
Virtual Environments:
An Agent-Based Approach

Jeffrey Coble Diane J. Cook

The University of Texas at Arlington
Department of Computer Science and Engineering

500 W. 1st St. Woolf Hall, Rm. 412
Arlington, TX 76019

{coble,cook}@cse.uta.edu

ABSTRACT
This paper describes research focused on the design of an
agent-based virtual environment architecture that allows
developers to create applications that can ease the burden of
interfacing to complex systems. We are concerned with
designing an architecture that supports applications that can
integrate multiple, heterogeneous systems into one consistent
user interface and to function as a collaborative tool so that
concurrent users can share information, expertise, and
resources. At the heart of our architecture is a Virtual
Environment CORBA Facility. This facility provides an
improved method of distribution and most importantly,
explicitly supports the integration of information from external
systems and provides a method for interacting with those
systems by using the virtual environment as a user interface.
What we present in this paper is a method from representing
and distributing a virtual environment so that it can support
advanced agent functionality. The nature of that functionality
is ultimately left to the discretion of virtual environment
developers. We have developed a granular, object-oriented
representation for virtual environments that allows developers
to incorporate agent technology into a web-based distributed
virtual environment.

Introduction
This paper describes research focused on the design of a
virtual environment architecture that allows developers to
create applications that can ease the burden of interfacing
to complex systems. We are concerned with designing an
architecture that supports applications that can integrate
multiple, heterogeneous systems into one consistent user
interface and to function as a collaborative tool so that
concurrent users can share information, expertise, and
resources.

Based on our evaluation [3] of current commercial
virtual environment architectures and our subsequent
attempts to use them to develop advanced applications, we
have concluded that a virtual environment architecture
must allow developers to create applications that are
network-based, distributed, platform-independent, multi-
user, and secure. The architecture must allow applications
to seamlessly integrate a variety of multimedia types and

should be able to function as a repository for information.
The ability to modify and manage the state of objects
within the virtual environment is crucial. A virtual
environment must allow the users and external systems to
change the state of objects, share that state with other
users, and the state must persist. The architecture must be
flexible enough to allow new programmatic capabilities to
be created without the need to re-distribute updated
versions of the infrastructure software.

Our previous work [3, 4] addressed many of these issues
with a web-based architecture that was designed to allow
developers to create persistent virtual environment
applications. Our previous work focused on such issues as
creating the structure needed to represent virtual
environments so that they could support persistent state
and could be augmented with other application specific
services. What we present in this paper is an advance to
our architecture that consists of the definition of a CORBA
(Common Object Request Broker Architecture) Facility
designed to include the aforementioned attributes but
provides an improved method of distribution and most
importantly explicitly supports the integration of
information from external systems and provides a method
for interacting with those systems by using the virtual
environment as a user interface.

Why Virtual Environments?
The recent standardization of VRML (Virtual Reality
Modeling Language), combined with the rapidly increasing
power of the personal computer, is allowing the technology
of modeling and simulation to move from the domain of
engineering applications, requiring expensive computer
systems, to everyday desktop use. VRML is designed for
web-based distribution and has made possible the
development of distributed virtual environments. The term
“distributed virtual environment” may invoke comparisons
to the many years of substantial research and development
in large scale distributed simulation systems. For the

This work was supported by NIMA under grant NMA202-97-1-1022-----------------

Copyright © 1999. American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

From: AAAI Technical Report SS-99-03. Compilation copyright © 1999, AAAI (www.aaai.org). All rights reserved.

purposes of this paper, our discussion will be restricted to
the recent work involving web-based distributed virtual
environments, designed to run on standard desktop
computers without concern for the factors surrounding
reality-based simulations.

Humans use multiple senses to process information and
to perceive their environment. Just like any data conduit,
each sense has a limited capacity to provide information
with respect to time. Furthermore, some types of
information cannot be adequately conveyed in some modes
of communication (e.g., try describing the taste of a
banana). By combining the power of multiple senses,
humans are able to asynchronously perceive and synthesize
more information of varied types in a shorter timeframe.
Virtual environments aim to provide a much more intuitive
interface to complexly organized information by
capitalizing on these human perceptual processes and
intuitive human experiences.

Current commercial distributed virtual environments are
web-based, computer-generated, three dimensional,
interactive visualizations, which unlike simulations, need
only suggest a real or imagined space [1, 10]. They
provide a very compelling, multi-user environment in
which information, resources, conversations, and
applications can be accessed by distributed participants.

Many of these virtual environment architectures employ
a VRML representation of their content and provide a
forum for multiple distributed users to congregate,
communicate, and access the same type of information
generally associated with web pages. Our research
expands upon these valuable capabilities by providing an
architecture that can support the use of multi-user
distributed virtual environments as advanced interfaces to
distributed heterogenous computer systems and databases.

Although our architecture is designed to provide many
features that we feel are necessary to support advanced

Figure 1: Screen capture from a Virtual Reality Modeling Language representation of the time sequenced
progression of flooding over a land area. Our virtual environment CORBA Facility will allow this
application to bring the satellite image, the terrain elevation data, and the elapsed flooding data from
separate data sources.

Satellite Image

Terrain elevation
data

Time sequenced
flooding data

applications, the focus of this paper will be on the
mechanisms by which our architecture allows developers
to create virtual environments that can serve as a user
interface to multiple, heterogenous computer systems. By
supporting a mechanism for this type of integration, we

allow developers to create virtual environment applications
that can allow users to interact with multiple computer
systems through one consistent interface. This has clear
value in its ability to simplify processes that require the use
of these systems via their own disparate user interface
mechanisms. By combining the features of our
architecture that support collaboration and persistence into
a CORBA Facility, our architecture can be used to create
an interface to a collaborative environment in which users
can congregate to cooperatively solve problems and share
expertise about complex, dynamic multi-modal
information displays that are representative of volatile data,
residing in distributed, heterogenous real-time systems [7,
8].

Application
We are currently applying our virtual environment research
to improving the productivity of intelligence analysts at the
National Imagery and Mapping Agency (NIMA). In order
to provide recommendations to policy makers, NIMA
analysts must analyze a wealth of complex information,
such as multi-spectral satellite imagery, which resides in
mutliple, distributed systems. In many cases it is also
necessary to examine both current and historical data. The

analysts are faced with tremendous amounts of
information, coming from many different sources in many
different forms. It is often the case that analysts are
attempting to identify a trend or event based on temporally
ordered sequences of information. For example, a month

long view of satellite imagery, RF (Radio Frequency), and
SAR (Synthetic Aperture Radar) may indicate that a new
military base is being constructed in a strategic region of
Iraq.

Because of the complexity associated with analyzing any
particular type of information, analysts often become
experts in a particular medium. For example, one analyst
might be an expert at analyzing satellite photos while
another is an expert at interpreting the RF fequency spread.
The decomposition of expertise may be even more fine
grained than this example. Given this situation, it is often
necessary for multiple, distributed analysts to collaborate
in order to pool their expertise to ascertain what is
happening based on the wealth of intelligence information.
Analysts are often working on time critical problems,
therefore the more proficient they are at accomplishing
their task, the more accurate and useful their interpretations
will be.

Figure 1 illustrates an example that we are developing in
this domain. This is a virtual environment designed to
allow the analysts to analyze the flooding at a particular
land area over time. Using our architecture, each visual
level of information in the example can be generated from
a distinct database or computer system. Furthermore, the

Transform {
 children
 Shape {
 appearance Appearance {
 material Material {
 }
 texture NULL
 textureTransform NULL
 }
 geometry Box {
 }
 }
 translation -0.123259 0.0819294
-4.5
}

Figure 2. Illustration of the VRML cube created by the accompanying VRML syntax.

change in the data that resides in these distributed
repositories can be reflected in real-time in the visual
representation of the virtual environment. The users would
be able to move the time slide bar and generate a query to
the external database that contains the time sequenced
flooding data. The results of the query are visually
reflected by the rise or fall of the water level in the virtual
environment.

What we have just described is useful in itself.
However, since we are representing this information in the
context of a multi-user distributed virtual environment, our
architecture is designed to expand on the innate
collaborative capabilities. Our architecture will allow
multiple users to coexist in the virtual environment and
interact with the information display. The method by
which the components of the virtual environment are
represented allows the information to reflect changes in the
underlying data and for those changes to be shared, in real
time, with the distributed participants. As we will explain
in later sections, the information that a user sees is
represented by a programmatic structure that is far more
robust than that of a modeling language. Our Virtual
Environment CORBA Facility provides the means by
which the state of the visualization can be changed, shared,
and stored to reflect real-time data from external systems
or user interaction.

Virtual Reality Modeling Language
Since most web-based virtual environment architectures,
including ours, use VRML to represent information to the
user, it is relevant to examine its strengths and weaknesses.

VRML has many inherent strengths that make it an
excellent choice for 3D interactive visualizations [5, 6]. It
runs within a web browser, supports JavaScript, provides a
sophisticated API accessible from external JAVA
applets/applications, and is hierarchical by design. The
current VRML standard already supports virtually any type
of graphical multimedia and can seamlessly integrate
sound, color, spatial relationships, temporal relationships,

and existing 2D widgets (charts and graphs).
The web-based nature of VRML naturally lends itself to

Internet-based collaboration methods. These capabilities
advance our effort to ‘fuse’ multiple, heterogeneous data
sources and systems into one consistent interface.

Although VRML is expressive, by itself it lacks the
power and the structure to support advanced virtual
environment applications. VRML models are typically
constructed offline and accessed via a web server. A
VRML visualization is represented statically as a text file,
which contains a description of the 3D visualization
(Figure 2). This description is interpreted at the local web
client, with a VRML rendering plug-in, and displayed to
the user. Although this structure has produced the ability to
develop ‘3D-web page’ type content, it is insufficient to
create a robust, dynamic, distributed virtual environment
application [3, 4]. In short, VRML is a web-based
modeling language, not a programming language and
therefore lacks any notion of state or the ability to
sufficiently augment the inherent functionality.

Users move between scenes
in the environment and can
interact with each other.

Virtual Environment
Scene

Component

Environments can be composed of multiple scenes.

Scenes can be composed of multiple components

Figure 3. Virtual Environment Hierarchy.

The Multi-Agent Architecture for Virtual
Environments

To address the aforementioned issues, we introduced a
Multi-agent Architecture for Virtual Environments
(MAVE) in [4]. To understand the motivation behind
MAVE, it is important to discuss the hierarchical nature of
a virtual environment. Figure 3 illustrates this commonly
accepted hierarchy. A virtual environment is composed of
scenes and each scene is composed of objects. The

acceptance of this hierarchy as the defacto standard is
partially derived from the hierarchical nature of VRML but
also from the need to decompose the visualization into
manageable pieces. Attempting to render the entire
environment as one entity would overload the processing
power of most personal computers. This hierarchy lends
itself to our architecture and the type of componentization
that we are attempting to achieve.

The cornerstone of MAVE is a novel ‘end-to-end’ object
oriented design. Our research focuses on architectures at
two different tiers. Figure 4 depicts an object-level
architecture that is crucial to creating the powerful
software needed to provide the functionality of advanced
virtual environments. Figure 5 depicts the Virtual
Environment CORBA Facility that is designed to provide
the infrastructure necessary to support the integration of
heterogeneous systems, state maintenance, scalability,
collaboration, and a distribution mechanism.

The first tier of the architecture includes the notion of a
Virtual Environment Component (VEC) and a Virtual

Environment Scene (VES) (figure 4). The VEC and VES
represent an object-oriented physical granularity that
mimics the logical decomposition of the respective
elements of the virtual environment. We define a VEC as
the lowest level element in a virtual environment that can
stand alone as a useful entity. This is intentionally a
flexible definition but one that, in practice, is easy to
follow. Since each VEC can correspond to an instance in
an object-oriented database, it makes sense to maintain a

level of granularity that has some significant cognitive
value. A VES has all of the same elements of a VEC with
the added association of a series of VECs.

Use Cycle
Before we discuss the details of our architecture, it is
necessary to describe the use cycle from development to
distribution. The object-oriented structure of our
architecture allows developers to either re-use a set of
VECs and VESs, to create their own virtual environment,
or any combination of new and old. The VRML objects
embedded in the VECs and VESs are a programmatic
representation of the VRML text that would normally be
transmitted to a user who is viewing a standard VRML
visualization. We are using JAVA objects for this purpose
since they are readily usable in the context of a web
browser. At a minimum, a VES can simply include a
reference to a series of VECs. Once a series of VESs are

VECs are Instantiated
and associated with VES’

...
Environment Object

Agent Object

VESs are Instantiated and associated with Environments

VRML Object

Agent Object

UI Object

Component Object

Public Interface

VEC

...

Public Interface

Scene Object

...

Public Interface
Component Object

VRML Object

Agent Object

UI Object

Public Interface
Component Object

VRML Object

Agent Object

UI Object

Public Interface
Component Object

VRML Object

Agent Object

UI Object

VRML Object

Agent Object

UI Object

...

VES

Figure 4. Tier 1 architecture. Illustration of the object oriented structure of the virtual
environment.

created, they are associated with an environment object.
This complete structure constitutes a virtual environment.

What we have just described constitutes the development
of a collection of objects that are used to create the user
interface of the virtual environment. We now must
consider the need to interface with external systems and
create the elements to accomplish this. As illustrated in
figure 5, our CORBA Facility includes a set of Object
Managers. The purpose of these Object Managers is to
link the state of active VECs/VESs to external systems via
the CORBA interface. This will be discussed in greater
detail in the following sections.

In the context of our example for NIMA, we designed
and constructed these elements of the virtual environment
so that they provide the appropriate functionality for a
specific task. We designed the VECs and VESs so that
they provide the desired representation of the information
and the necessary human interface functionality and
subsequent linkage to external data sources and computer
systems.

The collection of objects that comprise the virtual
environment is stored in an object-oriented database, which
is an element of the Virtual Environment Facility. When a
user requests access to the virtual environment, this object
structure is sent to the client machine. Once the object
structure is resident on the client, the VRML objects
communicate with the rendering plug-in via the External
Authoring Interface (EAI), which is part of the VRML
standard. The EAI allows external applications to create or
modify the VRML visualization. The VRML objects
create the visualization by using the EAI. It is up to the
developers of the VECs and VESs to determine how they
will organize the visualization. That is an application
implementation issue rather than a concern of the
architecture. The server side architecture will be
discussed in detail in the following sections, but it is worth
noting now that this architecture explicitly supports multi-
user collaboration capabilities but leaves the
implementation up to the developer.

Object-Oriented Design
The hierarchical structure of the virtual environment and
the natural hierarchical structure of VRML heavily
influence our choice of an object-oriented design.
Applying object oriented properties to our architecture
increases the capabilities while maintaining maximum
flexibility. For instance, exploiting inheritance can easily
provide a mechanism for integrating a multi-level security
model that allows a component to default to the security
model of its parent scene or to overload the security
methods to implement its own model. This is true at the
scene level as well. Scenes can have a security model of
their own or default to that of the environment. For
example, any employee can enter their company’s virtual
environment, any employee of the Engineering department

can enter Building 3 (VES), but only the manager can
change the contents of the whiteboard (VEC) on the wall.

VRML Object. At the core of each VEC and VES is a
VRML object. This object maintains a programmatic
representation of the VRML visualization. Bearing in
mind that the visualization can change dynamically from
user interaction or a real-time data feed, the need for this
representation is clear. The VEC’s internal programmatic
representation of the VRML communicates with the
rendering software to display the visualization to the user.
In response to a stimulus that would change the VRML
visualization, the programmatic structure is changed first
and then the visualization is updated. There is always a
one-to-one mapping from the programmatic representation
to the visualization.

If a VEC has been designed to be persistent, it will
communicate with the Session Manager Object in the
CORBA Facility (Tier 2) which, in turn, will update the
state in the Object Database and propagate the new state
out to the concurrent users of the virtual environment.
When a new user enters the virtual environment, they will
download the new virtual environment rather than the
original version. This is a significant improvement over
the current state of the art in virtual environments since
most have no mechanism of maintaining state. In other
systems, users only receive a copy of the original virtual
environment every time they enter. The hierarchical
representation of the virtual environment provides the
ability to maintain persistence at a fine-grained level. Not
only is this convenient, but it is also efficient. Changes to
the state of a small object do not require large amounts of
information to be transmitted as it would if the
environment was one physical entity.

The VRML object is the only required element of the
VEC/VES. The others are either dependent upon the
functionality of the VEC/VES or required only for advance
virtual environment functionality.

User Interface Object. The User-Interface object would
be used when more traditional methods of input or output
are desired, such as dialog boxes or buttons.

Agent Object. The Agent object will not be discussed in
detail in this paper. It is our belief that inserting agent
objects into each level of the hierarchy is crucial for the
effective use of intelligent agents. By doing so, we are
creating a relationship between the VRML, Agent, and
User Interface Objects. This would be very important for
providing a mechanism for Intelligent Agents to obtain
component level information with regard to the visual
content and the user model at each level. This structure
will allow intelligent agents to provide better services to
users. The public interface at each level is a provision for
sharing VEC/VES services with other components. This
would normally be an IDL (Interface Definition Language)
that is consistent across the virtual environment.

Component Object. Depending on the application, the
Component Object may be complex. This object will be

the top level object in the VEC and will have the
responsibility for instantiating the other objects with their
initial state when the first user activates the virtual
environment. When a user’s request for the virtual
environment is received by the Session Manager Object, a
check is made to determine whether or not the virtual
environment is already active. If it is not, the Session
Manager Object invokes the Environment Object (top
level), which in turn instantiates the VESs, each of which
in turn instantiate all of their associated VECs. At this
point, each Component Object, which is the top level
object in a VEC would instantiate all of its elements

(VRML, Agent, UI) and also must instantiate an Object
Manager if the VEC is designed to interface to external
systems. The implications of this are summarized as:

• Developers must create the components illustrated in
figure 4 and

• Developers must create any corresponding Object
Managers, illustrated in figure 5.

• Developers must create their object hierarchy so that
all of the appropriate objects are instantiated to
guarantee the linkage from external systems all the
way down to the end user.

Web-based
Client

COTS Web
Server

Database

CORBA
Server

Database

CORBA
Server

ORB

Computer
System

CORBA
Server

CORBA
Server

CORBA Application

Object
Database

Object
Manager
s

Collaboration
Object

Session
Manager
Object

Virtual Environment
CORBA Facility

Computer
System

CORBA
Server

Figure 5. Virtual Environment CORBA Facility. Designed to provide integration of
distributed systems into a consistent interface, persistent components, and concurrent
access by multiple users.

These criteria help us to illustrate the value of defining
much of the functionality of this architecture as a CORBA
Facility. The following section will discuss this in detail.

Corba Facility For Virtual Environments
Figure 5 outlines what we refer to as the Tier 2
architecture. The CORBA Facility in this figure is the
server-level element of our architecture while the
remaining components illustrate the interaction among the
various pieces of an application.

Corba Overview
CORBA technology is gaining wide acceptance as a
standard for developing distributed computer applications
and for providing remote access to object repositories [2].
The CORBA standard includes many important features
that make it a clear choice for our architecture. Some of
the primary features are:

• Designed to provide TCP/IP access to CORBA
resources and therefore supports access via the
Internet.

• Language independence allows clients running on
virtually any platform to access servers in another
language by using native operations. The CORBA
IDL (Interface Definition Language) specification has
been mapped to many common languages, including
JAVA, C++, and C, which allows transparent access
between applications written in these languages.

• Supports reconfigurable applications by allowing
developers to create modular components that can be
added or removed without disrupting the overall
application.

• Provides a consistent method of access to any CORBA
server.

• Each vendor must support communication with other
vendor products via the IIOP (Internet Inter-ORB
Protocol).

 Each vendor’s implementation of the CORBA standard
is called an ORB (Object Request Broker). The ORB
provides the basic functionality defined in the standard.
Furthermore, each vendor has implemented some set of the
CORBA Services, which are utilities useful for developing
distributed applications. CORBA Facilities are designed to
provide higher level services. Some facilities under
development are geo-spatial data processing and system
management.

Facility Components
The purpose of our Virtual Environment Facility is to
provide a framework for developing virtual environment
applications that can take advantage of the power of

CORBA while allowing developers to be abstracted away
from some of the implementation issues inherent to
CORBA. Our Virtual Environment CORBA Facility
includes several components. They are:

Web Server. This component is not actually part of the
facility. The initial connection to the virtual environment
is established by accessing a web page with a JAVA
enabled browser. A JAVA applet is sent to the client’s
browser, which opens a CORBA connection to the Session
Manager Object within the Virtual Environment Facility.
Developers will only need to be provided with the IDL
(Interface Definition Language) specifications for the
Session Manager Object in order to establish this
connection.

Object Database. An object-oriented database is a
natural choice for our architecture due to the efficiency
issues related to storing objects in a standard relational
database. An active virtual environment is stored in the
Object Database. Changes in state that occur from
interaction from users or external systems are stored in the
database.

Session Manager Object. This is the primary object
within the Virtual Environment Facility. It has the basic
responsibility for instantiating virtual environments on first
access, tracking users within the virtual environment,
propagating the state of shared resources, and managing
concurrency.

Object Managers: The Object Managers create the link
from external systems to the state of components in an
active virtual environment. Changes in external systems
cause the appropriate Object Manager to update the state of
a corresponding VEC/VES, which in turn causes an event
to be triggered in the Object Database. The event is sent to
the Session Manager Object, which responds by
propagating the new state out to the concurrent users.
Alternatively, when the Session Manager object updates
the state of a component in the Object Database in
response to user interaction, an Object Manager can be
triggered to perform some action in an external system.

Collaboration Object. We only loosely define the
Collaboration Object here as it can function to provide
services as basic as a text chat or as advanced as
incorporating streaming video teleconferencing into the
virtual environment.

By combining these components with the object-oriented
structure of the virtual environment and the power of
CORBA to support the distributed nature of the system
integration, we have all of the elements necessary to create
a powerful user interface to multiple, heterogeneous
systems.

Conclusions
The broader scope of our work has been to support
advanced applications within a virtual environment. One
of the most desired features of advanced virtual

environment applications is the ability to collaborate with a
group of distributed users, while working with complex
information from varied systems. Our Virtual
Environment CORBA Facility, combined with our novel
object-oriented representation of a virtual environment has
been successful in providing a method for accomplishing
this task.

Our experience with working in this domain has made us
all too familiar with the inherent complexity of developing
distributed applications, even with CORBA. A well
executed CORBA Facility will provide a level of
abstraction from these difficulties and will allow
developers to exploit the power of distributed virtual
environments as user interfaces to complex systems.

We are currently developing applications, for the
National Imagery and Mapping Agency, as described in a
previous section, with the goal of increasing productivity
for analysts who must collaborate and cooperate to solve
complex problems. We have demonstrated the feasibility
of the first tier of our architecture by constructing a single
user virtual environment entirely with the object-oriented
structure illustrated in figure 4. We have partially
validated the second tier architecture (figure 5) by
conducting some simple feasibility experiments designed
to illustrate the linkage of CORBA objects to the state of
objects within the virtual environment structure. A full
scale application, employing both tiers of the architecture
with external linkage, state maintenance, and multi-user
access is currently under construction.

Future Work
Our immediate future work will focus on validating the
second tier of our architecture. We believe there are three
areas of long term interest that will further our ability to
support cooperative work in virtual environments.

Development Suites
In order to allow developers to take full advantage of our
Virtual Environment Facility, we will investigate the
development of a tool suite for developing virtual
environment applications. The three most complex
components to develop are the VRML Object, the
Component Object, and the Object Managers. We will
focus effort on creating automated methods to assist
developers in creating these low level components of the
virtual environment and linking their state to external
systems. It is unlikely that all complexity can be
abstracted from development. Applications of this
technology are not generic and in fact will be widely
varied. We anticipate spending considerable effort in this
area.
Portable Components
By developing standards for component interaction and the
necessary security protocols, it would be possible for users
to develop reusable, portable components. A user could

carry these components along with them to foreign virtual
environments to facilitate specific needs of a user or to
allow for the immediate expansion of a virtual
environment. For example, a user may develop a virtual
whiteboard that can be carried with the user as she enters
new virtual environments. This would allow the user to
share custom information with other users in the
environment and allow those other users to interact with
the information as prescribed by the component developer.
This technology would allow for an impromptu meeting or
discussion, with all the necessary presentation materials
readily available.

Intelligent Agents
The representation of the virtual environment is designed
around the notion of Intelligent Agents. This was due to
the inherent complexity of the domains that we felt would
benefit the most from advanced virtual environment
applications. Although we feel the virtual environment
concept provides a great deal of value, we believe that
explicit support of Intelligent Agents will vastly improve
the usability of these applications. Some such services that
Intelligent Agents may provide are: assistance accessing
features of a particular component, navigation assistance,
locating other users with similar interests or expertise, or
seamlessly establishing various modes of communication
with other users (text/voice chat). The list of agent
services is only limited by the imagination of the developer
and is naturally associated with the particular virtual
environment application. Our future work will focus on
the development of an agent-based approach to providing
user-specific views of classified information within a
multi-user virtual environment where the users are of
varied levels of security clearance.

References
1. Braham, Robert and Comerford, Richard, Sharing

Virtual Worlds, IEEE Spectrum, pp.18-25, March
1997.

2. Baker, S., CORBA Distributed Objects Using Orbix,
ACM Press, NY, NY, 1997.

3. Coble, J., The Evaluation Of Virtual Environment
Architectures And The Development Of Mave: A
Multi-Agent Architecture for Virtual Environments,
University of Texas at Arlington Master's Thesis,
December 1997.

4. Coble, J., Harbison, K., MAVE: A Multi-agent
Architecture for Virtual Environments, to appear in the
Proceedings of 11th International Conference on
Industrial & Engineering Applications of Artificial
Intelligence & Expert Systems, June 1998,
Benicàssim, Castellón, Spain.

5. Couch, J, et al, Late Night VRML 2.0 with Java,
Emeryville, CA, Macmillan Computer Publishing Co,
1997.

6. Hartman, J and Wernecke, J, The VRML 2.0
Handbook: Building Moving Worlds on the Web,
Reading, MA, Addison-Wesley Publishing Co., 1996.

7. Leigh, J. and A.E. Johnson, Supporting
Transcontinental Collaborative Work in Persistent
Virtual Environments, University of Illinois at
Chicago. 1996.

8. Leigh, J., Johnson, A., DeFanti, T., Issues in the
Design of a Flexible Distributed Architecture for
Supporting Persistence and Interoperability in
Collaborative Virtual Environments,. To appear in the
proceedings of Supercomputing '97 San Jose,
California, Nov 15-21, 1997.

9. Maes, P., Agents that Reduce Work and Information
Overload, Communications of the ACM, Vol. 37,
No.7,pp. 31-40, 146, ACM Press, July 1994.

10. Rockwell, Robert, An Infrastructure for Social
Software, IEEE Spectrum, pp. 26-31, March 1997.

11. Russell, Stuart and Norvig, Peter, Artificial
Intelligence: A Modern Approach, Englewood Cliffs,
NJ: Prentice Hall Inc, 1995

