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Abstract

The task of synthesizing and verifying a spec-
ification of a controller for a hybrid system is
different from the task of synthesizing an exe-
cutable controller. Specifications of controllers
are very useful for the verification of the closed-
loop system, but the verification procedure of-
ten requires that the system behaves in an ideal
way. In, e.g., automata approaches, it is typi-
cally required that the initial state is known, and
that the actual system under control behaves ac-
cording to its model. In industrial applications
such requirements are unrealistic; an industrial
controller can never make assumptions about the
initial state, and it must be able to handle de-
synchronizations, i.e. deviations from the ex-
pected effects of control actions.
In this paper we present preliminary results on
how to synthesize robust discrete controllers from
a class of Rectangular Hybrid Automata. The
language used for the synthesized controllers is
Nils Nilsson’s Teleo-Reactive Trees. We prove
that the synthesized controllers handle at least
the situations for which the original automata is
verified.

Introduction

Formalisms for modeling Hybrid Systems are mainly
designed for verification purposes. The problem of con-
troller synthesis from such formalisms has been widely
studied, but the aim of that research has emphasized
synthesizing specifications of controllers, rather than
on synthesizing the actual controller programs (see e.g.
(Zhang and Mackworth 1995; Lennartsson et al. 1996;
Henzinger and Kopke 1997)). A specification of a con-
troller is useful for verifying correctness of the closed
loop system, but it is quite different from an executable
controller which has to exhibit properties that may not
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be of importance for verification. For example, an ex-
ecutable controller has to be fast, i.e. we cannot allow
arbitrary computations or logging of system history. In
engineering practice this implies that controllers typ-
ically are reactive and that they lack memory. More-
over, the controllers must be robust in the sense that
there must be some control action invoked for what-
ever the input may be to the controller. Another re-
quirement is that the controller must be able to handle
de-synchronizations, i.e., deviations from expected sys-
tem states. Furthermore, the controller should work
whatever state it is initiated in. This poses a prob-
lem for some automata approaches (Alur et al. 1992;
Ramadge and Wonham 1989), where the initial states
are assumed to be known, and the system is assumed
to follow the expected course of events. The require-
ments for controllers described above have been im-
plemented and discussed in e.g. (Pellet al. 1996;
Williams and Nayak 1996).

In this preliminary work we have chosen to study the
problem of synthesizing (homeostatic) teleo-reaetive
trees (Nilsson 1994) from a specification in terms 
a rectangular hybrid automaton (Alur et al. 1992;
Henzinger and Kopke 1997). Teleo-reactive (T-R) trees
are structures consisting of condition-action pairs com-
bined to form trees. T-R trees have successfully been
used for a number of applications (see e.g. (Ben-
son 1996)). The interest in the T-R representation
is motivated by the strong similarities between it and
languages for Programmable Logic Controller (PLC)
(Lewis 1997) (especially the Petri-net descendant lan-
guage SFC) which are used for industrial applications.

Rectangular hybrid automata (P~HAs) is a model-
ing formalisms where the continuous behavior is mod-
eled by differential inequalities (e.g. 0< ~: < 1), and
the discrete behavior in terms of (instantaneous) mode
switches. We will assume that the RHAs we study
are specifications of controllers, and that every mode
switch is due to an invoked control action. Moreover,
we will restrict ourselves to handle controllers for which
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the control goal can be formulated as safety require-
ments (that some condition should, or should not, be
maintained during the control).

We will begin with an example of a hybrid automa-
ton representing a specification for the control of a sim-
ple water tank, then we will present the RHA and T-R-
tree formalisms. After that, we will present the trans-
lation algorithm from RHA to T-R trees and prove that
whenever a RHA specified closed-loop system is behav-
ing as expected, the controller will be able to maintain
the particular control goal. We will finish with a dis-
cussion on robustness and execution monitoring of the
synthesized controllers.

Water Tank Example

This is example is similar to an example in (Ho 1995).
Imagine a water tank of 12 inches height, where the

inflow is regulated via a valve, and the outflow is con-
stant but uncontrollable. If the valve is open the water
level increases with 1 inch per second, and if it is closed
it decreases with 2 inches per second. We assume that
there is a time delay of 2 seconds from when a con-
troller sends a CLOSE_VALVE or 0PEN_VALVE signal to
the valve, to when the valve actually closes or opens.
The control goal is to maintain the water level between
1 and 12 inches.

y=l
Valve open

I |

’ y = 1 CLOSE_VALVEI 9 = 1 ’
I r ~=1 I
,’ y<10_ Yxl___0g: x<2_ ,’

I I, IOPEN_VALW. ’
’ =1

Vy
I

’ x<2 =5-+ I
, - x:=O y_>5 ,
k I

Valve closed

Figure 1: A rectangular hybrid automata modelling
the water tank example. The variable y denotes the
water level, and x denotes a clock.

Figure 1 depicts a rectangular hybrid automaton
(Alur et al. 1992; Henzinger and Kopke 1997) that
specifies how the plant (water tank) should be con-
trolled. By running the HYTECH model checker (Hen-
zinger et al. 1997) on the automaton, we verified that
the system does maintain the control goal. This is
of course desirable and nice, but it does not solve a

number of problems involved in the design of a robust
control system for the particular application.

Preliminaries

In this section we will present the formal definitions of
rectangular hybrid automata and T-R trees. The def-
initions are taken from (Henzinger and Kopke 1997).

Rectangular Hybrid Automata

Definition 1 Let X = {xl,... , Xn} be a set of real-
valued variables. A rectangular inequality over X is an
expression of the form xi ,-~ c, where c is an integer
constant, and ,-~6 {<, <, >, >}. A rectangular predi-
cate over X is a conjunction of rectangular inequalities.
We denote the set of all rectangular predicates over X
with Rect(X). The set of vectors ~" 6 ll~ ~ that satis-
fies a rectangular predicate is called a rectangle. For a
particular rectangular predicate ¢, we denote the cor-
responding rectangle with [¢]. By writing ¢i, for a
rectangular predicate ¢, and a variable index i, we de-
note the conjunction of all rectangular inequalities in
¢ only involving the variable xi. For a set of indices,
I, we define Cx= ¢ .n
Definition 2 (Rectangular Automaton)
A rectangular automaton A consist of the following
components.
Variables. The finite set X = {xx,... ,x~} of real-
valued variables representing the continuous part of
the system. We write )~ = {a!i]xi 6 X} for the
set of dotted variables, representing the first deriva-
tives. For convenience, we write X’ to denote the set
{x~ I xi 6 X} (which we will use to connect variable
values before and after mode switches).
Control Graph. The finite directed multigraph
(V, E) represents the discrete part of the system. The
vertices in V are called control modes which we also will
refer to as locations. The edges in E are called control
switches. The switches will sometimes be viewed as
functions, i.e. we can say that e(v) = v’ iff e = (v, v’).
In a graphical representation of an automaton the lo-
cations correspond to the boxes and the switches to
the arrows between boxes.
Initial Conditions. The function init : V -+
Rect(X) maps each control mode to its initial con-
dition, a rectangular predicate. When the automaton
control starts in mode v, the variables have initial val-
ues inside the rectangle [init(v)].
Invariant Conditions. The function inv : V -+
Rect(X) maps each control mode to its invariant con-
dition, a rectangular predicate. The automaton control
may reside in mode v only as long as the values of the
variables stay inside the rectangle [inv(v)]. We define
inv(A) as inv(A) = Av6v inv(v).
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Jump Conditions. The function jump maps each
control switch e E E to a (non-rectangular) predi-

__ Icate jump(e) of the form ¢ A ¢1 A Ai~update(e) xl -- T’i,

where ¢ ¯ Rect(X), ¢’ ¯ Rect(X’), and update(e) 
{1 .... , n}. The jump condition jump(e) specifies the
effect of the change in control mode on the values of
the variables: each unprimed variable x~ refer to the
corresponding value before the control switch e, and
each primed variable x~ to a corresponding value after
the switch. So the automaton may switch across e if

1. the values of the variables are inside [¢], and

2. the value of every variable xi with i ~ update(e) is
in the rectangle [¢q].

Then, the value of every variable xi with i ¢ update(e)
remains unchanged by the switch. The value of ev-
ery xi with i ¯ update(e) is assumed to be updated
nondeterministically to an arbitrary value in the rect-
angle [¢q~. For a jump condition jump(e) - ¢~ A ¢’~ 
A~¢u,date(e) x~ = z~, we define jump’(e) - Ce, to de-
note the actual condition that forces the switch e.
Flow Conditions. the function flow : V --+ Rect(J()
maps each control mode v to a flow condition, a rectan-
gular predicate that constrains the behavior of the first
derivatives of the variables. While time passes with the
automaton control in mode v, the values of the vari-
ables are assumed to follow nondeterministically any
differentiable trajectory whose first derivative stays in-
side the rectangle [flow(v)].
Events. Given a finite set A of events, the function
event : E ~ A maps each control switch to an event.

Thus, a rectangular automaton A is a nine-tuple
(X, V, E, init, inv, jump, flow, A, event).D

In this paper we are only interested in control to main-
tain safety requirements, which means that, for a par-
ticular automaton, we assume that we have a goal, in
terms of a rectangular predicate Cg, such that the val-
ues assigned (or sensed) to variables always belong 
it. we will also assume that the automata we study
always have goals for which they are verified.

Definition 3 (State)
Let A be a rectangular automaton. A state of A is a
pair (v,~, where v ¯ V is a control mode and ~’ 
[inv(v)~ is a vector satisfying the invariant condition
of v. The set of states for A is denoted Q.o

The state notion makes control quite simple, if we
define a controller as a function from states to control
actions, in terms of the corresponding jump conditions.
For example, a control function (or law) C can be de-
fined as, for every state (v, ~ and event A,

C(v, ~ = ~,

iff, there exists a mode switch e such that e(v) is de-
fined, )~ = event(e), and ~’ ¯ [jump’(e)~. However, we
cannot assume that we can distinguish locations from
each other in other ways than by using sensor data.
This means that we equip the system with a state es-
timation mechanism.

In this paper we assume that the invariants are mu-
tually exclusive. One way of doing this, which is com-
mon in engineering practice, is to equip the actuators
in the controlled system with sensors, to be able to
track the status of the actuators. In our example, that
would mean that we introduce a boolean sensor open
that is true whenever the valve is open, and false oth-
erwise.

Teleo-Reactive Trees

A teleo-reactive (T-R) tree is, in its simplest form, a set
of production rules (see (Nilsson 1994) for the original
definitions):

gl --+ a1

gm -~ am

The Kis are conditions (on sensory inputs) and the ais
are actions (on the world). There exists a function 
mapping the pairs on the next expected condition, i.e.
whenever F(K, a) = K’, we expect the condition K’
to materialize when the action a has been executed in
a situation satisfying condition K. F is assumed to be
defined for every production rule, except for the root
node, which implies that F defines a tree structure on
the production rules.

The execution cycle of a T-R tree consists of three
steps

1. Input is read,

2. the condition closest to the root, that is satisfied is
chosen (nondeterministically if no unique such con-
dition exists), and,

3. the corresponding action is executed.

Translation Algorithm

In general, it is not possible to translate a hybrid au-
tomata into a T-R tree. For example, if a mode switch
is not due to a control action, the controller would re-
quire some kind of memory. So, we need to identify a
class of automata for which the translation is possible.
Tentatively, we propose the following restrictions:
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¯ we assume that mode switches are due to control ac-
tions and that the labels on the switches are control
actions or conjunctions of control actions (that are
to be executed in parallel).

¯ We view assignments in jump conditions as control
actions. In a controller, there is no technical dif-
ference between invoking an action, and assigning
a value to an internal variable. This means that
the starting and the resetting of clocks are con-
trol actions. We introduce this in the automata by
adding START_CLOCK and STOP_CLOCK actions for ev-
ery clock. The START_CLOCK action resets the clock
and makes in running (we assume that invoking
START_CLOCK on an already running clock has no
effects), and STOP_CLOCK stops the clock. This in-
formation can be derived from the automaton by
adding START_CLOCK as a label on every mode switch
where the clock variable is set to some value, and
STOP_CLOCK on every mode switch e = (v, v’) where
the clock variable has a continuous behavior in loca-
tion v (i.e. the clock variable derivative is non-zero)
and no continuous behavior in v’.

We will call an automaton that satisfies the restrictions
above and that have mutually exclusive invariants a
admissible automaton. In Figure 2 we see an admis-
sible automaton specifying the closed-loop water tank
world.

CLOSE_VALVE
= 1 sm#_CLOC _ _ =_ 11 I

open^ ; :1=0 open^
y<10

= 2 0PEN)VALVE CLOS _VALVE ¯ = 
.ESET_CL0CK SET_CLOCK 

OPEN_VALVE
A

:=1-2
I SmT_CLOCK.

y =-2
~open A y = 5 ~ ~open A
x_<2 x:=0 y_>5

Figure 2: The automaton from Figure 1 from a con-
troller point of view.

Let ¢9 be the rectangular predicate of the control
goal, and let I be the set of indices of the variables
in ¢9. Construct the set D = {v 6 V linv(v) I A
¢9 is satisfiable}. The set D contains all locations
whose invariants intersect with the control goal. The
purpose of the control will be to move the system into

such locations. We will call those locations idle loca-
tions. The condition of the root node of the T-R tree
should be a rectangle which describes the behavior of
the plant inside any idle location, and where no jump
conditions are satisfied. Since the jump conditions are
included in the invariants of the idle locations, the root
node condition is

¢9 A V inv(v) A ~jum/(e), (1)
v6D

for every e such that e(v) is defined.
Next, we construct the layers of the tree. For every

switch e = (v, v’) where v’ 6 D there is an edge into
the top node, labeled with the control action event(e).
Let I’ denote the set of indices for the variables in-
volved in jump’(e). We will construct the condition
related to the control action event(e) by negating the
invariant inv(v) r, and adding the jump condition and
the rest of the invariant. In this way the controller will
choose this node if the jump condition and the invari-
ant not concerning the variables involved in the jump
condition are satisfied, or if the variables in the jump
condition does not satisfy the invariant. In this way we
may extend the the number of cases of inputs that the
controller can handle, compared to the cases defined
by the invariants of the locations in the automaton.
Thus, the condition is

inv(v)" ̂  (jum/(e) (2)
where I’ denotes the set of all indices of variables not
in I’.

This procedure is continued for consecutive layers
for every condition that does not correspond to an idle
location, i.e., if a condition is constructed from an idle
location, that condition will be a leaf in the tree.

In Figure 3 we see the T-R tree resulting from the
synthesis from the water tank model.

Now, we set out to prove soundness of our synthe-
size algorithm. We do this by tracking the behaviour
of the original automaton, and then showing that, at
every time point, the controller behaves as expected.
Proposition 4 Let A be an admissible RHA, ¢9 the
verified control goal of A, and T a T-R tree synthesized
from A. We assume that the execution cycles of T can
be executed sufficiently fast. Then, at every time point,
we have the following:

i If A is in an idle location and no jump condition is
satisfied, then the root node of T is satisfied.

ii If A is in a non-idle location and no jump condition
is satisfied, then no node in T is satisfied.
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Figure 3: The T-R tree generated from the automaton
in Figure 2.

iii If A is in any location and some jump condition is
satisfied, then the the node in T corresponding to the
location is satisfied and exactly the control action
labeling the switch of the jump is invoked.

Proof (sketch): We deal with the three cases sepa-
rately.

i If A is in an idle location v and no jump condition is
satisfied, the variable values must satisfy inv(v) but
not any jump’(e) for which e(v) is defined. By the
definition of an idle location and Equation (1), the
root condition is satisfied. It also clear that Equation
(2) is not satisfied.

ii Since we have assumed that the invariants of the
locations are mutually exclusive it is clear that the
conjunction of Equation (1) is empty, and thus, the
root node is not satisfied. Next, since jump’(e) for
any switch e from the location, and the negation
of the invariant in the location is not satisfied, the
intersection in Equation (2) is empty. Thus, no node
is satisfied.

iii Obviously, the root node is not satisfied. We have
assumed that for some switch e from the current lo-
cation jump(et) is satisfied. Moreover, the invariant
conditions on variables not mentioned in jump(e’)
must be satisfied. Therefore, the corresponding node
with condition described by Equation (2) is satisfied
and since we have transferred the labeling from A to
T directly, the same control actions are invoked.

[]

Proposition 4 basically states that if the real, con-
trolled plant behaves as the verified automaton pre-
dicts, the synthesized controller will achieve the control
goal.

Discussion and Future Work

The construction of the internal nodes of the tree de-
scribed above may be able to handle cases which the
original RHA was not designed for. For example, in the
synthesized T-R tree in Figure 3 we can see that the
bottom left condition handles the case when the water
level is less than or equal to 5, while the case where y
is less than 5 is not explicitly mentioned in the RHA
(Figure 2). This simple extension that provides more
robustness is based on the intuition (from Equation 2)
that if we have identified the current location accord-
ing to the variables not included in the jump condition,
and the invariant is not satisfied for that location or a
particular jump condition is satisfied, the control ac-
tion corresponding to that jump should be taken. In
our tank world example, the original RHA was verified
for y = 1 starting in the upper right location. If we
imagine that the flow rate is increased, e.g. so that the
"real" flow condition is ~ = 2 when the valve is open
and ~ -- -1 when the valve is closed, the hybrid au-
tomata would fail to detect the jump conditions, since
the measurements of y will be 1, 3, 5, 7, 9, 11,... where
the jump condition y = 10 never is satisfied. The au-
tomata will eventually be de-synchronized. By letting
the controller invoke control actions when the jump
condition is satisfied or when the current invariant is
not satisfied, the situation can be handled (but with
the possibility that the control goal is not ratified, tem-
porarily).

A controller synthesized from a RHA gives us a
unique opportunity for Execution Monitoring. Since
the translation is sound (Proposition 4) we can track
the behavior of the controlled system in the RHA and
explain some de-synchronizations. How this should be
done formally and algorithmically is out of the scope
of this paper, and belongs in part to future work.
In earlier work we have introduced "Ontological Con-
trol" (OC) (Driankov and Fodor 1993; Fodor 1998;
Bj~reland and Fodor 1998) where the aim is to con-
struct domain-independent execution monitors for in-
dustrial control applications. The fundamental prob-
lem of OC is" When is a detected discrepancy between
expectations and the real measured state due to exter-
nal disturbances, and when is it due to modeling faults
(i.e. faulty expectations)? The approach in OC has
been to take a PLC program, generate precondition-
action-postcondition triples from the program, and
then to monitor the execution according to these struc-
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tures. There are two problems with this approach:
First, it is difficult to generate the precondition-action-
postcondition triples from the programs; we have not
yet found a completely automatic way of doing this.
Secondly, the generated structures contains far less in-
formation about the dynamics of the controlled system
than the engineer uses when writing the program. The
extra information is not vital for solving the fundamen-
tal problem of OC, but it is important to an operator
when she tries to find the physical reason for the dis-
crepancy. In the future we will study how OC can be
used when the controller is constructed from a formal
model. However, in this paper we only synthesized the
controller.

Conclusions
We have presented an algorithm that synthesizes a con-
troller, in terms of a Teleo-Reactive tree, from a hybrid
systems formalism, a class of Rectangular Hybrid Au-
tomata. We have shown that the algorithm is sound
and argued that the resulting controller is more robust
than the automata controller, in the sense that it can
handle at least all the situations that the automata is
verified for, and sometimes more situations.
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