this solution database may not hold any
actual data but provides a framework for specifying the
problem solving knowledge. As solving proceeds, it gets
populated with solutions that satisfy the constraints.

Constraints can also be used to represent restrictions
placed by user specifications on the required solutions.
Like other resources in the system, the user-agent serves
as another information source feeding knowledge into
the system in the form of constraint. User requirement
constraints, in this way, are specific to an application
problem instance of a user query.

123

~~ ! problD~- (--’h

~c=ion . ’-. jF"-’~))~at~base
.v,y1 fusing ~ data obJqcts

~ "1 mediator [~Nlt111’
"~’., ~ ~’--.-.~consil~ints L’~’~.

solution :. ;¯l
:,,;, - -

N
Figure 3: This diagram shows how constraint fragments
are exported from different resources and fused by the
mediator to compose a constraint satisfaction problem.

KRAFT Search & Fusion

The process of solving a design and configuration prob-
lem, therefore, is to retrieve data objects from other
databases and populate the solution database while sat-
isfying all the integrity constraints attached to the solu-
tion database and all relevant data objects.

With the role of constraints evolving from database
state restrictors to portable predicates, a more efficient
prune-and-search approach can be achieved by export-
ing constraint fragments to a constraint fusing mediator
(figure 3) which composes the overall description as
constraint satisfaction problem (CSP) for a configura-
tion task (Gray et al. 1998). The CSP is then analysed
and decomposed into database queries and constraint
logic programs which are fed across to distributed data-
bases and constraint solvers, under the control of a me-
diator.

In general, there are three different ways to utilise
the fused constraints, with increasing sophistication:

1. We can check the constraints against sets of objects
retrieved by a distributed database query across the
network, so as to reject any not satisfying the condi-
tions.

2. We can use some combination of selection informa-
tion in the constraint to refine the distributed data-
base query, and thus do it more efficiently. This could
also use the principles of semantic query optimisa-
tion.

3. To use constraint logic solving techniques (Embury
& Gray 1995b); (Van Hentenryck 1989) to see if
complex set of interlocking constraints, whose form
is not known until runtime, does have a solution.

Application problems in KRAFT are data-intensive
CSPs as opposed to computation-intensive CSPs in
many distributed constraint solving systems. A
KRAFT CSP may involve simple constraints but a huge
number of candidate data objects from multiple data-
bases. This requires optimisation strategies that focus
more on data filtering instead of computation efficiency.

A Constraint Fusing Example

To demonstrate constraint fusion from different sources,
consider a configuration problem where a PC is built by
combining components from vendors. The user specifies
his requirement in the form of constraints through the
user-agent. In this example, he specifies that the PC
must use a "pentium2" processor but not the "win95"
OS:

constrain each p in pc
to have cpu(p)="pentium2"
and name(has_os(p)) "wi n95"

For the components to fit together, they must satisfy
certain constraints imposed by the solution database.
For example, the size of the OS must be smaller or
equal to the hard disk space for a proper installation:

constrain each p in pc
to have
size (has_os (p)) =< size (has_disk

Now the candidate components from different
vendors may have instructions attached to them as con-
straints. In the vendor database of operating systems,
"winNT" requires a memory of at least 32 megabytes:

constrain each p in pc
such that name (has_os (p))="winNT"

to have memory(p) >= 32

When we fuse all constraints together, we get the
description of the overall CSP:

constrain each p in pc
to have cpu(p)="pentium2"
and name(has_os(p)) "wi n95"
and size (has_os (p)) =< size (has_disk
and if name (has_os (p)) ="winNT"

then memory(p)) >= 32 else true

Issues for Mobile Agents with
Constraints

The KRAFT network architecture is being applied to
the problem of gathering a specification for a configur-
ation problem, including potential parts and their con-
straints. It is targeted at an extranet situation, where
various vendors and potential customers form a virtual
private network because they wish to share information.
In order to do it they are prepared to conform (or map
data and constraints) to an ontology that is shared but
monotonically extensible (Gray et al. 1997).

Clearly, there is a cost associated with joining a
KRAFT network (extranet), and in this section
consider the requirements imposed by the KRAFT ap-
proach on participating agents. There are two main
issues to consider: (i) the need to conform to data
model and (ii) the role of agent autonomy.

Constraints need a Data Model

In many ways a data model makes up for the lack of full
natural language comprehension by a computer since, if

124

we had this, agents would obviously exchange messages
in natural language. What happens instead is that we
partition possible data values and objects into distinct
data types, and associate distinct real-world semantics
with each, by saying what natural language concept
best describes the partition or class(for example one
given in the vocabulary of WordNet). We do the same
with the named attributes and relationships applying
to objects in each class. Now we have given the com-
puter a means to check whether terms and concepts
used in different databases are interchangeable (or just
compatible), without fully understanding the meaning
in a natural language sense. We validate all of this by
appealing to a one-to-one correspondence between in-
stances of objects and corresponding reai-world objects
as described in (Mylopoulos 1990).

We can also list which operations (or combinations
of operations) on each data type are meaningful or
not. This is typically done through a database schema,
which is an important part of a data model. We may
define the operations in relational algebra (for a rela-
tional model) or in terms of predicate logic and the
lambda calculus, as in our functional approach. In fact
in P/FDM we can define almost any computation, re-
cursive or otherwise, on data structured according to
an Entity-Relationship model including Subtypes; this
kind of model is, of course, almost universally used
in CASE tools for database design or software con-
struction. Besides describing meaningful operations,
we can also describe invariants preserved through state
changes, which is the classic role for integrity con-
straints. This gives a more fine-grained level of se-
mantics.

The point is that we now have a set of rules for cal-
culating with and combining sets of data from hetero-
geneous sources, which produces well-formed results to
which we can give a data type, and hence a label giving
meaning. Thus the notion of understanding between
humans has been replaced by a set of rules for operat-
ing on data, which knows when computations are mean-
ingless without fully grasping their real-world meaning!
We are, of course, familiar with this approach as used by
type checkers in programming languages. However, as
pointed out by (Brodie & Mylopoulos 1986) it is being
used to represent the semantics of the external world,
and not just those of the inside of a computing engine.
Hence (Mylopoulos 1990) distinguishes ER models
having a different underlying ontology and semantics
from those used in terminological or frame-based sys-
tems, despite a superficial resemblance.

Our work on constraints, both in KRAFT and previ-
ously (Embury & Gray 1995a), has convinced us that
we need a data model in order to express constraints
precisely. We need to establish finite domains of real
world entities as a basis for quantification. We need
to know what attributes or methods can be applied to
each type of data (or entity). We need also to know
about re-use (or overriding) of methods through spe-
cialisation of entity types. Only then can we state our

constraints precisely. We need not, of course, include
every aspect of each entity in our data model; we typic-
ally work within a restricted view of those aspects that
are of interest.

Thus, where Internet web pages are just composed of
natural language sentences, it is hard to know how to
extract meaningful constraints automatically (or even
just to check constraints), without making mistakes.
The writer of the sentences may not even have kept to
one consistent vocabulary, which makes the possibility
for mismatches even greater. The only hope at present
seems to be that particular subdialects of the new XML
standard enforce the use of a named vocabulary or par-
ticular integration schema within certain sections of the
document. Thus if, on a given web site, it is known that
much of the textual information can be ignored and that
one is only looking for a small number of facts in certain
embedded tables or sections that are known to conform
largely to a given data model, then this would be very
useful. This is similar to the successful approach be-
ing followed by (Cohen 1998) in extracting information
from HTML tables on web sites.

Use of constraints by autonomous agents
In the KRAFT system, as in many systems using medi-
ators, agents reside on particular processors with spe-
cialised jobs such as facilitators, mediators, wrappers
etc... Their location is found by using a facilitator.
Thus, queries that involve collecting data from a num-
ber of locations can be performed by the mediator send-
ing off a number of asynchronous requests. However,
there then comes a synchronisation step where the in-
formation is put together and combined. If instead one
was to follow the technique used to process distributed
database queries, one would use the selection inform-
ation implicit in the keys of tuples returned from one
query to provide extra selection conditions embedded in
queries sent to other databases, where the information
from the databases is being joined conjunctively. Our
approach in KRAFT is for the mediator to plan and
generate the queries in cooperation with the constraint
solver, based on the metadata it has about constraints
(especially their number, type and selectivity).

In a system where agents were more autonomous, or
even mobile, one can imagine setting off a number of
agents in parallel with different strategies for visiting
various sites and searching the data found there. It is
rather like sending off a number of people on a treasure
hunt, where they have to collect objects from several
places, in no particular sequence. In this situation the
agent is accumulating both data and constraints from
various resources as the search progresses. The con-
straints act a bit like clues in the treasure hunt, in that
they can cause the agent to modify its plan (similar to
Conjunctive Query Optimisation (Smith & Genesereth
1985).

This is a promising strategy where we are interested
in getting any one solution quickly. It is not suitable
where we want systematically to compare all solutions

125

and find the optimum, or else to collect all the data and
then use batch processing techniques on one machine,
using economies of scale to improve performance. Much
depends on whether the constraints are conjunctive or
disjunctive. If the former, it pays to know what the
most selective constraint is, even if the agent has to
shop around. Otherwise you can get hooked on a large
sub-problem and spend a lot of time collecting related
data values, only to find they aren’t needed because of
another very restrictive selection condition! In this case
the approach using planning should win out.

Again, if the search is for data satisfying disjunctive
constraints, then it can be advantageous to have agents
radio search results back to headquarters which can be
broadcast to other agents to get them to abandon a
search or else concentrate on a new lead!

Conclusions
The work reported here has concentrated on the col-
lection, transformation and satisfaction of data intens-
ive constraints, all associated with a data model de-
scribing stored relationships between objects in various
distributed databases or knowledge bases. It is thus
particularly relevant to in]ormation-seeking agents. We
also emphasise that the domain of variables in the con-
straints is restricted either to subranges of integers or
else to objects which belong to classes in object data-
bases; usually those corresponding to entity types in an
ER model.

The survey article on Agents and Constraints (Eaton,
Freuder, & Wallace 1998) begins by noting a natural
synergy between them, which we would strongly en-
dorse. It uses the categorisation of (Nwana & Ndumu
1997) to classify the agents, and here we are particu-
larly interested in Information and Internet Constraint
Agents. We also concentrate on the use of generic agents
which acquire constraints, of varying degrees of com-
plexity, as they proceed to visit various sites, rather
than the more usual task-specific agents that hold par-
ticular built-in parametrised constraints. This is an ad-
vantage we get from working within a functional model
that allows us effectively to treat functions as data, and
by using Prolog as our implementation language.

To date, we have concentrated on using the KRAFT
architecture to collect constraints for solving configura-
tion problems, which tend to be spatial in nature, rather
than the temporal scheduling problems for which agents
have been applied by (Liu & Sycara 1994) and others.
KRAFT is not prohibited from collecting constraints
for scheduling problems, but we have no experience at
developing agents for use in this area, and we might
very well use a different kind of solver.

Another unusual feature is that our architecture in-
cludes facilities for transforming constraints expressed
in a local ontology so that they will conform to a shared
ontology (with aspects of an integration schema) in or-
der that the constraints may be expressed on a common
basis and then combined. This is crucial for setting

up a configuration problem. Thus our work with con-
straints is very dependent on the use of a local data
model that can be mapped into an (extensible) shared
ontology. This can be done easily enough in extranets,
where those joining the network can agree to map their
exported knowledge to the shared ontology. However,
it is never going to be easy in the anarchy of the Inter-
net, and the best hope seems to be agreement on the
use of labels in XML to denote parts of web pages, of-
ten including tables of values, that conform to a named
vocabulary or ontology.

We have speculated on the consequences of extend-
ing our architecture to use mobile agents. This has been
addressed by (Andreoli et al. 1997); (Torrens, Weigel,
& Faltings 1997). The interesting issues concern the
tradeoff between agents behaving opportunistically, or
else behaving in a more planned and coordinated fash-
ion in which they send constraints back to a mediator
and constraint solver that can help plan and coordinate
a search for data to satisfy the constraints.

Many AI systems, such as Molgen (Stefik 1981) have
studied moving constraints around within a single ad-
dress space to help solve a complex planning problem.
We have extended this to the propogation, collection
and moving of constraints (particularly data-intensive
ones) within an extranet, in order to set up a data-
intensive CSP. This seems to be a very promising novel
application for agents in Cyberspace!

Acknowledgements
We acknowledge support from BT for Kit Hui work-
ing on the KRAFT project, which is also supported by
EPSRC. We would like to thank Graham Kemp (Ab-
erdeen) and Zhan Cui (BT) and other KRAFT project
partners for interesting discussions. Figure 2 and 3 in
this paper are taken, with permission, from workshop
proceedings (Wagner 1997) (Hui & Gray 1998).

References
Andreoli, J.; Borghoff, U.; Pareschi, R.; Bistarelli, S.;
Montatnari, U.; and Rossi, F. 1997. Constraints and
agents for a decentralized network infrastructure. In
Constraints and Agents: Papers from the 1997 AAAI
Workshop, 39-44. Menlo Park, California, USA: AAAI
Press.
Andreoli, J.-M.; Borghoff, U. M.; and Pareschi, R.
1995. Constraint agents for the information age.
Journal of Universal Computer Science 1:762-789.
Bassiliades, N., and Gray, P. 1994. CoLan: a Func-
tional Constraint Language and Its Implementation.
Data and Knowledge Engineering 14:203-249.
Bayardo, R. J.; Bohrer, W.; Brice, R.; Cichocki, A.;
Fowler, J.; Helal, A.; Kashyap, V.; Ksiezyk, T.; Mar-
tin, G.; Nodine, M.; Rashid, M.; Rusinkiewicz, M.;
Shea, R.; Unnikrishnan, C.; Unruh, A.; and Woelk, D.
1997. Infosleuth: Agent-based semantic integration of
information in open and dynamic environments. In
Proceedings of SIGMOD ’97.

126

Brodie, M. L., and Mylopoulos, J. 1986. Know-
ledge bases and databases semantics vs. computational
theories of information. In Ariav, G., and Clifford,
J., eds., New Directions for Database Systems. Ablex
Publishing Corp.
Cohen, W. W. 1998. A web-based information system
that reasons with structured collections of text. In
Sycara, K. P., and Wooldridge, M., eds., Proceedings of
the Second International Conference on Autonomous
Agents. Minneapolis/St. Paul, MN USA: ACM Press.
Eaton, P. S.; Freuder, E. C.; and Wallace, R. J. 1998.
Constraints and agents - confronting ignorance. AI
Magazine 19(2):51-65.
Embury, S., and Gray, P. 1995a. Compiling a De-
clarative, High-Level Language for Semantic Integrity
Constraints. In Meersman, R., and Mark, L., eds.,
Proceedings of 6th IFIP TC-2 Working Conference on
Data Semantics, 188-226. Atlanta, USA: Chapman
and Hall.
Embury, S., and Gray, P. 1995b. Planning Com-
plex Updates to Satisfy Constraint Rules Using a Con-
straint Logic Search Engine. In Sellis, T., ed., Proc.
of 2nd Int. Workshop on Rules in Database Systems
(RIDS ’95), Lecture Notes in Computer Science 985,
230-244. Glyfada, Athens, Greece: Springer-Verlag.
Embury, S., and Gray, P. 1995c. The Declarative Ex-
pression of Semantic Integrity in a Database of Protein
Structure. In Illaramendi, A., and D{az, O., eds., Data
Management Systems: Proceedings of the Basque In-
ternational Workshop on Information Technology (BI-
WIT 95), 216-224. San Sebastian, Spain: IEEE Com-
puter Society Press.
Gray, P.; Preece, A.; Fiddian, N.; Gray, W.;
Bench-Capon, T.; Shave, M.; Azarmi, N.; Wie-
gand, M.; Ashwell, M.; Beer, M.; Cui, Z.; Diaz,
B.; S.M.Embury; K.Hui; A.C.Jones; D.M.Jones;
G.J.L.Kemp; E.W.Lawson; K.Lunn; P.Marti; J.Shao;
and P.R.S.Visser. 1997. KRAFT: Knowledge Fusion
from Distributed Databases and Knowledge Bases. In
Wagner (1997), 682-691.

Gray, P.; Cui, Z.; Embury, S.; Gray, W.; Hui, K.; and
Preece, A. 1998. An Agent-Based System for Handling
Distributed Design Constraints. In Boddy, M., and
Gini, M., eds., Proceedings of Agents’98 Workshop on
Agent-Based Manufacturing. Minneapolis, USA: Dept.
of Comp. Science and Eng., Univ. of Minnesota.
Hui, K., and Gray, P. M. D. 1998. Constraint and data
fusion in a distributed information system. In Embury,
S. M.; Fiddian, N. J.; Gray, W. A.; and Jones, A. C.,
eds., Advances in Databases: Proceedings of 16th Brit-
ish National Conference on Databases (LNCS 1~05),
181-182. Cardiff, Wales, U.K.: Springer Verlag.
Labrou, Y. 1996. Semantics for an Agent Commu-
nication Language. Ph.D. Dissertation, University of
Maryland, Baltimore MD, USA.
Liu, J., and Sycara, K. 1994. Distributed problem
solving throught coordination in a society of agents.

Mylopoulos, J. 1990. Object-Orientation and Know-
ledge Representation. In Meersman, R.; Kent, W.; and
Khosla, S., eds., Proceedings of the IFIP TC2/WG 2.6
Working Conference on Object-Oriented Databases:
Analysis, Design F~ Construction (DS-4), 23-37. Win-
dermere, U.K.: North-Holland (1991).

Neches, R.; Fikes, R.; Finin, T.; Gruber, T.; Patil, R.;
Senatir, T.; and Swartout, W. 1991. Enabling Techno-
logy for Knowledge Sharing. AI Magazine 12(3):36-56.

Nwana, H., and Ndumu, D. 1997. Introduction to
agent technology. 1198:1-26.
Shipman, D. 1981. The Functional Data Model and
the Data Language DAPLEX. A CM Transactions on
Database Systems 6(1):140-173.

Smith, D. E., and Genesereth, M. R. 1985. Ordering
conjunctive queries. Artificial Intelligence 26:171-215.

Stefik, M. J. 1981. Planning with constraints. Artifi-
cial Intelligence 16(2):111-140.
Torrens, M.; Weigel, R.; and Faltings, B. 1997. Java
constraint library: Bringing constraints technology on
the internet using the java language. In Constraints
and Agents: Papers from the 1997 AAAI Workshop,
21-25. Menlo Park, California, USA: AAAI Press.
Van Hentenryck, P. 1989. Constraint Satisfaction in
Logic Programming. MIT Press.

Visser, P. R. S.; Jones, D. M.; Bench-Capon, T. J. M.;
and Shave, M. J. R. 1997. An analysis of ontology
mismatches: Heterogeneity versus interoperability. In
Fraquhar, A., and Grunninger, M., eds., AAAI 1997
Spring Symposium on Ontological Engineering.

Wagner, R., ed. 1997. Proceedings of the Eighth Inter-
national Workshop on Database and Expert Systems
Applications. Toulouse, France: IEEE Computer So-
ciety Press.

Wiederhold, G., and Genesereth, M. 1995. The Basis
for Mediation. In Lanfmann, S.; Spaccapietra, S.; and
Yokoi, T., eds., Proceedings of 3rd International Con-
ference on Cooperative Information Systems (CooplS-
95).

127

