
Behavioral Programming*

Michael S. Branicky

Electrical Engineering and Computer Science Department
Case Western Reserve University, Cleveland, OH 44106-7221 U.S.A.

brani cky@alum, mit. edu

Abstract

Motivated by biology and a study of complex
systems, intelligent behavior is typically associ-
ated with a hierarchical structure, where the low-
est level is usually characterized by continuous-
variable dynamics and the highest by a logical
decision-making mechanism. Consistent with bi-
ological findings, we instantiate a particular ver-
sion of such a hierarchy: a "Middle-out Architec-
ture." Significant there is the plasticity of circuits
on both layers, as well as plasticity in their in-
teractions. Intelligent systems must accomplish
two broad tasks within this architecture. Based
on experience, they must tune their lower-level,
continuous, sensorimotor circuits to produce lo-
cal behaviors that are viable and robust to slight
environmental changes. Predicated on focus of
attention on sensory input, they must modulate
and coordinate these local behaviors to maintain
situational relevance and accomplish global goals.
Hence, if we are to understand learning and in-
telligent systems, we must develop ways of behav-
ioral programming (taking symbolic descriptions
of tasks and predictably translating them into dy-
namic descriptions that can be composed out of
lower-level controllers) and co-modulation (simul-
taneously tuning continuous lower-level and sym-
bolic higher-level circuits and their interactions).
Herein, we begin the study of the first of these
problems.

Introduction
Though manipulators have gotten more dextrous and

sensors more accurate, though processors have gotten
faster, memory cheaper, and software easier to write
and maintain, truly agile engineering systems that learn
and exhibit intelligent behavior have not been demon-
strated. The substrate is not lacking; a theoretical ap-
proach yielding engineering principles is needed.

Both top-down (cognitive) and bottom-up (reactive)
approaches to learning and intelligent systems (LIS)
have yielded successes, but only for highly-complex pro-
grams performing high-level tasks in highly-structured

* This work was supported by the National Science Foun-
dation, under grant number DMI97-20309.

environments and for simple agents performing low-
level tasks in mildly-changing environments, respec-
tively. In contrast, humans and animals possess a
middle-level competence between reactive behavior and
cognitive skills. They are complex, constrained, and
must work in environments whose structure changes.

Thus, the problem of producing LIS confronts us di-
rectly with building a theory that bridges the gap be-
tween the traditional "top down" and "bottom up" ap-
proaches. The missing "middle out" theory we pro-
pose requires the development of models and mathe-
matical tools that bridge the gap between "top-down"
and "bottom-up" methods.

Motivated by biology and a study of complex sys-
tems, intelligent behavior is typically associated with a
hierarchical structure. Such a hierarchy exhibits an in-
crease in reaction time and abstraction with increasing
level. In both natural and engineered systems the low-
est level is usually characterized by continuous-variable
dynamics (acting upon and producing continuous sig-
nals) and the highest by a logical decision-making mech-
anism (acting upon and producing discrete symbols).
Consistent with biological findings, we instantiate a
particular version of such a hierarchy: a "Middle-out
Architecture." Significant there--and below--is the
plasticity of circuits on both layers, as well as plasticity
in their interactions.

Intelligent systems must accomplish two broad tasks
within this architecture. Based on experience, they
must tune their lower-level, continuous, sensorimotor
circuits to produce local behaviors that are viable and
robust to slight environmental changes. Predicated on
focus of attention on sensory input, they must modulate
and coordinate these local behaviors to maintain situa-
tional relevance and accomplish global goals. Hence, if
we are to understand LIS, we must develop ways of

¯ Behavioral programming. Taking symbolic descrip-
tions of tasks and predictably translating them into
dynamic descriptions that can be composed out of
lower-level controllers.

¯ Co-modulation. Simultaneously tuning continuous
lower-level and symbolic higher-level circuits and
their interactions.

29

From: AAAI Technical Report SS-99-05. Compilation copyright © 1999, AAAI (www.aaai.org). All rights reserved.

In control theory and computer science, a mathemat-
ics of hybrid systems--those combining continuous and
discrete states, inputs, and outputs, e.g., differential
equations coupled with finite automata--is emerging
that enables the careful study of such questions. Most
importantly, we have pioneered a theory and algorithms
for optimal control of hybrid systems (Branicky et al.,
1998; Branicky, 1995) that are foundational in solving
the above mixed symbolic-reactive interdependent op-
timization problems of LIS. Herein, we study their ap-
plication to the problem of behavioral programming.

Outline of Paper. In the next section, we motivate
our "Middle-out Approach" to learning and intelligent
systems. In Section 3, we summarize a formal model
framework, hybrid dynamical systems, that can be used
to model hierarchical systems, from sensor-actuator dy-
namics to logical decision-making. In Section 4, we re-
view some results on optimal control of hybrid systems
that is applicable to solving problems of behavioral pro-
gramming. Section 5 discusses the behavioral program-
ming idea in more detail and makes the connection with
hybrid systems theory explicit.

"Top-Down" vs. "Bottom-Up" vs.
"Middle-Out"

Currently, there are two unreconciled approaches to
learning and intelligent systems:

¯ the top-down, cognitive, "good old-fashioned AI" ap-
proach;

¯ the bottom-up, reactive, "emergence of behavior"
approach.1

The first approach has shown successes in structured
environments, primarily where search dominates, such
as theorem proving or chess playing. In short, "think
globally." The second is newer and has shown successes
in less-structured environments, primarily where senso-
rimotor control dominates, such as robotic gait gener-
ation or simulated organisms.2 In short, "(re)act lo-
cally."

Our experimental, theoretical, and engineering stud-
ies of learning and intelligent systems suggests that nei-
ther of these approaches is fully adequate. To illus-
trate, we describe the problems in applying them to a
real-world "intelligent" engineering system and prob-
lem, that is error-recovery in an agile manufacturing
workcell, in which random errors are inevitable because
of statistical mechanical variation:

¯ Top-down approach: Develop a detailed specifica-
tion and plan for the entire process; run the process,

1Examples of each are Cyc [D.B. Lenat, CYC: A large-
scale investment in knowledge infrastructure. Comm. of the
ACM, 38:11, 1995] and Cog [l:t.A. Brooks and L.A. Stein.
Building brains for bodies, MIT AI Lab Memo #1439, Au-
gust 1993].

2D. Terzopoulos et al., Artificial fishes: Autonomous lo-
comotion, perception, behavior and learning in a simulated
physical world, Artificial Life, 1:327-351, 1995.

keep an error log, categorize errors and define spe-
cific response algorithms; incorporate these as choice
points in the robots’ control. This is an ineffec-
tive approach because task domains change relatively
quickly, and the number of possible error conditions
is potentially infinite.

¯ Bottom-up approach: Incorporate a range of lo-
cal reflexes that allow the robots to respond rapidly
and automatically to small perturbations in the task.
However, this approach does not deal with the larger
problem of defining sequences of appropriate actions
in the face of a novel problem, optimizing these re-
sponses as a function of experience, and adjusting
them flexibly to unforeseen contingencies.

The top-down approach tacitly assumes that lo-
cally relevant behavior will be produced by thinking
globally--and exhaustively. The bottom-up approach
is predicated on the belief that global behavior will
"emerge" by combining many small behavioral loops.
More generally, these two approaches have yielded suc-
cesses, but to date only for highly-complex programs
performing high-level tasks in highly-structured envi-
ronments (top-down) or simple agents performing low-
level tasks in mildly-changing environments (bottom-
up).

However, humans and animals occupy a middle-level
of competence, lying between the domains of successful
top-down and bottom-up systems. They are responsive;
they must close sensorimotor loops to deal with chang-
ing environments. Also, procedural tasks and procedu-
ral learning require sequences of actions, not just simple
behavioral maps. Finally, they require quick responses,
achieved by modulating previously learned behaviors
and the current focus of attention. Waiting for glob-
ally optimal plans or exhaustively analyzed sensor data
from higher-levels means failure. We do not see much
effort "in the middle," either from top-down researchers
building down, or bottom-up researchers building up.
One might argue that such research is unnecessary be-
cause future developments of top-down and bottom-up
theory will lead to seamless matching between levels.
Our group’s working hypothesis is that there is no a pri-
ori reason to believe that a purely symbolic and purely
reactive approach can be seamlessly matched without
the development of "middle-out" theory and practice.
For example, there is no (nontrivial) finite automata
representation of certain simple two-dimensional, quasi-
periodic dynamical systems (Di Gennaro et al., 1994).
Therefore, the goal of middle-out theory is to achieve a
better understanding of how natural LIS function and
how artificial LIS can be effectively implemented by fill-
ing the gap between top-down and b0ttom-up knowl-
edge. Our approach to developing this new theory sup-
plies the following missing elements of the two more
traditional approaches:

Middle-Out Approach. Develop ways of taking
symbolic descriptions of tasks and predictably trans-
lating them into dynamic descriptions that can be

3O

composed out of sensorimotor controllers.

Recapitulating, top-down and bottom-up approaches
have contributed in method and principles, each in
their own domain of applicability. Humans and an-
imals possess a middle-level competence between re-
active behavior and cognitive skills. A "middle-out"
approach is necessary, but currently lacking. Recent
advances in hybrid systems theory, summarized below,
have us poised--theoretically and experimentally--to
pursue such middle ground.

What are Hybrid Systems?
Hybrid systems involve both continuous-valued and dis-
crete variables. Their evolution is given by equations
of motion that generally depend on all variables. In
turn these equations contain mixtures of logic, discrete-
valued or digital dynamics, and continuous-variable
or analog dynamics. The continuous dynamics of
such systems may be continuous-time, discrete-time, or
mixed (sampled-data), but is generally given by dif-
ferential equations. The discrete-variable dynamics of
hybrid systems is generally governed by a digital au-
tomaton, or input-output transition system with a
countable number of states. The continuous and dis-
crete dynamics interact at "event" or "trigger" times
when the continuous state hits certain prescribed sets
in the continuous state space. See Fig. 1.

Hybrid control systems are control systems that in-
volve both continuous and discrete dynamics and con-
tinuous and discrete controls. The continuous dynam-
ics of such a system is usually modeled by a controlled
vector field or difference equation. Its hybrid nature is
expressed by a dependence on some discrete phenom-
ena, corresponding to discrete states, dynamics, and
controls.

For the remainder of this section, we concentrate on
modeling of hybrid systems. In particular, we intro-
duce general hybrid dynamical systems as inter-
acting collections of dynamical systems, each evolving
on continuous state spaces, and subject to continuous
and discrete controls, and some other discrete phenom-
ena. The reader is referred to (Branicky, 1995) for more
details.

The Basis: Hybrid Dynamical Systems

Dynamical Systems

The notion of dynamical system has a long history as
an important conceptual tool in science and engineer-
ing. It is the foundation of our formulation of hybrid
dynamical systems. Briefly, a dynamical system is
a system ~ = [X, F, ¢], where X is an arbitrary topo-
logical space, the state space of ~. The transition
semigroup F is a topological semigroup with identity.
The (extended) transition map ¢ : X x F -+ X
a continuous function satisfying the identity and semi-
group properties (Sontag, 1990). A transition system
is a dynamical system as above, except that ¢ need not
be continuous.

Examples of dynamical systems abound, including
autonomous ODEs, autonomous difference equations,
finite automata, pushdown automata, Turing machines,
Petri nets, etc. As seen from these examples, both digi-
tal and analog systems can be viewed in this formalism.
The utility of this has been noted since the earliest days
of control theory.

We also denote by "dynamical system" the system
= [X,F,f], where X and F are as above, but the

transition function f is the generator of the ex-
tended transition function ¢.3 We may also refine the
above concept by introducing dynamical systems with
initial and final states, input and output, and timing
maps.4

On to Hybrid ...

Briefly, a hybrid dynamical system is an indexed col-
lection of dynamical systems along with some map for
"jumping" among them (switching dynamical system
and/or resetting the state). This jumping occurs when-
ever the state satisfies certain conditions, given by its
membership in a specified subset of the state space.
Hence, the entire system can be thought of as a se-
quential patching together of dynamical systems with
initial and final states, the jumps performing a reset to
a (generally different) initial state of a (generally differ-
ent) dynamical system whenever a final state is reached.

More formally, a general hybrid dynamical sys-
tem (GHDS) is a system H = [Q, E, A, G], with its
constituent parts defined as follows.

* Q is the set of index states, also referred to as dis-
crete states.

¯ E = {Zq}qeQ is the collection of constituent dy-
namical systems, where each Eq = [Xq,Fq,¢q] (or
Eq = [Zq, Fq, fq]) is a dynamical system as above.
Here, the Xq are the continuous state spaces and
eq (or fq) are called the continuous dynamics.

¯ A = {Aq}geO, Aq C Xq for each q E Q, is the collec-
tion of autonomous jump sets.

¯ G = {Gq}qeO, Gq : Aq ~ [-JqEO Xq × {q}, is the col-
lection of (autonomous) jump transition maps.
These are also said to represent the discrete dy-
namics of the HDS.

Thus, S = UqeQ Xq X {q} is the hybrid state space
of H. For convenience, we use the following shorthand.
Sq = Xq × {q} and A = ~JqeQ Aq x {q} is the au-
tonomous jump set. G : A --+ S is the autonomous
jump transition map, constructed component-wise in
the obvious way. The jump destination sets D =
{Dq}qeQ are given by Dq = rl[G(A)N Sq], where ri

aIn the case of F = Z, f : X ---* X is given by f -- ¢(., 1).
In the case of F = R, f : X -+ TX is given by the vector
fields f(x) = d ¢(x,t)/dt[t=o.

4 Timing maps provide a mechanism for reconciling differ-
ent "time scales," by giving a uniform meaning to different
transition semigroups in a hybrid system.

31

is projection onto the ith coordinate. The switch-
ing or transition manifolds, Mq,p C Aa are given
by Mq p = G-I(p, Dp), i e, the set of states from which

¯ J. q . ’ ¯
transitions from index q to index p can occur¯

Roughly,s the dynamics of the GHDS H are as fol-
lows. The system is assumed to start in some hy-
brid state in S\A, say so = (x0, q0). It evolves ac-
cording to ¢q0(X0,.) until the state enters--if ever--
Aqo at the point s~- = (xT,q0). At this time it
instantly transferred according to transition map to
Gqo(XT) = (xl,ql) -sl, from which the process
tinues. See Fig. 3.

Dynamical Systems. The case IQI = 1 and A = 0
recovers all dynamical systems.

Hybrid Systems. The case IQI finite, each Xa a
subset of Rn, and each Fq = R largely corresponds to
the usual notion of a hybrid system, viz. a coupling
of finite automata and differential equations¯ Herein, a
hybrid system is a GHDS with Q countable, and with
Fq -- R (or R+) and X¢ C dq, dq EZ+, fo r al l q E Q:
[Q, [{Xq}q~Q, R+, {fq}qeQ], A, G], where fq is a vector
field on Xq C Rdq.6

Changing State Space. The state space may
change. This is useful in modeling component
failures or changes in dynamical description based
on autonomous--and later, controlled--events which
change it. Examples include the collision of two inelas-
tic particles or an aircraft mode transition that changes
variables to be controlled. We also allow the Xa to
overlap and the inclusion of multiple copies of the same
space. This may be used, for example, to take into ac-
count overlapping local coordinate systems on a mani-
fold.

Hierarchies. We may iteratively combine hybrid
systems Ha in the same manner, yielding a powerful
model for describing the behavior of hierarchical sys-
tems (cf. Harel’s statecharts).

... And to Hybrid Control

A controlled general hybrid dynamical system
(GCHDS) is a system gc = [Q, E, A, G, V, C, F], with
its constituent parts defined as follows.

¯ Q, A, and S are defined as above¯

¯ E = {Eq}qeQ is the collection of controlled dynamical
systems, where each Eq = [Xq, Fq, fq, Uq] (or Eq
[Xq, Fq, ¢q, Uq]) is a controlled dynamical system as
above with (extended) transition map parameterized
by control set Ua.

¯ G = {Gq}qeQ, where Gq : Aq × Vq --~ S is the au-
tonomous jump transition map, parameterized

SWe make more precise statements in (Branicky, 1995).
6Here, we may take the view that the system evolves on

the state space R* × Q, where R* denotes the set of finite,
but variable-length real-valued vectors. For example, Q may
be the set of labels of a computer program and x E R*
the values of all currently-allocated variables. This then
includes Smale’s tame machines.

by the transition control set Vq, a subset of the
collection V = {Va}qeQ.

¯ C = {Cq}qeq, Cq C Xq, is the collection of con-
trolled jump sets.

¯ F = {Fq}aeq, where Fq : Cq --~ 2s, is the collection
of controlled jump destination maps.

As shorthand, G, C, F, V may be defined as above.
Likewise, jump destination sets Da and Dc may be de-
fined. In this case, D -- Da U De.

Roughly, the dynamics of He are as follows. The
system is assumed to start in some hybrid state in S\A,
say so -- (x0,q0). It evolves according to ¢q0(’,’,u)
until the state enters--if ever--either Aqo or Cq0 at the
point s~- = (x~-, q0). If it enters Aqo, then it must be
transferred according to transition map Gq0(X~-, v) for
some chosen v E Vq0. If it enters Cq0, then we may
choose to jump and, if so, we may choose the destination
to be any point in Fao(X-~). In either case, we arrive at
a point sl = (xl, ql) from which the process continues.
See Fig. 4.

Control results for this model are derived in (Bran-
icky et al., 1998); they are summarized in Section 4.

Definition 1 (Admissible Controls) The admissi-
ble control actions available are the continuous
controls u E Uq, exercised in each constituent regime;
the discrete controls v E Vq, exercised at the au-
tonomous jump times (i.e., on hitting set A); and the
intervention times and destinations of controlled
jumps (when the state is in C).

Hybrid Control

Theoretical Results. We consider the following opti-
mal control problem for controlled hybrid systems. Let
a > 0 be a discount factor. We add to our model the
following known maps:

¯ Running cost, k : S × U ~ R+.

¯ Autonomous jump cost and delay, Ca : A × V ---*
R+ andAa:Ax V--~R+.

¯ Controlled jump (or impulse) cost and delay,
cc:C×Dc~R+ andAc:C×Dc~R+.
The total discounted cost is defined as

f e-a’k(x(t), u(t)) e-aai ca(X(O’i), Vi)
i

+ c-a ’ (1)
i

where T = a+\(Ui[vi,ri)) , {cri} (resp. {¢i}) are the
successive pre-jump times for autonomous (resp. impul-
sive) jumps and ~ is the post-jump time (after the de-
lay) for the jth impulsive jump. The decision or con-
trol variables over which Eq. (1) is to be minimized arc
the admissible controls of our controlled hybrid system
(see Def. 1). Under some assumptions (the necessity
which are shown via examples) we have the following
results (Branicky et hi., 1998):

¯ A finite optimal cost exists for any initial condi-
tion. Furthermore, there are only finitely many au-
tonomous jumps in finite time.

¯ Using the relaxed control framework, an optimal tra-
jectory exists for any initial condition.

¯ For every e > 0 an e-optimal control policy exists
wherein u(.) is precise, i.e., a Dirac measure.

¯ The value function, V, associated with the opti-
mal control problem is continuous on S\(OA U OC)
and satisfies the generalized quasi-variational in-
equalities (GQVIs), which are formally derived
(Branicky et at., 1998).

Algorithms and Examples. We have outlined four
approaches to solving the generalized quasi-variational
inequalities (GQVIs) associated with optimal hybrid
control problems (Branicky, 1995; Branicky and Mit-
ter, 1995). Our algorithmic basis for solving these
GQVIs is the generalized Bellman Equation: V*(x)
minp~n {g(z,p) + Y*(z’(z,p))}, where II is a general-
ized set of actions. The three classes of actions avail-
able in our hybrid systems framework at each z are the
admissible control actions from Def. 1. From this view-
point, generalized policy and value iteration become so-
lution tools (Branicky, 1995).

The key to efficient algorithms for solving optimal
control problems for hybrid systems lies in noticing
their strong connection to the models of impulse con-
trol and piecewise-deterministic processes. Making this
explicit, we have developed algorithms similar to those
for impulse control (Costa and Davis, 1989) and one
based on linear programming (Costa, 1991; Ross, 1992)
(see (Branicky, 1995)). Three illustrative examples
solved in (Branicky, 1995). In each example, the syn-
thesized optimal controllers verify engineering intuition.

Behavioral Programming
Others have noticed the powerful possibility of solving
complex learning problem by composing predictable lo-
cal behaviors to achieve predictable global goals. For
example, (Krishnaswamy and Newman, 1992) presents
a means to string goals together in order to accomplish
global planning (with local obstacle avoidance guaran-
teed by the reflex and servo layers). Related work in
procedural tasks such as juggling has proved successful
(Burridge et al., 1995). Our behavioral programming
method starts by constructing families of controllers
with guaranteed stability and performance properties.
These constituent controllers can then be automatically
combined on-line using graph-theoretic algorithms so
that higher-level dynamic tasks can be accomplished
without regard to lower-level dynamics or safety con-
straints. The process is analogous to building sensible
speech using an adaptable, but predictable, phoneme
generator. Such problems can be cast as optimal hy-
brid control problems as follows:

¯ Make N copies of the continuous state-space, one cor-
responding to each behavior, including a copy of the

goal region in each constituent space.

¯ Using as dynamics of the ith copy the equations of
motion resulting when the ith behavior is in force.

¯ Allow the controlled jump set to be the whole state
space; disable autonomous jumps. Impose a small
switching cost.

¯ Solve an associated optimal hybrid Control problem,
e.g., penalize distance from the goal.

The result (if the goal is reachable) is a switching be-
tween behaviors achieving that achieves goal.

These problems can be solved by a variety of means,
as outlined above. See also (Branicky and Mitter,
1995). Recently, though, we have extended the so-called
"fast marching methods" of Sethian (Sethian, 1996)
the hybrid case. These hold promise for the efficient
solution of certain classes of behavioral programming
tasks. See (Branicky and Hebbar, 1999) for details.

References
Branicky, M. S. 1995. Studies in Hybrid Systems: Model-
ing, Analysis, and Control. Doctor of Science dissertation.
Massachusetts Institute of Technology. Dept. of Electrical
Engineering and Computer Science.

Branicky, M. S. and Hebbar, R. 1999. Fast marching for hy-
brid systems. In: Proceedings IEEE Conf. Computer Aided
Control Systems Design, submitted, Kohala Coast, Island
of Hawaii, HI.

Branicky, M. S. and Mitter, S. K. 1995. Algorithms for op-
timal hybrid control. In: Proceedings IEEE Conf. Decision
and Control, pp. 2661-2666, New Orleans, LA.

Branicky, M. S.; Borkar, V. S.; and Mitter S. K. 1998.
A unified framework for hybrid control: Model and opti-
mal control theory. IEEE Transactions Automatic Control
43(1), 31-45.

Burridge, R. R.; Rizzi, A. A.; and Koditschek, D. E. 1995.
Toward a dynamical pick and place. In:Proc. RSJ//1EEE
International Conf. Intelligent Robots and Systems.

Costa, O. L. V. 1991. Impulse control of piecewise-
deterministic processes via linear programming. IEEE
Transactions Automatic Control 36(3), 371-375.

Costa~ O. L. V. and Davis, M. H. A. 1989. Impulse control
of piecewise deterministic processes. Math. Control Signals
Syst. 2, 187-206.

Di Gennaro, S.; Horn, C.; Kulkarni, S. R.; and Ramadge,
P. J. 1994. Reduction of timed hybrid systems. In: Pro-
ceedings IEEE Conf. Decision and Control, pp. 4215-4220
Lake Buena Vista, FL.

Krishnaswamy, V. K. and Newman, W. S. 1992. On-
line motion planning using critical point graphs in two-
dimensional configuration space. In: Proceedings IEEE
International Conf. Robotics and Automation, pp. 2334-
2340, Nice, France.

Ross, S. M. 1992. Applied Probability Models with Optimiza-
tion Applications. Dover. New York.

Sethian, J. A. 1996. Level Set Methods: Evolving Interfaces
in Geometry, Fluid Mechanics, Computer Vision and Ma-
terial Sciences, Camridge University Press. New York.

Sontag, E. D. (1990). Mathematical Control Theory.
Springer. New York.

Symbol, Symbol,
i E 1 , Digital o C (2

Automaton

.... ~D---~-

F-;--~- - int-erface

yEY

Figure 1: Hybrid System.

Measurements Controls

oCO" ° iEI

yEY.

Hybrid System

Figure 2: Hybrid Control System.

X1

Figure 3: Example dynamics of GHDS.

Aj S

t~ ,’’"

X1

Figure 4: Example dynamics of GCHDS.

34

