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Abstract

This paper introduces a conceptual framework for modeling
and simulation of variable structure hybrid systems. The
framework proposed is based on and further extends the
DEVS-formalism, providing a novel definition for modular-
hierarchical systems with discrete structural changes. An
interactive, graphical model development approach and
Object Oriented implementation are also presented. Finally,
an application of the framework to variable structure
systems is demonstrated.

1. Introduction

Formal study of discrete event dynamical systems is
receiving ever more attention (Ho 1989). Work on a
mathematical foundation of discrete event dynamic
modeling and simulation began in the 70s (Zeigler 1976,
1984 and 1990) when DEVS (discrete event specification
scheme) was introduced as an abstract formalism for
discrete event modeling. Because of its system theoretic
basis, DEVS is a universal formalism for discrete event
dynamical systems (DEDS). Indeed, DEVS is properly
viewed a short-hand to specify systems whose input, state
and output trajectories are piecewise constant. The step-
like transitions in the trajectories are identified as discrete
events.

DEVS-formalism is extensively accepted and applied to
a wide range of disciplines. Many extensions to the
conventional DEVS have been made to ease the modeling
and simulation of discrete event systems. They include
DEVS with conditional events, combined discrete-
continuous multiformalism (DEV & DESS) and DEVS for
activity scanning.

More recently, interest in variable structure hybrid
systems has been growing and attracting ever-increasing
attentions. A variable structure hybrid system is a system
with a hierarchical variable structure and a hybrid behavior
functioning in continuous time. A hybrid behavior is a
behavior that has both continuous and discrete phases and
sequentially exchange one for another over time. A
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variable structure means that the components that form a
system or the relations among components or between
components and the system vary over time. Such systems
are prominent in such areas as intelligent control, decision-
making and reactive system design. Though combined
discrete-continuous multiformalism provides a general
common ground for modeling such systems, more
investigation into their unique characteristics and new
methodologies for dealing with those features are still
needed.

In addition, object-oriented paradigm has long been
regarded as a robust methodology that can be used for
modeling and simulation. However there are - compared to
other fields like database or computer graphics - only a
few modeling and simulation tools that adopt the most
important concepts like object, data encapsulation, generic
class, inheritance or polymorphism operation from the
object-oriented paradigm methodology.

In this paper some of the main characteristics of
modular hierarchical systems with discrete structural
changes - are discussed and a novel knowledge
representation scheme for specifying complex structural
changes by direct extension of DEVS-formalism is
proposed. A graphical editor is introduced to undertake
the modeling visually and interactively. Then an approach
to object-oriented modeling of modular hierarchical
systems is presented. This approach makes use of the
important concepts in object-oriented paradigm, especially
the inheritance and polymorphism operations on the
system modeling level. At the end of this paper, the
framework is applied to a time variable system --- financial
portfolio risk management.

2. Knowledge Representation for Variable
Structure Hybrid Systems

Variable structure systems have been introduced as a new
system by Oeren (Oeren 1975). Such systems have not
only trajectory but also structural behavior, i.e. input-
output relations between system and its components as



well as system components themselves vary in time. A
variable structure system can be represented by atomic
models and coupled models with the same notations as in
traditional DEVS from the system theory point of view.
However, the specification and implication of the models
are different from the conventional DEVS due to the
characteristics of variable structure systems. The systems
studied in this paper have the following dynamics.

e Variable structure atomic models are self-organized
with input, output, states, and transition functions for
both discrete behavioral and structural events.

e No interconnections exist between components.

e Interactions take place between atomic models and
their high level models. Interactions between models
at the same hierarchical level is undertaken through
their high level models.

o High level models are formed by connecting inputs (or
outputs) of components to inputs (or outputs) of its
high level models as shown in Figurel. We shall refer
to such relations as aggregated models hereafter.

e A variable structure system can be specified with
variable structure atomic models and variable
structure aggregated models as shown in Figure 2.

e Any external or internal behavioral or structural
events on atomic model level can cause changes to
itself or further to aggregated models if some
conditions are met. Behavioral and structural events in
aggregated models will definitely lead to behavioral
and/or structural changes to some or all of the models
they contain.

Figure 1: Aggregated models

Where:
A, B --- Variable structure atomic models.
C --- Variable structure aggregated models.
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Figure2: Dynamic description of variable structure systems
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Where C, D, E, F --- Variable structure atomic or
aggregated models.

S,,5,,8,,8, -- Different variable structure states
t,, t;, t, --—- Times when structural events took place.

Currently, there are two popular modeling
methodologies for variable structure systems. One is
system-oriented approach, which was first specified in
details by Zeigler (Zeigler 1986). In addition to his well-
defined DEVS-formalism and multi-facetted modeling
methodology (Zeigler 1984), he specifies "non-trivial"
variable structure systems. "non-trivial" variable structure
systems are characterized by phases of ordinary trajectory
behavior and phases where the structure of the system is
changed and the trajectory behavior state of the former
structure is linked to the trajectory behavior state of the
novel system structure. Each system structure represents a
structure state. Another methodology for modeling
variable structure systems, i.e. individual-oriented
approach, focus on the autonomy of system components as
self organizing units (Hogweg and Hesper 1989). System
components are modeled as autonomous entities
(individuals) with a clear boundary to their environment
and they can change their internal structure or their
environment according to internal rules.

The system representation proposed in this paper is
mainly based on Zeigler's theory for modular hierarchical
systems, but in contrast to other investigation for modeling
and simulation of variable structure systems based on this
theory, we further develop the specification of
conventional coupled models. Aggregated models are
introduced to describe the hierarchical embedded structure
of variable structure systems. The relations between
atomic model dynamics and aggregated model dynamics
are also different from conventional DEVS formalism.

In conventional DEVS modeling, the component and
coupling structure of a coupled model is fixed by model
creation,. i.e. a set of several atomic or coupling
subsystems are specified and the coupling relations
between them are defined. Atomic models exclusively
define the behavioral and structural dynamics of the
coupled models. In variable structure systems described
above, the component and structure of an aggregated
model vary in time. The dynamics of atomic models not
only determines the dynamics of an aggregated model but
also changes as the aggregated model undergoes
behavioral or structural events. The structural events on
atomic model level are defined to realize structural
changes like switching between different sets of equations
or different events. They do not definitely lead to structural
or behavioral changes on aggregated model level. On the
other hand, behavioral or structural events on aggregated
model level are bound to result in behavioral or structural
changes on atomic model level. Possible structural events
are addition, deletion, adjustment and modification of
atomic or aggregated components as well as their
aggregated relations.



Additionally, we assume the system studied in this paper
allows value aggregation. This means that input and output
variables are introduced and can be connected to transfer
variable value between a component and its aggregated
model. These input and output variables can be aggregated
in the same way as input and output ports. Furthermore,
we allow the internal event to be conditional, i.e., the
occurrence of an internal event depends on an internal
event condition. Only when the time given by the time
advance function has elapsed and/or the internal event
condition evaluated to be true, the event is executed,
otherwise the event is due.

Taking into account all those considerations, we
formally introduce the mathematical representation for
atomic models as follows:

Ato—Var - Model = (X,X,,Y,Y,,S,6,
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Where X ={(x,x,,....%,)| % € X;,x, € X,,...x,, € X,,} is the
structured set of inputs that includes behavioral and
with m

structural  events input  ports  x,
X, ={(x,0,X0,..) | Xy € X, %y € X,,,...} 18 the structured set of
value inputs with input variables Xas
Y={(yu V¥ )|V €V, 1, €1,,.,y, €Y} is the structured
set of outputs with p output ports y,,
Y. ={(Vu>Verr-) | Ver € Vots Yoy € Yopsoo} i the structured set of
value  outputs  with  output  variables y,,

S =(5,,5,5:,5,)| 5, €8,,5, €S,,..,5,€8,} is the structured
set of sequential states, &,,:Qx X, x X - S is the external
state transition function, with Q={(s,e):se5,0<e<y,,}
the set of total states, &,,:Sx X, — § is the internal state
transition function, 21:§xX,->7Y is the output event
function, A :Sx X, —Y, is the value output function to
define the output variable values, t,:Sx X, — RS U{o} is
the time advance function, and C,:SxX, » g is the
internal condition function for conditioning the execution
and output of internal events.

We specify aggregated models in the following way:

Aggr —Var — Model =(X 1, X ., Y, Y 1., S, C s Gy 4, 4,0 8,)
Where C,,,4,4, and ¢, are the same as the ones defined in
atomic models, X, ={(x,, X, X;,) X4 €X %€ X (.}
is the set of inputs of the aggregated model with p input
portsxy, ¥, ={(Vus Vs Ya) | Y € Vets Yar €Yy} is the set

of outputs of the aggregated mode! with ¢ output ports y,,,
X po = aers X ac20) | a1 € X gers ¥z € X g} 18 the set of value

inputs of the aggregated model,
Yo =AW sV ter )| Vacr € Yoy Ve € Vip} 18 the set of value
outputs of the aggregated model,
S, ={(5 45554 )| 54 €S8, €S 0oy 18 the set of
sequential system states, each
s, ={C.. S, JAR,,OAR, IAR,,04R,}  with (i=12,.n),
C,={Ato—Var— Model d|de(l2,..m)}is the set of

component atomic models contained in the system,
S={(5,8,55,)|5, €8,,5, €Sy5....5, €S,,...} is the set of
behavioral and structural states,
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AR {(x 4, x5) i€ (12,...p),d € (1,2,..m), j € (1,2,..m,) is the input
aggregation relation between atomic models and
aggregated models,
OARC{(y, v )i€ (L2 g),d € (L2,..m), je(,2,.m,)} s
the output aggregated relation between atomic models and
aggregated models, JAR, and OAR, are input and output
value aggregation relations between atomic models and
aggregated models respectively, with the nearly same
notations as the /AR and OAR. It should be noted that the
input and output aggregation .relations are more
complicated than that in conventional DEVS-formalism.
They could be as simple as several fixed percentages or as
complex as a set of derivative or algebraic equations.

In the variable structure hybrid systems specified above,
atomic models and aggregated models will directly interact
with each other. External events of aggregated models will
be used as input events of atomic models. Output of atomic
models can mean nothing to aggregated models or be used
as an internal event of aggregated models, depending on
the nature, magnitude and time of the output. An internal
event of aggregated models can do nothing to aggregated
or/and atomic models or results in behavioral or/and
structural changes to aggregated and atomic models,
depending on the evaluation of event condition functions.

A structure event condition of a variable structure
hybrid system can be defined as time condition, trajectory
state condition or structure state condition or as a
combination of them. An internal (or external) event on
atomic model level can pass on to aggregated model level
through its output and finally leads to structural changes on
aggregated model level if all the conditions are met. An
internal (or external) event of aggregated models can
modify not only the behavior or structure of the aggregated
model but also by means of addition, deletion or
modification of component models the structure of the
lower subsystems.

As shown in Figure 2 the structural event at time 7,
causes the change from structural state S, to structural state
S, i.e., model D is deleted from the system model and
model E is added into the system model. The internal
event at time [, in model C eventually results in a
structural change on system model, i.e., a new model F is
added. The system input IN and output OUT are connected
to the inputs and outputs of its component models through
aggregation relations.

3. Interactive, Graphical Modeling with
Hierarchical State Transition Diagram

In the above framework on variable structure hybrid
system, atomic model specification is organized around
various phases that form a larger state space for an
aggregated model and further a global state space for the
system studied. The different phases of a model represent a
partitioning of the state space into a set of mutual
exclusive blocks where the different blocks identify
qualitatively different system behaviors. For dynamically
continuous systems, the phase can be used to associate



different derivatives with different phases and the phase

transitions mean a change from one derivative to another.

The state space phase concept and the dynamic behavior
specification organized around phases can serve as a basis
for a graphical model representation and construction. The
phase and phase transitions are naturally represented by a
state transition diagram. A state transition diagram is used
to show the state space of a given model class, the events
that cause a transition from one state to another, and the
actions that result from a state change. In the directed
graph, the nodes depict the phases and the arcs the event
transitions. In contrast to DEVS-diagram (Prachofer and
Pree 1993), we distinguish not only the external and
internal event arcs but also behavioral and structural event
arcs. Each phase consists of constructional parameters,
state parameters and behavioral functions. Each transition
arcs consists of conditions that will invoke the transitions
and transition functions. The conditions include external
and internal behavioral and structural events and value
condition expressions that are semantically tested
continuously while the model is in the transition's source
state. Transition functions are executed each time the
transition is taken and a new phase is reached afterward.

A graphical editor is developed to facilitate the
graphical design of an atomic or aggregated model. It
contains a toolbox consisting of different functional
building blocks in different shape icons. Each type of icon
represents a phase state or transition with different
implications. We use the following notations. Circular
shape represents a phase that has only one way to next
phase. Diamond shape represents a phase that has several
possible next states depending on the conditions.
Rectangular shape represents an end phase. Single solid
line represents a transition caused by an external event,
single dash line a transition resulted from a structural
event, a single thick black line a transition caused by
behavioral event and double solid line a transition resulted
from an internal event. An arrow denotes the causal
relation between two phases, i.e., the direction of the
change of phase. Each icon has an interactive dialog that
can be used to specify the correspondent phase state
variables or behavior functions in the form of class
member variables or functions. The graphical
representation of an atomic model is shown in Figure 3.

Based on the above graphical representation, we
propose an interactive visual modeling method by means
of a graphical editor. The method consists of the following
steps:

e The input and output interface of atomic models are
specified in the form of input and output ports and
variables.

¢ Each phase of an atomic model and its relevant
transition originating from this phase are specified in
the form of constructional parameters, state
parameters, behavioral Functions, conditions and
transition functions.
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Sometimes the above steps are already completed when a
model base is available. So we only need to start from next
step. '

o The system studied is decomposed into constitutional
atomic models according to domain knowledge. Input
and output interface of systems are also specified in
the form of input and output ports and variables.

e All phases of all atomic models contained in high
level models are specified in the form of message
sequence charts, i.e., diagrams that show the relations,
interaction and action sequence among atomic models
or components over time.

e Further specify the message sequence charts with
states, state behavior and transition information until
all the dynamic relations and behaviors are clear.

e Implementation and validation.

() <@>

Figure 3 Graphical Representation of an Atomic Model

4. Object-Oriented Implementation with C++

Zeigler's System Entity Structure (SES) representation
scheme combines knowledge of decomposition,
component taxonomies and coupling relationships to
present all possible structure of a complex system. The
SES distinguishes between entities, aspects and
specialization, in which entities are atomic or coupled
systems, aspects describe decomposition of coupled
system and specialization represents entity classification.
Every entity in a specialization inherits the characteristics
of the parent entity. Associated with SES is a model base.
We apply object-oriented paradigm to our specification
for variable structure hybrid system based on DEVS
formalism by mapping some important object oriented
concepts to our specification. In our implementation, all
atomic and aggregated models are defined by C++ classes.
All elements, namely phase state parameters, behavior
functions and local structures are declared as member
variables or member functions in a model class
declaration. For example, inputs and outputs (and
constructional parameters in a sense)) are defined as public
elements of a model class, all other elements of the model
class are encapsulated into its body, called private
elements. Transition functions and aggregated definitions
are realized by polymorphic methods. For the



implementation of external transition function, a virtual
method must be implemented. Internal condition function,
internal transition function and output events have to be
specified in such a way that they return a Boolean type
value to indicate if the event is due.

A specific model component (instance) is declared as a
variable of its root model class or, preferably, as a pointer
to a model class. A static model instance is created or
destroyed automatically when an instance of an
appropriate compound model is created or destroyed. A
static instance of a project is created when model
execution begins and destroyed when it stops. A dynamic
instance of a model can be created and destroyed as the
results of "new" and "delete" statements in transition
actions.

All model classes are derived from predefined
correspondent root classes. All subclass attributes such as
local structures, phase state variables, etc, will be inherited
from a root class. You can add to subclass definition new
elements such as new phase variables, parameters, local
behavior as well as you may overload or override local
behaviors, transition functions, etc,. Model polymorphism
is supported, that means any decedent may be actually
used in place of an ancestor.

A variable structure system is time variant, therefore a
"pruning" process at modeling and simulation runtime is
necessary. The "pruning" process can be realized by
introducing structural events, which are able to modify the
system  structure by the following methods:
CreateSystem(...), DeleteSystem(...), ExchangeSystemy(...),
CreateConnection(...), DeleteConnection(...), etc.

Interactions between atomic models and aggregated
models or a system is through message passing. Recall that
sometimes one output of an atomic model may not cause
any change to its high level model. However, as time goes,
several outputs from different models may combine
together to lead to a behavioral or structural change to its
high level model. So the conceptual framework supports
asynchronous message passing or so-called later binding.
Asynchronous means that the sender can send a message at
any time, irrespective of the receiver status, and the control
return to the sender immediately when the message gets to
an input port at another model. The message transmitted
may be dealt with immediately or stored in a queue
waiting for later processing. = Messages are sent and
received through ports. An object sends a message to a
port rather than to an object directly. The set of destination
objects is defined by the port connection topology.

To summarize, the modeling and simulation of variable
structure hybrid system can be realized by combining
object-oriented paradigm and DEVS-based formalism in
the following way:

e A number of template classes that are correspondent
to atomic model classes of a domain are designed and
standardized. All the classes form a model base.
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e  The system studied is decomposed and fully analyzed
according to domain knowledge and application
requirements.

o System model is constructed by using the
specification framework described in Section 2 and
the interactive graphical editor.

¢ Each model component is defined as pointers to its
root template class. Modification is made through
virtual functions and override to tailor the generic
class to fit the specific model specification.

S. Application: Modeling Framework for
Portfolio Risk Management

Exchanges, investment banks and other financial
institutions have large portfolios of derivative securities
that must be priced and hedged or risk managed. Each
large investment portfolio contains a number of derivative
securities and covers a fixed or varied period of time. The
type and size of the derivative securities contained in a
portfolio may vary according to the changes of political,
economical or financial situation all over the world. Some
derivative securities may be excluded from the portfolio
and others may be added into it in terms of the properties
of each derivative security. Sometimes the percentage
distribution taken by derivative securities of a portfolio can
be redistributed during the portfolio lifecycle. How and
when these operations are undertaken depends on the level
of risk exposure, the level of payoff rate portfolio
managers will accept and the change of the financial
market. Each time a derivative security is deleted from or
is added into the portfolio or changes its size, a discrete
event takes place, then portfolio becomes a continuous
process before it expires. Portfolio risk management with
derivative securities is a typical discrete and continuous
process with the characteristics of variable structure.

Using the knowledge representation scheme for variable
structure systems described in section 2, portfolio risk
management with derivative securities can be modeled by
a combined discrete and continuous model approach. Each
derivative security such as options, futures, swap and
forward contracts is represented as an atomic model and
specified with the input, output, state and other relevant
parameters. Assumptions and specification that underlie a
financial instrument are made explicitly. All derivative
securities models will form a knowledge base. Portfolio is
represented as an aggregated model that consists of several
derivative securities. Derivative security addition and
deletion are modeled as structural events. Return
requirement for a portfolio and its risk exposure level are
used as the general modeling principles. In C++
realization, each type of derivative security is represented
as a foundation class. The application of a derivative
security is implemented as an instance (or a pointer) of the
foundation class or its derivative class. Interaction
between models, i.e. between classes, is through message
passing.



The intelligent integrated framework for modeling and
simulation in banking and risk management will contain
the following functions:

e As close as possible to instantaneous pricing of
individual financial instrument in support of daily
trading activity.

e Automatic dynamic model construction
performance analysis of a given portfolio

e Fast reporting of the value and sensitivity of the
portfolio to the market.

e Accurate end-of-day reporting of the detailed
performance such as payoff, risk exposure of the
portfolio.

and

6. Conclusion

In our research, we further extend the DEVS formalism to
support variable structure system modeling and simulation.
The modified formalism allows defining models modularly
and hierarchically and combining various formalisms. The
C++ implementation of these concepts has proposed a
powerful modeling and simulation environment. The
graphical editor provides building blocks that can be used
to construct system models visually and interactively. The
object-oriented features can be exploited to realize
reusable model libraries.

Next investigations are going to automate the modeling
process that involves in introducing reasoning mechanism
into the formalism. Some model satisfaction criteria also
need to be developed. Furthermore how to express and
implement these mechanism to achieve automated
modeling with C++ is still an open problem.
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