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Abstract
In this paper we investigate how the observation of
symptoms which do not completely match a modeled
fault can be used to find the most likely fault – and
the degree to which this fault occurs. We start out by
setting up fuzzy causal diagrams and then show how
with the use of a proper operator the arcs of the
causal diagram can be reversed. We introduce a
graphical representation for fuzzy belief nets (FBN)
and show how both AND and OR connected
antecedents and consequents of rules can be
accommodated. The paper concludes with an
illustrative diagnostic example.

Introduction   

While “forward” reasoning from cause to effect is
generally understood and various means exist to solve this
problem using deterministic, probabilistic, or fuzzy means,
solutions developed so far for “backward” reasoning from
symptom to cause have various shortcomings. In the fuzzy
domain Sanchez (1976) first investigated the solution to
the inversion of the fuzzy relation A R B$ =  (with fault
vector A, symptom vector B, and relational matrix R)
which allowed him to find a least upper bound with the
help of an operator “a ”. Mizumoto and Zimmermann
(1982) approached the inversion problem by introducing
several appropriate relational operators which allowed to
express the inversion as a modus tollens of the form
B A Rx x' '= °  Fuzzy fault trees were used by
Gmytrasiewicz et al. (1990) and Ulieru (1994). The latter
manually created a diagnostic relevant network with the
help of experiential knowledge and first principles. Using
fuzzy modus tollens for validation, the pair with highest
similarity for both methods is found as the solution.
Engemann et al. proposed a methodology for decision
making under uncertainty, integrating ordered weighted
averaging aggregation operators and Dempster-Shafer
belief structure which is used as a framework for
representing information a decision maker has regarding
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relevant events (1996). Hisdal (1978) described
conditional possibility extended by Dubois and Prade to a
possibilistic version of Bayes' theorem (1992). A similar
solution is suggested by Kosko, who uses fuzzy
supersethood (1986). This approach in turn is used by
Dalton (1993) applying parsimonious covering theory
(Peng and Reggia, 1990) to fuzzy logic, the former using a
similarity measure assuming crisp symptoms.
Shortcomings of these approaches are that they do not
always provide a solution and if there is one it may by
bounded by a range too wide to be useful for decision
making, or inadequacies due to the nature of the operators
used. In the approach introduced here, knowledge is taken
from fuzzy cause-effect relationships modeled via causal
diagrams. “Backward” reasoning becomes possible with
the introduction of a proper fuzzy measure. We then show
how this system can be understood as a step towards fuzzy
belief nets. The method provides a way to incorporate the
degree to which a symptom is observed into the reasoning
apparatus.

Background on Probabilistic Belief Nets
Probabilistic belief nets and influence diagrams were
developed to facilitate automating the modeling of
complex decision problems involving uncertainty using a
compact graphical framework for representing the
interrelationships between the variables involved in the
problem under consideration (Miller et al., 1976;
Olmstead, 1984; Shachter, 1984; Agogino and A. Rege,
1987). They can be used to solve decision and probabilistic
inference problems. At the topological level an influence
diagram is an acyclic directed network with nodes
representing variables critical to the problem and the arcs
representing their interrelationships. Arcs going into
nodes represent conditional influence and can be reversed
through legal topological transformations on the diagram
according to Bayes’ rule. Jain and Agogino developed
Bayesian fuzzy probabilities and arithmetic operations that
are consistent with Bayes’ rule and retain closure of the
required properties (Jain and Agogino, 1990). Application
of the arithmetic operations results in a solution in which
the mean of the fuzzy function is equivalent to the point
estimate obtained by using conventional Bayesian
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probability. The resulting fuzzy function around the mean
can be used for stochastic sensitivity analysis; its
interpretation depends on the application.

Method for Inversion of Fuzzy Relation

To achieve the inversion of the cause-effect relation, a
fuzzy measure is introduced which will assign a degree of
similarity with each possible failure. Both sudden and
gradual malfunctions can be treated using slightly
different operators. We build on the notion of abduction
using a fuzzy scheme. Inference in abduction looks at a
general rule and a specific result. Out of a large number of
hypothetical solutions one specific case is chosen to be
most likely. In binary logic both rule and symptom are
evaluated with respect to their truth and only when both
are found to be true the rule can be hypothesized. In many
valued logic, both rules and results are always true to some
extent and therefore all rules can be hypothesized to some
degree. Therefore, we have to come up with a way to find
a method which identifies the most likely hypothesis.

To begin, failure-symptom relationships are expressed in
fuzzy causal diagrams as displayed in Fig.  1 (to avoid
overcrowding of the graph, links with strength zero were
omitted) where the fn represent the failures and the sm
stand for the symptoms. This means that a fault fn causes
a number of symptoms sm to occur to some extent. That
is, some symptoms are produced more strongly than
others. Other faults may cause the same symptoms but
with a different degree of strength.
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Fig.  1: Fuzzy causal diagram

The fuzzy connection between fault and symptom can
be encoded in a fault-symptom matrix. With the
assumption that several faults will cause the maximum
value of both individual symptoms and that there are no
mutually exclusive failures, modeling of multiple
concurrent faults can be achieved as seen in Table 1. Here,
we omit some combinations for brevity.

A fuzzy measure of closeness is proposed which is
motivated by the notion of subsethood and its Lukasiewicz
equivalent (Kosko, 1990; Dalton, 1993). We distinguish
two cases: faults can occur in either a crisp manner (power
outage, electrical short, etc.) or in a soft manner (gradual
failure, increasing bias, dependency of performance on
temperature, etc.). These two situations are accounted for
with two related closeness measures introduced below.

After some faults have been hypothesized, it is the goal to
decide which of all possible solutions is the most likely
one. Therefore, a ranking scheme is necessary which will
discard the less likely hypotheses and rank the most
plausible one on top. In case two fault combinations are
equally likely, the set of failures with minimal cardinality
will be chosen in accordance with parsimonious covering
theory.

Table 1: Fault-symptom matrix

s
1

s
2

s
3

s
4

s
5

s
6

s
7

f
1

f
2

f
3

f
4

0 0 0 0 0 0 0 0 0 0 0
0 0 .3 0 0 .7 .2 0 0 0 1
0 .4 0 0 0 0 .6 0 0 1 0
0 .4 .3 0 0 .7 .6 0 0 1 1
0 .9 .2 .3 .3 0 0 0 1 0 0
0 .9 .3 .3 .3 .7 .2 0 1 0 1
0 .9 .2 .3 .3 0 .6 0 1 1 0
0 .9 .3 .3 .3 .7 .6 0 1 1 1
.9 .3 0 0 0 0 0 1 0 0 0
…
.9 .9 .3 .3 .3 .7 .6 1 1 1 1

Crisp Failures
If faults are known to be crisp, then the distance of the
measured symptom to the symptom set for the closest fault

will be determined. Evidence ( )S FI
+  is aggregated by

summing up the Euclidean distance of the observation to
the modeled symptom set of a particular fault combination
in the symptom-failure space as shown for a two-
dimensional case (two symptoms and four faults) in Fig.

2. The Ø-fault is assumed to be at the origin. ( )S FI can be

interpreted as the fault strength for a fault combination FI.

( )S FI is expressed as the normed distance from the origin

to the modeled fault which is always 1 in the crisp case.
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Fig.  2: Aggregation of evidence in the symptom-failure space for crisp faults
and fuzzy symptoms

The closeness measure γc for the crisp case is of the form

( )( ) ( ) ( )( )γ c I I IS F S S F S F, min ,+ += − − +1 11 .

where



( )S FI  is the particular fault strength for the

modeled fault combination FI . It is the
normed distance of the modeled fault to

the origin. (Note: ( )S FI =1 for crisp

faults).

( ) ( )( )S F s F sI i I i
i

n
+ +

=
= −∑ 2

1

n is the number of observations

This measure allows the occurrence of observations
which are larger than the maximum symptoms which are
defined for any fault. This provides some flexibility in
modeling the faults and acknowledges that there may be
modeling errors. Some observations may be larger than
symptoms originally predicted but they should be assigned
to a fault nonetheless. This situation is depicted in Fig.  3.
Here two faults are modeled where fault f

1
 causes both

symptoms that are also caused by fault f
2
 However, the

modeled symptoms for f
1
 are smaller. Although the

measurements are larger than the two symptoms for fault
f
1
, the closeness measure will still assign fault f

1
 a higher

numerical value than fault f
2
 because the measurement is

closer to fault f
1
 than to fault f

2
.

x

x

measurement
  [s1

+, s2

+]=S+

S(f1)

S(f2)

s1

s2

Fig.  3: Measurement larger than symptoms modeled

( )( )γ c IS F ,S+  shares an important property for the

assignment of truth with abduction. The closeness
measure is also not true when the antecedent is false and
the consequent is true, the distinctive property of
abductive reasoning.

An important concept introduced through allowing
symptoms to occur to some degree is the notion of a
diagnostic distribution for the failure. This distribution
needs to have the value γ c = 1 at the modeled fault and
should be smaller further away.

Gradual Failures
For gradual failures, a means is provided which takes into
account the distance of the observation to the closest
symptom set for a fault as well as to what degree the fault

may occur. This necessitates the measurement of two
quantities: one is the closest distance from the observation
to the fault line. The fault line denotes the line on which
all gradual instances of one particular fault are assumed to
lie. It starts at the origin and is monotonically increasing.

The other quantity involves measurement ( )S Fn I  between

origin and intersection SR
+  of failure line and closest

connection ( )S Fd I
+  from the failure line to observation

S+ . This situation is depicted in Fig.  4.
.
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Fig.  4: Aggregation of evidence in the symptom-failure space for gradual
faults and symptoms

The resulting measure is of the form
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where

( )S FI  is the fault strength for failure FI

S+  are the observed symptoms



( )S Fn I  is the degree to which the failure occurred

expressed by the length of the failure line to
the intersection with the closest distance to the
measurement, normed by the overall length of
the failure. We distinguish the case where

( )S FR I
+

 is larger than ( )S FI  and the case

where ( )S FR I
+

 is smaller than ( )S FI . We

define special case ( )S F 0I =  for zero length

vector separately.

Details of the derivation and vector algebra used to
compute the distance can be found in Goebel (1996). We
refer to γs as a measure of closeness.

The diagnostic distribution around the modeled failure
extends to the entire range for a failure between zero and
one in contrast to the crisp distribution. For ease of
computation, the fault model was here assumed to be a
straight line, although it could be of any other shape as
well.

We will now outline the case when several faults
occupy the same symptom space. To illustrate, the
following graph (Fig.  5) shows the maximum fault profile
for three faults (excluding the Ø-fault) in a two-
dimensional symptom space using γc. The faults were

modeled as s1
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maximum failure surface is smooth and faults are seen to
be centered around their modeled place in space. The
valleys between the maxima show where the fault would
be diagnosed equally likely for either of two faults.
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Fig.  5: Modeling of three faults with two symptoms using γc

Graphical Representation of Fuzzy Belief Nets

In the previous sections we discussed the tools necessary
for inverting a fuzzy relation (arc reversal in FBN). This

section introduces notation for operations on the
topological level of the FBN. Specifically, we explain the
types of nodes involved and how to deal with different
connections which are expressed through AND/OR
linguistically in the antecedents and consequents of rules.
Each introduced operator is followed by a practical
example. The section concludes with a more complex
illustrative example.

Notation
The graphical representation of fuzzy belief nets consists
of nodes and arcs. The nodes are either state nodes which
correspond to the uncertain quantities which are not under
direct control or control nodes where the variable is under
direct control. As in probabilistic belief nets the state
nodes are shaped circular (Agogino et al., 1988). Arcs
between nodes represent the (fuzzy) causal relations from
one state to the other as displayed in Fig.  6.

Fig.  6: Fuzzy causal relation represented by arc between two state nodes

Three types of state nodes are used for applications in
diagnostic reasoning: 1.) sensor nodes which can be
directly observed; 2.) failure nodes which represent the
physical components in the system which are subject to
diagnostic search. Failure nodes are the cause for
symptoms observed (Goebel, 1996); 3.) finally,
intermediate nodes which are useful for modeling the
belief net but are not the goal or conditioning nodes.
Rather, they often represent intangibles in the problem
which are not directly measured. Fig.  7 shows the three
types of nodes.

(1) (2) (3)

Fig.  7: State nodes: (1) sensor, (2) failure, (3) intermediate

The inference engine for diagnosis starts from the
observation of measurements obtained from sensors and
chains through the belief net to obtain degrees of truth for
failures and to find the causes for failures. There are
several basic operations which are used with fuzzy belief
nets. These operations originate in the interpretation of the
arc which is understood as a fuzzy rule of the form IF fault
A THEN symptom B. Fig.  8 shows the model for this
basic rule.



A B

Fig.  8: Fuzzy rule: IF A THEN B

As an example the rule will be used that the
temperature of a system rises a lot when the valve gets
stuck. This rise is modeled to cause the associated
symptom to a degree 0.7. The matrix representation of this
rule is expressed in Table 2.

Table 2: Matrix representation of rule: IF valve gets stuck THEN
temperature rise large

s
B

f
A

0 0
0.7 1

Assuming an observation of “temperature rise large” of
0.6 and using the closeness measure γc, the result is
computed to be γc=0.9..

AND Antecedent. More complex rules involve the use of
“AND” and “OR” operators which implies there are two
or more antecedents or consequents. Here, only
combinations of two antecedents or consequents with
“AND” and “OR” operators are shown. The extension to
cases involving more than two operands is straight
forward. The rule “IF A AND B THEN C” is displayed
using the graphical representation in Fig.  9. Note the
AND-operator displayed next to node C.

A

C

B

Fig.  9: Fuzzy rule: IF A AND B THEN C

For calculation purposes, this rule is reduced to the
following representation (Fig.  10):

A  B C

Fig.  10: Alternative representation for rule: IF A AND B THEN C

The two arcs are replaced by one single arc which carries
the weight of the minimum weight of the two arcs. The
diagnosis has the same value for both antecedents A and
B. As a consequence, the rule “IF valve stuck AND bypass

clogged THEN temperature rise large” uses a similar
matrix representation as used in Table 1.

OR Antecedent. The rule “IF A OR B THEN C” is
represented graphically as displayed in Fig.  11. Note the
OR-operator displayed next to node C.

A

C

B

Fig.  11: Fuzzy rule: IF A OR B THEN C

This rule is equivalent to the three representations as
displayed in Fig.  12.

A C

B C

A  B C

OR

OR

Fig.  12: Alternative representation for rule: IF A OR B THEN C

The matrix representation for rule “IF valve stuck OR
pipe leaks THEN pressure drops is medium” is shown in
Table 3.

Table 3: Matrix representation of rule: IF valve gets stuck OR pipe leaks
THEN pressure drop medium

s
C

f
A

f
B

0 0 0
0.8 0 1
0.7 1 0
0.8 1 1

The closeness measure will be calculated for each case
and the maximum closeness measure is used as the
most likely candidate. Notice that in this model the
failure “A and B” has higher degree of complexity and
will not be considered with the presumption of



minimum cardinality for the solution because each
solution based on one sensor observation will render
equal results for A and “A AND B”. For an observation
of 0.6, the closeness measure is γc=0.9.

AND Consequent. The rule IF A THEN B AND C is
displayed with the graphical representation in Fig.  13
where the ∧ -operator is shown next to node A.

A

B

C

Fig.  13: Fuzzy rule: IF A THEN B AND C

The rule “IF valve stuck THEN temperature rise large
AND pressure drop medium” can be represented in matrix
notation as shown in Table 4.

Table 4: Matrix representation of rule: IF valve gets stuck THEN
temperature rises AND pressure drops

s
B

s
C

f
A

0 0 0
0.6 0.3 1

With an observation of  
05
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.

.




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


 , the closeness measure for

this example is gc=0.8586.

OR Consequent. For the rule “IF A THEN B OR C” the
graphical representation is shown in Fig.  14 where the
∨ -operator is displayed next to node A.

A

B

C

Fig.  14: Fuzzy rule: IF A THEN B OR C

This rule can be decomposed into three cases as displayed
in Fig.  15.

A B

A C

A B    C

OR

OR

Fig.  15: Alternative representation for rule: IF A THEN B OR C

The matrix representation for rule “IF valve stuck THEN
temperature rise large OR pressure drop medium” is
shown in Table 8.

Table 5: Matrix representation of rule: IF valve gets stuck THEN
temperature rise large OR pressure drop medium

s
B

s
C

f
A

0 0 0
0.6 0 1
0 0.3 1
0.6 0.3 1

Illustrative Example

The same relations can be used to propagate the
evidence for arcs connecting any combination of sensor
nodes, failure nodes, source nodes, and intermediate
nodes. To explain the concept further, an illustrative
example will be used which has more complex
connections. Consider the network as displayed in Fig.  16
where

A is the root cause (failure) that there are particles in
the flow

B is the root cause (failure) that the fluid is corrosive
C is the state that the valve is stuck
D is the state that the pipe leaks
E is the sensor observation that the temperature rises a

lot
F is the sensor observation that the pressure drop is

medium
G is the sensor observation that the temperature is down

slightly
The numbers next to the arc are the membership values
for the rule represented by the arc. The rules are:

• IF there are particles in the flow THEN the valve is
stuck
• IF the fluid is corrosive THEN the valve gets stuck
OR the pipe leaks



• IF the valve is stuck THEN the temperature rises a lot
AND the pressure goes down medium
• IF the pipe leaks THEN the pressure goes down
medium AND the temperature goes down slightly
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Fig.  16: Fuzzy belief net: illustrative example
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Using the rules established earlier, the first step in
backpropagating the evidence results in the calculation of
the closeness for intermediate nodes C and D. Both nodes
have an AND connection to the symptoms observed. The
closeness measure for node C is calculated as γc=0.6838,
the closeness measure for node D is γc=0.8, and the
closeness measure for event C AND D is γc=0.6258. The
operations are illustrated in

Fig.  17.

sE sF f
C

γc

0 0 0 0.1056
0.9 0.7 1 0.6838

sE sF sG f C D∧ γc

0 0 0 0 0.1
0.9 0.7 0.3 1 0.6258

sE sF f
D

γc

0 0 0 0.5877
0.4 0.3 1 0.8

D
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G
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Fig.  17: Operations to solve fuzzy influence diagram;
example case

To find the failure root, the highest closeness measure
is taken while the others are disregarded. In this case,
node D (γc=0.8) is chosen. Since only one failure node is
modeled for the event under consideration, the task is
trivial and reduces to failure B as shown in Fig.  18.

DB
0.7

Fig.  18: Source B is found as cause for the failure; example case

Had the observation been such that node C was

diagnosed, e.g. 
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, the closeness measure for

nodes C, D, and C D∧  would have been

( )γ c Cf = 08586. , ( )γ c Df = 05528. , and

( )γ c C Df ∧ = 0 7551. , respectively. In that case, propagation

of evidence from the intermediate nodes to the failure
nodes is performed on both possible branches (as shown in

Fig. 22) to result in ( )γ c AS = 08586. , ( )γ c BS = 0 4414. ,

and  ( )γ c A BS ∧ = 0 4238. . The interpretation of these

results is that failure A is more likely than failure B and
the combined failure A B∧ . A remedial plan has to move
according to these results.

sE sF sG fC fD γc

0 0 0 0 0 0.1414
-- 0.4 0.3 0 1 0.8586
0.9 0.7 -- 1 0 0.4414
0.9 0.7 0.3 1 1 0.4238
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Fig.  19: Failure C is found as the failure; modified
example case

Conclusions

The proposed approach suggests how closeness operators
γ c  and γ s can be used to model fuzzy belief nets. In

particular, arc reversal is demonstrated. The calculation of
the closeness measure uses distance metrics from the
observed symptom set to the symptom set for a failure
combination and – in the case of soft failures – distance
measures to the failure line. The closeness measure for
soft failures allows to determine to which degree a failure
occurs. It calculates the distance to the failure line as a
measure for the degree of the symptom and the distance
from origin to intersection with shortest distance, normed
by the overall length of the failure line, as a measure for
the strength of the failure. Advantages of this approach
overcomes shortcomings of previous fuzzy approaches
where solutions are not always given, have an
unacceptable large upper and lower bound, or are
accomplished by manually reverting rules. Insufficiencies
of threshold driven diagnosis are eliminated because the
approach avoids assumptions of failure independence and
of relative frequency of disorder occurrence.  Links in the
fuzzy belief net are represented as causal strengths for
failure-symptom relations similar to the Bayesian
approach.

Additional expert knowledge about the behavior of
multiple fault-symptom relations can be incorporated into
the system model which may result in placement of
combined faults at locations other than the maxima of
their symptoms when the failures are (partially) canceling
their symptoms or when the straight line model for the
failure behavior is known to be incorrect.

While this is a first step at representing FBNs and
reverting arcs, future work will explore automation issues.
Likewise the issue of combinatorial complexity is subject
to more research. Possible extensions of this work also
include the development of fuzzy influence diagrams
using a fuzzy utility measure.
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