From: AAAI Technical Report SS-99-03. Compilation copyright © 1999, AAAI (www.aaai.org). All rights reserved.

MAGE: Multi-Agent Graphical Environment

Leen-Kiat Soh, Hiiseyin Sevay, and Costas Tsatsoulis

Department of Electrical Engineering and Computer Science
University of Kansas, Lawrence, KS 66045
{lksoh, hsevay, tsatsoul} @ittc.ukans.edu
tel: (785) 864-7764 fax: (785) 864-7789

Abstract

This paper describes our continuing research effort towards
building a graphical development environment for rapidly
creating, visualizing, and testing multi-agent software
applications. Our system, Multi-Agent Graphical
Environment (MAGE), addresses the need for enabling
existing programs to be incorporated into agent-based
software frameworks with minimal programming and the
need for creating new agents and linking them to others.
Users can create new agents and convert legacy programs to
agents using the graphical user interface in MAGE and a
messaging API at the source code level. Since MAGE
handles all the agent-related bookkeeping and
communication in a manner transparent to the application
layer, users need not build an entire agent infrastructure for
their applications. The graphical environment in MAGE
enables the users to view and edit the configuration of their
multi-agent systems. MAGE facilitates debugging by
animating the message-passing among agents and allowing
the users to execute their systems in a single-stepping mode.
At the application layer, MAGE agents use KQML as their
communication language. Below the application layer,
MAGE employs CORBA to enable each agent to exchange
messages with other agents. Currently, we are in the process
of deploying MAGE on a web browser besides utilizing it to
solve problems in domains such as information retrieval and
data mining.

Introduction

As the computing platform of today’s software becomes
more and more global, the research and development
towards building tools for rapid creation and deployment
of both single- and multi-agent systems (Sycara 1998) is
gaining increasing significance. Such tools are critical
because they alleviate the users from having to build an
underlying infrastructure for providing the high-level
support required in agent-based problem solving. Using
these tools, users can create agents that provide new
services to the current computing environment; they can
create groups of agents that work in collaborative settings,
or they can experiment with different agent architectures
for their applications.

128

An agent can be thought of as an autonomous, goal-
oriented, and temporally continuous entity (Franklin and
Graesser 1996). On the other hand, a multi-agent system
(MAS) is a loosely coupled network of agents that work
together to solve problems that are beyond their individual
capabilities (Durfee et al. 1989). This approach to problem
solving is attractive because it allows problem solvers (i.e.,
agents) to be specialized and localized, and yet be
collaborative in solving problems in a distributed manner.

The multi-agent system architectures that exist today
have been applied to solve problems in domains such as
information processing, information planning,
telecommunications, control and monitoring, and design
(O’Hare and Jennings 1996; Kuokka and Harada 1996;
Sycara et al. 1996; Wilkins and Myers 1996; Lander 1997).
The increasing demand for such systems demonstrates that
as much of the creation of agent-based systems as possible
needs to be automated to save time in development,
testing, and deployment.

Building a MAS from scratch is a difficult task,
because a developer has to first design and build an
environment to support agent-based problem solving
before designing any agents in that environment. Our
system, Multi-Agent Graphical Environment (MAGE),
provides such an environment to agent developers. Since it
hides the lower-level implementation details from the
users, it enables them to start developing solutions at the
agent level.

The objectives of MAGE are threefold. First, MAGE
aims to facilitate the integration of software applications
that are potentially written in different languages. These
applications may be homogeneous or heterogeneous,
centralized or distributed. Applications are homogeneous if
they are written in the same language on the same
operating system platform, and they are heterogeneous
otherwise. With this perspective in mind, the goal of
MAGE is to provide interoperability, software reuse, and
integration of legacy programs. MAGE is written in Java,
and it currently generates proxies to enable smooth
integration of agents written in C (if compiled with a C++
compiler) and C++. Second, MAGE aims to provide

developers with a graphical environment for building a
MAS. Its graphical user interface (GUI) allows developers
to create an agent, attach an application to that agent, and
establish connections with other agents. Meanwhile, the
actual registration and deployment of each agent is
activated automatically by MAGE as the user is creating or
modifying a system. This approach helps developers
concentrate more on their domain-specific modeling and
analysis. Therefore MAGE can be a tool for rapid
prototyping and testing of multi-agent systems. Third,
MAGE aims to automate as much of the agent design,
testing, and deployment process as possible through its
GUL Developers are able to view the messages as they are
being exchanged between a sender and a receiver and a log
of the actions performed by each agent. This mode is
useful for debugging and analyzing the behavior of the
system from different perspectives such as the role played
by each agent in solving particular problems and the
impact of the communication traffic on the final solution.

In this paper, we present MAGE as a graphical
environment that requires minimal coding from developers
to build multi-agent systems. Section 2 reviews agent-
building tools that are closely related to MAGE. Section 3
describes MAGE in detail. Section 4 discusses the GUI.
We conclude with a report on the current status of MAGE
and a description of future directions.

Related Work

Current agent-building tools can be categorized into three
groups. The first group of tools focuses on mobile agents.
For example, in SodaBot (Coen 1994), a framework called
the Basic Software Agent (BSA) provides an environment
in which the user can build an agent and deploy it at
remote sites where BSA has already been installed. Other
mobile agent-building tools include Aglets (Lange and
Oshima 1998), Mole (Straser et al. 1996), Odyssey
(General Magic 1998), and Kafka (Nishigaya 1997).

The second group of tools provides infrastructure
support such as agent architectures and high-level agent-
oriented languages, and it also provides generic software
libraries with support for capabilities such as
communication and coordination, but without a
concentration on mobility. For example, the Intelligent
Agent Factory (http://www.bitpix.com), JATLite
(http:/fjava.stanford.edu), Agentx (Schneiderman 1998),
and Voyager (ObjectSpace 1997) are tools that provide
software libraries for building agents. LALO
(http:/fwww.crim.ca/sbc/english/lalo) is an Agent Oriented
Programming (Shoham 1993) language. ARCHON (Wittig
1992; Jennings and Cockburn 1996) is a distributed Al

129

programming framework and a general MAS architecture.
COOL (Barbuceanu and Fox 1996) is a language for
coordinating the activities of autonomous intelligent
agents. The multi-agent system by Lejter and Dean (Lejter
and Dean 1996) is another example that provides software
libraries in addition to user interfaces for tracing and
debugging.

The third group involves tools that provide a multi-
agent computing environment. For example, the Java-
based Agent Framework for Multi-Agent Systems
(JAFMAS) provides a generic methodology for developing
multi-agent systems based on speech acts (Chauhan 1997).
It also provides communication ability, linguistic and
coordination support through a number of Java software
libraries. AgentBuilder from Reticular Systems, Inc.
includes tools for managing the agent-based software
development process, analyzing the domain of agent
operations, designing and developing networks of
communicating agents, defining behaviors of individual
agents, and debugging and testing agent software
(Reticular Systems 1998).

MAGE belongs to this third category. MAGE is a tool
that requires minimal coding from developers. It provides a
simple KQML-based send-receive messaging protocol to
enable each agent to communicate with other agents.
MAGE uses the information that the user enters through its
GUI to automatically generate code for proxies that
translparently link agents written in languages other than
Java to agents written natively in Java over a common
agent communication layer. This capability sets MAGE
apart from both AgentBuilder and JAFMAS, which
support Java only at the time of this writing.

There are two systems that are very similar to MAGE:
ZEUS (Collis et al. 1998) and CABLE (Wooldridge and
Jennings 1995). ZEUS, developed at the British
Telecommunications Laboratory, is an agent-building
toolkit. It has a visual component that allows agents to be
created using graphical development tools. It offers editors
that enable the developer to specify various aspects of an
agent application, from the attributes of individual agents
and the tasks they perform, to how they will interact with
each other. Then the Code Generator in ZEUS converts the
agent specifications to Java source code that is ready to be
compiled. This source code for a new agent needs to
include the class definitions from the ZEUS agent library.
The code produced by the Generator tool is created in the
form of callback methods, which allows the developer to
integrate the agents with application specific code.

CABLE is a system architecture developed by the
GRACE Consortium (Wooldridge and Jennings 1995).

! Currently there is support for C and C++ programs.

CABLE provides the developer with an Agent Definition
Language (ADL) for defining agents and a parser known
as the Scribe for compiling agent definitions written in
ADL into agent specifications. Agents are developed using
ADL and C++. ADL allows users to define their agents at
high level, so that they need not worry about the
underlying details. Communication among agents takes
place in a local area network using CORBA as in MAGE.

There are several significant differences between
MAGE and the above two systems. Unlike ZEUS, MAGE
neither assumes the application of each of its agents nor
requires the specification of any attribute or aspect of an
agent application. Unlike CABLE, MAGE does not require
developers to code in another language such as ADL to
create a MAS; instead, MAGE solicits agent creation
through its GUI, requiring minimal coding from
developers.

The Architecture of MAGE

Figure 1 shows the architecture of the MAGE system. The
user interacts with MAGE through the GUI, which also
acts as a system agent that monitors and collects statistics
on the various activities of the MAS being designed such
as communication traffic and message content. During an
interactive session with MAGE, the user can create agents

graphically. MAGE then spawns and registers each agent
to the system, and this enables that agent to communicate
with others in the system through a common agent
communication layer, currently implemented with an ORB.

Each agent is an application that performs one or more
tasks. Compatibility among heterogeneous applications is
possible using a proxy-based encapsulation of the
application within the agent. Figure 2 depicts the software
layers in a MAGE agent. When an agent is created, the
developer is prompted to supply three pieces of
information: (1) the name of the agent, (2) the path to the
application, and (3) the computer language in which the
application was written. Since Java applications will use
the underlying MAGE software library to build agents,
they are ready to be run. However, if the application is not
written in Java, MAGE automatically generates a proxy
that links this application to the agent communication layer
transparently through a socket-based connection. This
setup process is handled automatically by the underlying
language-specific KQML messaging API. Currently
MAGE uses the CORBA implementation available in Sun
JDK version 1.2.

We have so far described the basic architecture of
MAGE without going into the implementation details. The
reader may refer to http://www.ittc.ukans.edu/mage for
more information on the system.

' user '

GUI/Systerh Agent

A

\
\

\
spawn

AY

Agent Communication Layer

'y

Figure 1: The MAGE architecture

Proxy /“\

Java

Send/Receive API

CORBA

A
socket gent

Language-Specific
KQML Send/Receive API

Application

Agent Communication Layer

Figure 2: Software design layers of a MAGE agent

The GUI of MAGE

The GUI of MAGE handles all the agent-related
bookkeeping in addition to interacting with the user for the
specification of agents. As shown in Figure 3, it has three
pull-down menus: (1) File, (2) Edit, and (3) Action. The
File menu allows the developer to perform tasks such as
creating a new MAS, opening a previously saved MAS,
saving the current MAS working model, printing out the
MAS, and exiting from the system. The Edit menu allows
the developer to undo a process, redo a process, select all
agents, toggle-display the message panel, and edit the
properties of each agent. The Action menu allows the
developer to connect two or more agents, disconnect two
or more agents, remove an agent, create an agent, register
it to the system, call an agent for explicit simulation and
testing, and run the entire MAS.

Next we will present some screen captures of GUI
to illustrate the primary features of MAGE. Figure 3 shows
the main work window of MAGE and the function panel
that pops up when the user clicks on the rightmost mouse
button.

131

In the example shown in Figure 3, five agents have
been created. The user can create an agent by clicking on
the Create Agent option in the function panel. Then the
user needs to enter the name of the agent, the complete
path to the application with which the agent will be
associated, and the language in which the application was
written. After the creating a MAS, the user can save it in a
file that can be retrieved later for modifications.

Figure 4 shows the window that allows the user to
browse the file directory and load a previously designed
MAS into MAGE.

In MAGE, each agent has a set of properties. The user
can store relevant information regarding each agent by
invoking the Properties option in the main function panel.
Figure 5 shows the properties window of MAGE. In this
window, the developer can navigate from one agent to
another. For each agent, the user can change the name,
information, labels, disconnect its links, connect to other
agents, etc.

Figure 4: MAGE: file access window

132

ot
Liygi ;

TR

Figure 5: MAGE: agent properties window

After registering the agents to the system, the user can
test the communication links among agents by using the
Call Agents option. This feature allows the developer to
explicitly send a message from one agent to the other to
verify that the communication links work properly. The
actual message-passing is executed when the developer
invokes Run, which will run all the agents in the system.

Figure 6 shows an example message-passing
animation that MAGE offers. For each message sent, a
(red) bubble will move from the agent that sends that
message towards the agent that the message is intended for.

Current Status

MAGE has entered its second phase of development.
Currently, a developer is able to create, connect, register,
and activate agents in a MAS. The developer is required,
however, to insert the message-passing operations (based
on send and receive primitives) into the legacy programs to
identify the receiver and the content of the message being
sent. There are several lines of work that are currently
taking place. First, the GUI is being refined to have more
user-friendly features such as confirmation dialog boxes.
Second, proxies are being written to encapsulate Lisp,
CLIPS, and other programming languages with socket-
based communication support. This task expands the
generality of MAGE. Third, we are implementing built-in
communication protocols (point-to-point, broadcast,
notification, federation and matchmaking). The developer

133

will be able to define the protocol by which a specific
agent will communicate with others. For example, if an
agent uses point-to-point, then the user will need to define
inside the agent code when messages will be sent and to
whom. If the agent uses broadcasting, then the messages
will be sent to every agent in the MAS. If the agent
chooses to be part of a matchmaking architecture (Kuokka
and Harada 1996), MAGE will then add all of that agent’s
functions/methods as advertisements of capabilities to a
matchmaker in the system.

Conclusions

We have described Multi-Agent Graphical Environment
(MAGE), a tool that allows developers to build multi-agent
systems graphically. This tool relieves developers from the
implementation details of the underlying infrastructure
support needed to build a MAS. MAGE uses a proxy-based
encapsulation to link agents written in languages other than
Java. This provides for interoperability among disparate
applications. Thus, MAGE can be very useful in system
integration and software reuse. The GUI facility of MAGE
allows developers to build a MAS easily and quickly.
Thus, we also see MAGE as a computer-aided tool that
enables quick prototyping and testing of distributed
software. Finally, MAGE facilitates debugging and
analysis via its animation and message log during the
execution of the MAS.

Figure 6: Animation of message-passing in MAGE. A (red) bubble moves from agent a2 to b1 when a2 sends a message to b/

Acknowledgments

Part of this work was supported through a grant by the
Kansas Technology Enterprise Corporation. The authors
wish to thank Danico Lee, Steve Ganje, and Chien-Ming
Chen for their help in programming.

References

Barbuceanu, M. and Fox, M. S. 1996. Capturing and
Modeling Coordination Knowledge for Multi-Agent
Systems. International Journal on Cooperative
Information Systems 5(2/3):275-314.

Chauhan, D. 1997. JAFMAS: A Java-based Agent
Framework for Multiagent Systems Development and
Implementation. Master’s Thesis, ECECS Dept., Univ. of
Cincinnati.

Coen, M. H. 1994. SodaBot: A Software Agent
Environment and Construction System. Al Technical
Report 1493, Al Lab, MIT.

Collis, J.; Ndumu, D.; Nwana, H.; and Lee, L. 1998. The
Zeus Agent Building Tool-Kit, BT Technology Journal
16(3):60-68.

134

Durfee, E. H.; Lesser, V. R.; and Corkill, D. D. 1989.
Trends in Cooperative Distributed problem Solving, /EEE
Transactions on Knowledge and Data Engineering
11(1):63-83.

Franklin, S., and Graesser, A. 1996. Is it An Agent, or Just
a Program?: A Taxonomy for Autonomous Agents. In
Proceedings of the Third International Workshop on Agent
Theories, Architectures, and Languages, Springer-Verlag.

General Magic. 1998. Odyssey Information,
http://www.genmagic.com/technology/odyssey.html.

Jennings, N. R.; and Cockburn, D. 1996. ARCHON: A
Distributed Artificial Intelligence System for Industrial
Applications. In Foundations of Distributed Artificial
Intelligence, G. M. P. O’'Hare and N. R. Jennings, eds.,
John Wiley & Sons.

King, D.; and O’Leary, D. 1996. Intelligent Executive
Information Systems. /EEE Expert 11(6):30-35.

Kuokka, D.; and Harada, L. 1996. Matchmaking for
Information Integration. Journal of Intelligent Information
Systems 6(2/3):261-279.

Lander, S. E. 1997. Issues in Multiagent Design Systems.
IEEE Expert 12(2):18-26.

Lange, D. B.; and Oshima, M. 1998. Programming and
Deploying Java Mobile Agents with Aglets. Addison-
Wesley.

Lejter, M., and Dean, T. 1996. A Framework for the
Development of Multiagent Architectures. IEEE Expert
11(6):47-59.

O’Hare, G., and Jennings, M. eds. 1996. Foundations of
Distributed Artificial Intelligence, John Wiley & Sons.

ObjectSpace, Inc. 1997. ObjectSpace Voyager Core
Package Technical Overview. Version 1.0,
http://www.objectspace.com/.

Nishigaya, T. 1997. Design of Multi-Agent Programming
Libraries for Java. Fujitsu Laboratories Ltd. White paper,
http://www fujitsu.co.jp/hypertext/free/kafka/document.ht
ml.

Reticular Systems, Inc. 1998. AgentBuilder, Reticular
Systems, Inc. White paper,
http://www.agentbuilder.com/Documentation/WhitePaper.

Schneiderman, M. 1998. Agentx: Distributed Computing
Technology for the Next Millennium, International
Knowledge Systems. White paper,
http://iks.com/agentx.htm.

135

Shoham, Y. 1993. Agent-Oriented Programming. Artificial
Intelligence 60(1):51-92,

Straser, M.; Baumann, J.; and Hohl, F. 1997. Mole—A
Java Based Mobile Agent System. In Special Issues in
Object-Oriented Programming, Miihlhduser, M., ed.,
Springer-Verlag.

Sycara, K. 1998. Multiagent Systems. Al Magazine 19(2):
Summer 1998: 79-92.

Sycara, K.; Pannu, A.; Williamson, M.; Zeng, D.; and
Decker, K. 1996. Distributed Intelligent Agents. IEEE
Expert 11(6):36-46. -

Wilkins, D. E.; and Myers, K. L. 1996. Asynchronous

Dynamic Replanning in a Multiagent Planning
Architecture. In Advanced Planning Technology:
Technological ~ Achievements of the ARPA/Rome

Laboratory Planning Initiative, A. Tate, ed., 267-274.

Wittig, T. ed. 1992. ARCHON: An Architecture for Multi-
Agent Systems, West Sussex, UK: Ellis Horwood Limited.

Wooldridge, M. J. and Jennings, N. R. 1995. Intelligent
Agents: Theory and Practice, Knowledge Engineering
Review 10(2):115-152.

