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Abstract

We consider a particular class of hybrid systems char-
acterized by a finite state machine and a set of discrete-
time linear dynamical systems, each corresponding to
a state of the machine. The hybrid control problem
addressed consists of maintaining the output of the
systems in a given subset of the output space, indepen-
dently of the state of the FSM. Necessary and sufficient
conditions are given for the existence of a solution.

Introduction

We consider a hybrid system (see e.g. (Morse 1997))
consisting of a finite state machine (FSM) and a set of
dynamical systems, each corresponding to a state of the
FSM. We assume that, at each location of the FSM, the
actual configuration of the dynamical system is known.
The time at which a transition occurs between two dif-
ferent states of the FSM (also called switching time) is
not known a priori but is determined by an external un-
controllable event. The simpler case where the time of
occurrence of the transitions is not completely unknown
but can be predicted is also considered. The control
problem we solve in this paper consists in maintaining
the output of the systems in a given subset of the out-
put space, independently of the state of the FSM. We
work in an infinite time horizon framework.

This model can be used to represent a number of
control problems of practical interest. In our case, the
motivation to study this formulation comes from the en-
gine control problem in automotive applications. Our
research group has been involved with the formulation
of the engine control problem as a hybrid system control
problem and has developed guaranteed performance ef-
ficient algorithms for its solution (Balluchi et al. 1997,
1998). The plant to be controlled consists of the en-
gine, modeled as a FSM, and of the powertrain, mod-
eled as a linear dynamical system. A goal of engine
control is to ensure comfort during the entire operation
of the automobile. Acceleration oscillations caused by
torque variations on the powertrain are source of dis-
comfort for the driver. A possible control objective is to
maintain such oscillations, which can be expressed as a
linear combination of state variables of the powertrain,
below a given threshold. We assumed in (Balluchi et
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al. 1997, 1998) that there is no gear change during the
operation of the automobile and, hence, the powertrain
model is the same for all the regions of operation of
the engine. A gear change has the effect of changing
the ”structure” of the model of the powertrain dynam-
ics, in the sense that the matrices describing the linear
system change. A first step to solve the more general
automobile control problem when gear change is consid-
ered is to "relax” the hybrid control problem as follows:
the plant is the powertrain equipped with a gear change
mechanism and the control input is the torque gener-
ated by the engine. The plant can then be represented
by a hybrid model with an FSM part whose states cor-
respond to a particular gear, and the dynamical system
part corresponding to the appropriate powertrain dy-
namics for that gear. Then, the hybrid control problem
described above is an adequate representation for the
relaxed control problem.

Switching systems have been considered e.g. in
(Marro and Piazzi 1993), (d’Alessandro and De San-
tis 1996) in the case where the switching instants are
known a priori. In particular, in (d’Alessandro and De
Santis 1996), an optimal solution is derived for systems
with linear state constraints and linear cost functional.
In (Marro and Piazzi 1993), the problem of robust regu-
lation without error transients is solved. Some interest-
ing control problems are solved in (Sontag 1996) when
the transitions between two different states of the FSM
are enabled by some guard conditions that may depend
on the input and/or on the state of the dynamical sys-
tem. In this paper, we derive necessary and sufficient
conditions for the existence of a controller which main-
tains the output of the switching system in a given set,
in the case where the switching instants are unknown
a priori. Similar conditions can be obtained using the
general results of (Tomlin, Lygeros and Sastry 1998).
Our results are less general since they apply to a par-
ticular class of hybrid systems but have the advantage
of exploiting the structure of the FSM. This allows to
simplify the procedure for the determination of a so-
lution and to derive convergence conditions which are
unknown in the general case.

The paper is organized as follows. In Section 2, the
problem of controlling a switching system is formulated



and a solution is given in the case of unknown switching
times. In Section 3, the problem is relaxed to the case
where the switching times can be predicted. In Sec-
tion 4, possible extensions of our results are described.
Conclusions are offered in Section 5.

Switching constrained systems

The transition structure of an FSM determines the
reachability of its states. A connected FSM is such
that, for all state bi-partitions, there is always at least a
transition from one set of the bi-partition to the other.
Without loss of generality, we assume that the FSMs
considered in this paper are connected. Consider a con-
nected FSM F with state set S = {S;,s=1,--- ,N}.
To each state S; of the FSM we associate a discrete time
dynamical system (also called for simplicity configura-
tion S;) described by

:B(t + 1) = Aﬂ'(t) + B,-u(t)
y(t) = Ciz(t) + Dyu(t)

wheret € N, z € R*, u € R™, y € RP, and A;, B;, C;,
D; (i=1,--- ,N) are matrices of suitable dimensions.

The state evolution of the FSM in time is described
by the function s : N — S, so that s(t) denotes the
state of the FSM at time t. Let t{g € N be the initial
time. Only one switching is allowed at any t € N and
the switching times are supposed to be not known a
priori. The system described by the FSM F, its evolu-
tion in time s(t) and the dynamical systems (1) is called
switching system.

Our goal is to find under which conditions it is possi-
ble to maintain the output y(t) in a given set { (where
Q is a region of RP), for all ¢t > tp, i.e. :

y(t) € Q,VE > 1o

1)

(2)
More precisely:

Problem 1 Consider the switching system described
by the FSM F and (1), where the switching times are
supposed to be unknown. Letty be the initial time and
s(to) = S;, for somei=1,..,N. Find the set X of all
possible initial states x(to) such that the constraint (2)
can be satisfied for some control input u(t).

We consider here linear discrete-time dynamical sys-
tems in order to be able to compute the required con-
trols and sets which solve the problem. However the
derived structural conditions apply more generally to
continuous time and nonlinear systems. To state the
results the following definition is needed

Definition 2 A set ¥ C R" is controlled invariant with
respect to configuration S; and constraint (2) if Vx €
Y,JueR™: A;x+ Byu € X,Cix + D;u € Q.

Define the set Q;, as
Qe = {z : Ciz + D;u € §, for some u}
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Denote by Z;(A) the maximal controlled invariant set
with respect to configuration S; and constraint (2) con-
tained in some set A.

The solution to our control problem will be given for
the following simple cases. Once these cases are solved,
we can extend the solution to any connected FSM by
repeated application of the conditions for the simple
cases.

e Serial case: the FSM is described by the following
transitions:

S — Sy — - — Sy (3)
where S;, 2 =1,--. , N, denotes the i-th state of the
FSM, being S; # 8; for i # j;

e Cyclic case: the FSM is described by transitions

which are allowed to repeat themselves cyclically, i.e.
S1 — Sn-1

(4)

Ve

—

N
Sn
Some states may be repeated, S; may be equal to S;
for i # 4.
e Star case: the FSM is described by the following tran-
sitions:
Sa
()

/!
Sl —_—
N\

Sn
Serial case _
Let ¢;, ¢ = 1,--- ,N — 1, denote the switching time
between states S; and S;y; and o <ty < -+ - <ty_; <

0.
We can state the following:

Proposition 3 Consider the switching system de-
scribed by (1)-(3) with s(to) = Si, then X = % where:
zi:L(2i+aniw) izl,"',N—l

XN =In(ONa) .
If the set §2 is described by linear inequalities of the

form

Fy<w (6)
the sets §;, are polyhedra. If we assume that ¥; are
also polyhedra (which is not true in general) described
by inequalities of the form

Giz < vt

all and nothing but the control vectors that solve the
problem satisfy the following:

( %-g: )u(t) < < vt — G Az (t)

w— FCiz(t) ) biy <t st

(7)



Cyclic case
We need the following definition:

Definition 4 A set ¥ C R™ is controlled invariant with
respect to configurations Sy,--- ,Sn and constraint (2)
if

Vee £,Vi=1,---,N
JueR™: Az + Byu € X,Cix + Dyu € Q.
We can state the following

Proposition 5 Consider the switching system de-
scribed by (1)-(4), then X = X*, where ©* is the maz-
imal controlled invariant set with respect to configura-
tions Sy, -+ ,Sn and constraint (2) contained in the set
QN N---N QNS

Proof. The sufficiency is obvious. As for the neces-
sity, let £} be the set of states starting from which, if
the actual configuration is S;, all the subsequent. con-
straints can be satisfied. X} is controlled invariant with
respect to configuration S; and constraint (2) and more-
over

T CQ i=1,--,N
B CBC - CEy O

Hence, necessarily, 2] = X3 = .- = X} = £* and the
result follows. m

In the case of linear constraints, and with the ad-
ditional assumption that the set ¥* is a polyhedron
described by inequalities of the form:

Gr<vw

all and nothing but the admissible control vectors sat-

isfy the following
GB; v — GAix(t)
( FD; )u(t) ( 'w—FC,-x(t) )
Vt such that s(t) = 5

IA

(®)
(9)

Remark 6 A consequence of the last proposition is
that solving the problem in the cyclic case is equiva-
lent to solve the problem where the system may switch
from one configuration to any other one, without any
restriction on admissible transitions.

If we denote by C(Sy,---,Sn) the convex hull of the
N configurations (1), i.e. the set of systems described
by the equations:

z(t + 1) = Az(t) + Bu(t)
y(t) = Cz(t) + Du(t)

(8 2)e<((4 &) omr )

and if we assume that 2 is convex, we can state the
following
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Proposition 7 Suppose §) is conver. If some conver
set ¥ is controlled invariant with respect to configura-
tions S1,--- ,Sn and constraint (2), it is also controlled
invariant with respect to any system in C(Sy,---,Sy)
and constraint (2).

Note that this Proposition does not imply robustness of
the control with respect to perturbation of the model in
C(S1, -+ ,SN), because we are assuming that the exact
description of the system is known at each instant of
time, and the control law depends on this description. -

Star case

Proposition 8 Consider the switching system de-
scribed by (1)-(5) with s(to) = Si, then:

X =T (Nj=2- NT(Qyz) N Q1)

General case

A strongly connected FSM is an FSM such that every
state is reachable from all other states. As a degen-
erate case, a single state is strongly connected. It is
well known that a connected FSM can be decomposed
into its strongly connected components (maximal sets
of mutually reachable states) Fy, F3,--- , Fis and that
there is a partial ordering among the strongly connected
components defined as follows: strongly connected com-
ponent F; follows strongly connected component Fj if
the states of F; can be reached from states of Fj,. Note
that the partial order is well-defined since states of Fj
cannot be reached from states in F} otherwise F; and
F}, would not be maximal sets of mutually reachable
states. The strongly connected components of F' deter-
mine a Directed Acyclic Graph (DAG), T, where the
nodes correspond to Fi, Fy,--- ,Fy. The picture in
Fig. 1 represents a generic connected FSM, where the
nodes represent the states of the automaton and set
of nodes inside dashed lines are the strongly connected
components.

For any strongly connected component F}, there al-
ways exists a cycle - called for simplicity maximal cycle
- containing all the states of F;. Using the results in
Remark 5 every Fj is replaced by its maximal cycle and
is still denoted by F;. Without loss of generality, we as-
sume that the DAGs we consider are rooted, e.g., there
is only one node that has no incoming arc and we also
make the assumption that s(tg) is in the root node of
the DAG. We call sink a node of the DAG that has no
outgoing arc.

The general solution can be found on the basis of the
following two particular cases:

Fi — Fy— -+ — Fy

(10)

and



Figure 1: A connected FSM

Fy
/
F, — (11)
N\
Fup

Proposition 9  Consider the switching system de-
scribed by (1)-(10), where s(to) is a discrete state of
Fy, then X = X} where E;W denotes the mazimal in-
variant set computed applying Proposition 5 to Fys and,
fM>1,%; (i=1--- M—1) is the mazimal invariant
set computed applying Proposition 5 to F;, with the ad-
ditional requirement that such invariant set is a subset

of iy

Proposition 10 Consider the hybrid system described
by (1)-(11), where s(to) is a discrete state of Fy, then
X = X, where E; , 1 = 2---M, denotes the mai-
mal invariant set computed applying Proposition 5 to F;
and Ell 18 the mazimal invariant set computed applying
the Proposition 5 to Fy, with the additional requirement

that such invariant set is a subset of N;—g... ME;.

The following algorithm applies the above proposi-
tions reducing successively the DAG to a single node
5. The output of the algorithm is the set £(s) which
represents the set of all the initial states which solve
the problem in the general case.

Algorithm

MAIN:

Init: Mark all the nodes of the DAG (Directed
Acyclic Graph) T as unvisited. Let L(v) = R™ for
eachvin T
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1. Start from an unvisited sink of the DAG and find all
directed paths, stepping backwards until a node con-
taining two or more ”sons” has been found (this last
node should not be included in the path). Denote
by P={P,i=1---7} the set of all such paths.

2. For i=1---v
Collapse the path P, to a single node u;, replace the
starting node of P; with u; and remove all the others
(if any) from the DAG T . Mark u; as visited. If P,
has at least two elements let £ (u;) = Serial( P; ) .

EndFor

3. If all the DAG sinks have been visited continue, else
go to 1.

4. Scan the DAG sinks, until a sink v is found such that,
if f(v) is the " father” of v, all the ”sons” of f(v) have
been visited. Denote by V the subtree containing all
”sons” of f(v) (v included) and f(v) itself. Let &
= Star ( VS. If f(v) is the root node of the tree,
s = f(v), £(s) = . EXIT. Otherwise collapse the
set V to a single node v’ and mark it as unvisited.
Let L(v') = X.

5. Go to step 1.

SUB Serial( vy — -+ > vy )

Return the (invariant) set obtained applying Propo-
sition 8 to the strongly connected components v; —

-+ — v (remember that each node of the DAG repre-
sent a strongly connected component in the FSM), with
the additional requirement that such a set is a subset
of ,C(’UM)

SUB Star( V)

Return the (invariant) set obtained applying Propo-
sition 4 to the node f(v), with the additional require-
ment that such a set is a subset of N;L(w;), where w;,
¢ = 1...n,, are the sons of f(v).

Predictable switching times

In this section we assume that the switching times can
be predicted. with advance time 7, i.e. if £ is a switching
time between S; and Sk, we know at time ¢t — 7 that an
FSM transition from state S; to state Sy, will take place
at time ¢. For simplicity we assume here that 7 is less
than any difference between two consecutive switching
times.

The system described by the FSM F, its evolution
in time s(¢) and the dynamical systems (1), where the
switching times are known with advance 7 € N, is called
a predictable switching system.

Problem 11 Consider the predictable switching sys-
tem described by the FSM F and (1), where the switch-
ing times are supposed to be known with advance T.
Let to be the initial time and s(ty) = S;, for some
1=1,...,N. Find the set X, of all possible initial states
x(to) such that the constraint (2) can be satisfied for
some control input u(t).



Let us define the sets Q7 (X) CR™, i =1,---
means of the recursion:

,N by

OL(D)=SNQ, T=0
. . . . T7—1
Q&(D:{mau"é};iﬁzz%w (), } >0

ie. QI (X) is the set of initial states starting from
which, at some time t°, a control sequence exists such
that the state at time t°+ T belongs to the set ¥ satis-
fying also the given constraints with respect to the i-th
configuration at each time ¢, t® <t < 04 7.

In the serial case we have

Proposition 12 Consider the predictable switching
system described by (1)-(3) then X, = %, where
£ = L(Q (Zi))
En =In(Qng)
_ It is easy to prove that £; C %, i =1,--- ,N — 1,

YN = Xn. As for the control law in the linear con-
straints case, the structure is similar to (7).

i=1,-- ,N—1

In the cyclic case, we have

Proposition 13 Consider the predictable switching
system (1)-(4). Problem 11 is solvable if and only if

there exist N sets f]i such that each set f), is controlled
invariant with respect to the configuration S; and con-
straint (2), and the following inclusions hold:

£ C QL (52)
2‘5 - Q::c (ii-i-l)

SN C QL (E1)
Moreover, if s(to) = S; (i =1,...,N), then X, = 5;
Finally in the star case we have
Proposition 14 Consider the predictable switching
system described by (1)-(5), then:
XT = Il (nj=2..ANQIz(Ej) N le)
where:

% =1j(Qs) Jj=2---N

Extensions
Our results apply to a particular class of hybrid systems
but can be extended to a number of cases:

o Constraints on state and/or input variables that are
pointwise with respect to time, can be handled in our
framework.
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e The framework also works when the dynamic matri-
ces in the equations (1) are uncertain, and depend on
some unknown parameter, and/or the system is af-
fected by an additive disturbance, i.e. when we have
a description of the form

z(t +1) = Ai(n(t))z(t) + Biu(t) + D;i6(t)
y(t) = Csx(t) + Dsu(t)

(12)

where 7(t) € R? is an uncertain, time varying param-
eter, and 6(t) € R? is a time varying disturbance. Us-
ing the results in (De Santis 1997) we can analyze the
solution obtained in the nominal case (i.e. described
by equations (1). In fact once we have computed an
invariant set which solves a given problem, we can
also give a characterization of the set in parameters-
disturbance space, such that the invariance property
is preserved, with respect to some configuration (12).
In addition we are also able to compute the maximal
set of a given shape in the parameters-disturbance
space such that a robust control law preserving the
invariance exists.

e From the point of view of the computation of a
control law that is robust with respect to a given
bounded polyhedral set in parameters-disturbance
space, the paper (Blanchini 1995) can be generalized
to our switching systems problem.

e The more general case in which some of the tran-
sitions in the FSM are due to a control action and
the others depend on an external event can also be
analyzed in the proposed framework, Further gener-
alizations can be obtained when the control action is
such that the constraints are satisfied, while a suit-
able functional, defined on the states of the FSM, is
minimized /maximized.

Conclusions

In this paper, we have considered a particular class
of hybrid systems characterized by an FSM and a set
of discrete-time linear dynamical systems, each corre-
sponding to a state of the machine. The control prob-
lem solved in this paper consists in maintaining the out-
put of the systems in a given subset of the output space,
independently of the state of the FSM. Necessary and
sufficient conditions were given for the existence of a so-
lution. The conditions were expressed in terms of a set
of states where the initial condition has to lay. Similar
conditions can be obtained using the results of (Tom-
lin, Lygeros and Sastry 1998) which apply to general
hybrid systems. Our results apply to a particular class
of hybrid systems but have the advantage of exploit-
ing the structure of the FSM. This allows to simplify
the procedure for the determination of a solution and
makes possible to derive convergence conditions which
are unknown in the general case. Some extensions of
our results were also illustrated.



Several new research directions will be pursued using
the framework presented in this paper. On the compu-
tational aspects, we note that if all the constraining sets
are polyhedra, a recursive a gorithm for computing the
set can be given that always converges to the exact so-
lution, if any. Such strong result has a price in terms of
computational complexity: the number of inequalities
defining the polyhedron that is converging to the solu-
tion increases as the algorithm progresses. This num-
ber can grow so large that the problem rapidly becomes
computationally intractable. We believe that this draw-
back could be overcome by relaxing the requirements of
obtaining the maximal controlled invariant set and be
content with an approximation to it that is computa-
tionally appealing.

On the control synthesis aspects, we note that for
each configuration, we have in general a static nonlin-
ear state feedback control law. Hence, as the system
switches between two configurations, we have to switch
from a control law to another. This may be too complex
from an implementation point of view. We would like
to develop an approach to finding the simplest control
law, among the ones that still solve the control problem.

We also believe that our approach can be general-
ized to the case of uncertainty in the description of the
dynamic systems and/or unknown disturbances.
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