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Introduction

It is hardly controversial to claim that the p-calculus is
a formal logic of central import for the analysis and ver-
ification of hybrid automata and related classes of sys-
tems. The fundamental concepts of reachability and in-
vartance for hybrid trajectories are expressible in terms
of fixed-points of operators mapping sets of states to
sets of states, and thus definable in the u-calculus.
The iterative computation of the denotation of such
fixed point formulas lies at the heart of symbolic model
checking tools for hybrid and real-time systems such
as HYTECH (Alur, Henzinger, & Ho 1996), (Henzinger
1996) and KroNos (Daws et al. 1996). More gener-
ally, the propositional p-calculus is well-recognized as
a richly expressive logic over transition system models:
the power of its fixed-point quantifiers is such that it
subsumes virtually all temporal, modal and dynamic
logics (Emerson 1997), (Janin & Walukiewicz 1996).

However, the current practice, within the allied field
of automated verification of (discrete) reactive systems
as well as within the hybrid systems community, is to
treat the p-calculus not as a working or usable logic
but rather as a logic of the substratum. It provides a
common “machine” language and semantics for verifica-
tion by model checking over transition system models,
with user-input specifications written in the more “nat-
ural” languages of temporal logics, and then translated
into that of the p-calculus (Kupferman & Vardi 1998),
(Henzinger 1996).

In the hybrid and real-time systems literature, the
bulk of the current work on logics and formal methods
is an expansion of, but firmly anchored in, the frame-
work of temporal logic verification of finite state sys-
tems (see, for example, (Manna & Pnueli 1993), (Hen-
zinger 1996), (Manna & Sipma 1998)). The core com-
putational model is that of a hybrid automaton, which
is represented formally as a labeled transition system
over a hybrid state space X C @ x R”, where @ is a
finite set of discrete modes, and R" is Euclidean space.

*The full version of this paper appears in P. Antsaklis
et al. (eds.), Hybrid Systems V, LNCS 1567. Springer-
Verlag, Berlin, 1999. 38-69. The paper is available online
at: ftp://cam.cornell.edu/pub/davoren/davoren.html
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Both sorts of system dynamics — both continuous evo-
lution within a control mode, and the effects of discrete
jumps between control modes — are uniformly repre-
sented as binary transition relations r C X x X. Within
the temporal logic framework, the principal focus has
been on the formal specification of dynamic properties
of classes of trajectories of hybrid automata such as
safety /invariance, or its dual of reachability (Henzinger
1996), (Manna & Sipma 1998).

In this paper, we take the basic hybrid automaton
and its standard transition system model from (Hen-
zinger 1996), (Lafferriere, Pappas, & Sastry 1998), and
examine them afresh.

We work in the modal rather than the temporal vari-
ant of the p-calculus (see (Stirling 1992) §4), which
includes in its formal language a pair of modal op-
erators (a) and [a] for each of the component transi-
tion relations, interpreted by the familiar relational pre-
image (or post-image) operators on sets. The modal
framework provides a modular specification language.
Classes of hybrid trajectories can be simply described
by sequences of alternating compositions of evolution
and jump relations. We show how to write clean
and “human-readable” formulas of p-calculus express-
ing safety and liveness properties of hybrid trajectories.

The shift of mindset to that of modal logic opens up
a wealth of new possibilities. The key move is to view
a transition system model not merely as some form of
“discrete abstraction” (Henzinger 1996), but rather as a
skeleton which can be fleshed out by imbuing the state
space with topological, metric tolerance or other struc-
ture; we then represent such structure by enriching the
language of the u-calculus with special-purpose modal
operators. In the resulting logical formalisms, we can
simply and clearly express what we mean by contin-
uous and discrete dynamics, and hybrids of the two.
We can formally express topological concepts, such as
the topological interior, closure or boundary of a set,
or notions of imprecision or metric tolerance, such as
the property of “being within distance €” of a set, for a
given ¢ > 0. By viewing transition relations » C X x X
in their equivalent form as set-valued maps r : X ~ X,
i.e. functions r : X — P(X), and drawing on the re-
sources of set-valued analysis and dynamical systems



theory (Aubin & Frankowska 1990), (Akin 1993), we
open the way to a richer formal analysis of robustness
and stability properties for hybrid automata and related
classes of systems.

A further advantage of the modal framework is that
it supports not only the specification and verification
of single properties, but the larger task of representing
and building up a knowledge base of properties of a sys-
tem, starting with structural properties assumed in the
modeling, and then adding new facts as they are verified
by either model-checking or deductive means. Building
on the work of (Kozen 1983), (Walukiewicz 1996) and
(Ambler, Kwiatkowska, & Measor 1995), we show that
the modal p-calculus and various of its normal poly-
modal extensions have sound and complete axiomatic
proof systems.

We can also provide a clean account of the relation-
ship between propositional modal (and thus in general
second-order) specification languages for expressing sys-
tem properties, and first-order system description lan-
guages. From the very recent work of (Lafferriere, Pap-
pas, & Sastry 1998), we can assume each of components
of a hybrid automaton have explicit first-order defini-
tions in the language L(IR) of an o-minimal structure
R = (R;<,+,—,-,0,1,...) expanding (or a substruc-
ture of) the real-closed field (van den Dries 1998). (In
the hybrid automata literature, the adjective “linear”
means the components are all definable in the first-order
language £(<,+,—,0,1) of the reals with only order,
addition and integer constants.) Clarifying the work on
finite bisimulation quotients and decidability of tempo-
ral verification in (Lafferriere, Pappas, & Sastry 1998),
we show how and when modal u-calculus sentences can
be translated into first-order formulas.

This work is one installment of a larger project. An
analysis of the concept of bisimulation, and its rela-
tion to the algebraic semantics for the p-calculus, is
given in (Davoren 1998b), and (Davoren 1999) is a full
treatment of completeness of deductive proof systems
for normal polymodal extensions of the u-calculus. Re-
lated logics and earlier versions of some of the ideas are
found in (Davoren 1998a).

The remainder of this extended abstract is a brief
tour through the full paper.

Labeled transition systems

Modulo notational variations, the labeled transition
system is the common basic model for all propositional
temporal and polymodal logics.

Definition 1 A modal signature ¢s a pair (®,X%),
where ® is a set of propositional constants (observation
or event labels), and T is a set of transition labels.

A labeled transition system (LTS), (or generalized
Kripke model) of signature (®,X) is a structure

M = (X, {a™aez, {Ipll™ }pes)

where:
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o X # @ is the state space (of arbitrary cardinality);
e for each transition label a € , a™ : X ~ X is a
binary relation on X; and

e for each propositional constant p € ®, ||p||m C X is
a fized subset of X.

An LTS model 9 is a clean and simple abstraction
of a finite automaton. It is an abstract machine over
state space X, with input or action alphabet X, and
additionally equipped with an observation alphabet &,
and the output relation which maps a state z to the set
of all atomic propositions p € ® such z € ||p||™. Sets of
initial or final states can be identified by specific labels
in ®.

Over a topological or metric space X, an LTS M is
a generalized (set-valued) dynamical system.

Syntax and semantics of the modal
p~calculus

The p-calculus originated in the 1960’s as a formal logic
of digital programs, and is formalized in (Kozen 1983).
Contemporary introductions to the p-calculus can be
found in (Stirling 1992), (Emerson 1997).

Definition 2 Fiz ¢ modal signature (®,X), and let
PVar denote a fized set of propositional (second-order
or set-valued) variables. The collection F,(®,X) of for-
mulas of the propositional modal p-calculus is generated
by the grammar:

eu=f | plZ]~ple1 Ve |{a)p|pZe
forp € ®, Z € PVar, and a € X, with the proviso
that in uZ.p, the variable Z occur positively, i.e. each
occurrence of Z within the scope of an even number of
negations.

The other (classical) propositional connectives,
modalities and greatest fixed point quantifier are de-
fined in the usual way; in particular, [alp = —(a)—¢p
and vZ.p = ~uZ.~(Z = =Z].

Let 8,(®,X) denote the set of all sentences of the
p-calculus; that is, formulas containing no free propo-
sitional variables Z. And let S(®,X) denote the set of
all purely modal sentences in the signature (®, ¥); that
is, without any fixed point quantifiers or propositional
variables.

The (standard) relational Kripke semantics of the la-
beled modalities [a] and (a) are given by the universal
and existential pre-image operators of the correspond-
ing relations r = a™. For relations r : X ~ Y, and sets
A CY, define:

m(r)(4) = {zeX|(WeY)e Ty = yed])
o(r)(4) = {t€X|(FyeY)lz—ry AyeA]}
In the notation of (Henzinger, Kupferman, & Qadeer
1998), o(r) = pre[r] and 7(r) = pre[r]. The semantic

readings of the modalities are forward-looking:

[a] ¢
(a)p

.
—

“All a-successors satisfy ¢”
“Some a-successor satisfies ¢”

pa—.
—



In temporal logic, one usually works with the global
transition relation R™ = |J o5 a™ (standardly as-
sumed to be total), and the labeled modalities are re-
placed by global temporal “next” operators, written ¥.X

or YO, and 3X or 3Q.

In an LTS model M, sentences ¢ € S,(P,E) de-
note sets of states |lo||™ C X. A sentence is true
in 9N, written M E ¢ , iff |jo||™ = X, or equiva-
lently, ||-¢||™ = @. The propositional connectives —,
A and V are interpreted by set-theoretic complement,
intersection and union, and the labeled modalities are
interpreted by the pre-image operators. In particular,
||tt||m = X for all M, and for implications, M F ¢ — ¢
exactly when [l¢|” C [l

Formulas ¢ € F,(®,X) with free variables denote
sets ||<p||;m C X, relative to a variable assignment
€ : PVar — P(X). The semantics of the y and v quan-

tifiers are given in terms of the least and greatest fixed
points of operators ¢gy : P(X) — P(X) defined by:

(¢f%) (4) = llell(a/z)

where £(A/Z) is the variant assignment which is the
same as £ except for assigning the set A to Z. The
syntactic restriction on formulas yZ.¢ ensures that the
operator go?‘,'tz is C-monotone. The completeness of
P(X) as a lattice ensures (by the Hitchcock-Park fixed-
point theorem) that the set ||uZ go||;m may also be char-
acterized as a transfinite union of an C-chain of ap-
proximations ||uZ.<pi|zta for ordinals a (of cardinality
< Card(X)), beginning with the empty set, applying
go?’fz at successor ordinals and taking unions at limits.
When this operator is w-chain-additive, i.e. distributes
over unions of countable C-increasing chains of sets, the
ordinal of convergence is at worst w. In such cases, we
have a sequence of approximation formulas ¢° = ff and
o™t 2 o7 = o), and [pZ.0llg" = Uneu lle"lE"-

In the hybrid systems context, the classes of LTS
models of particular interest are those 9t such that the
state space X C R™, the transition relations a™ C R?",
and the observation sets ||p||™ C R”, are all first-order
definable in some structure R over the reals. For such
M, it is immediate that for all purely modal sentences

¢ € 8§(®,X), the denotation set ||90||;m C R” is also

first-order definable in R, based on the straight-forward
modal translation using the definitions of the pre-image
operators. For p-sentences pZ.p, a first-order trans-
lation is available provided that the sequence [|¢™||™
for n < w of denotations of approximation formulas is
guaranteed to converge at a finite stage. Such is the
case when 9 has a finite bisimulation quotient: see
(Lafferriere, Pappas, & Sastry 1998). Symbolic model-
checking tools such as HYTECH are predicated on such
convergence.
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Hybrid automata and their LTS models

We base our discussion on the systems considered in
(Lafferriere, Pappas, & Sastry 1998), typically depicted
by a graph of the form of Figure 1.

(x)¥43:x e

Figure 1: Basic hybrid automaton

Definition 3 A (basic, evolution time-deterministic)
hybrid system is a structure H consisting of the fol-
lowing components:
e a finite set Q) of discrete states or control modes;
e a control graph G C @ x @ of discrete transitions;
e for each q € @,
— a state space Xg CIR™ for mode gq;
— the continuous (semi-) flow ¢, : Xq x R* — X, of
a vector field on Xg;
— a set Invy C X4 of invariant states for mode q -
the domain of permitted evolution within mode ¢;
— a set Inity C Invg of initial states for mode q
(posstbly empty, but not for all q);
o for each discrete transition (¢,q') € G,
— a set Grdgy C Xq, the guard set for the jump
fromq to ¢';
— a reset relation rq ¢ 1 Xgq ~ Xor;
foreachz € X, 7q.4/(2) C Xg is the set of possible
reassignment states after the jump from q to q'.

e the hybrid state space of the system is the set

Xu= U {¢} x Xq
q9€Q

For definiteness, we take a hybrid automaton to be
a hybrid system H with a concrete syntactic descrip-
tion: each of the component sets X4, Init,, Invg,



Grdgq C R™, semi-flows ¢,, and reset relations rq

have explicit first-order definitions in the language £(R)
of some specified structure over the reals.

Definition 4 (Henzinger 1996), (Lafferriere, Pappas,
& Sastry 1998). Given a hybrid system H, the (“time-
abstract”) LTS model My determined by H has the
following components:

e the state space X = Xy;

e for each discrete state ¢ € @), the constrained evolu-
tion ( “time-step”) relation eq : X ~ X, defined by:

z —2 !
= (AeRY) [ & =¢,(z,t)A
(Vs €[0,t]) ¢,4(z,s) € Inyg ]

o for each discrete transition (¢,q’') € G, the controlled
jump ( “discrete-step”) relation cq g0 : Xg ~ Xg de-
fined by:

Cq,q!

z =z
o Paa!
= ¢€Grdgy AN 2 €lnvg A 2252

o the observation sets X, Inity, Invy, Grdg g.

We adopt the notational convention of identifying,
when convenient, sets A; C Xy and {¢} x 44 C X;
moreover, the relations e : Xy ~ X, and ¢g, ¢ 1 Xg ~
Xq can be “lifted” to relations X ~» X in the unique
obvious way. It is immediate that whenever H is a
hybrid automaton, in the sense above, the LTS model
My is also first-order definable in the same structure.

Figure 2 is an illustration of the operation of a hybrid
automaton.

Gr dq,q'

Figure 2: Operation of basic hybrid automaton

The transition alphabet ¥ of an LTS model My will
include symbols e, for ¢ € @ and ¢y, for each edge
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(¢,9') € G, and the observation alphabet ® will include
propositional constants Init, and Inv, for ¢ € @, and
Grd, o for (¢,¢') € G.

A trajectory of # is a finite or infinite sequence
(0, 4i,7i)ier such that for each ¢ € I: the duration
d;i > 0; the curve v; : [0,d;] — X is such that

(5,7 (0)) =% (g3, %(t)) for all ¢ € [0,6:]; (i, giv1) €

G; and (¢:,7%(0) = (¢i+1,7:41(0)). When I
is finite, with largest element N, it is allowed that
dn = co. When a hybrid automaton is thought of as
a discrete controller interacting with a physical plant,
the class of trajectories, so defined, are founded on im-
plicit operational assumptions of temporally continuous
and perfect precision sensing, and instantaneous control

switches (Henzinger 1996).

Using the modal p-calculus
The modal sentences:

Y= el and Y —[egp

with the semantic readings “If 9 holds, then all ¢g 4/~
successors satisfy ¢”, and likewise for ¢4, correspond
precisely to the two types of (temporal logic) safety
verification conditions for hybrid systems in (Manna
& Pnueli 1993) §4.1. Their Hoare-triple notation is:
{¥}7{e} and {¢}cont{e} respectively, where T ranges
over jump transitions and “cont” denotes the union of
all the evolution relations.
In the LTS model 9 = M3, a modal sentence (1):

<e40><c%,ql ><e‘11 >(c<h ,qg>(eq9> tee (er-1 )(CQk-1 :‘1k><e‘Ik) ®

denotes the set of states (go,z) from which some tra-
jectory with discrete trace (go,q1,...,qk) reaches the

set [|l||™ C X. Dually, a modal sentence (2):

[e(Io][CQD,m][em][cm,42][('3%] e [er—l][CQk—l,Qk][er] 14

denotes the set of states from which all (go, 491, ... ,q%)-
trajectories reach the set ||<p||m, upon the last jump

Cqu_1,qx and remain in lle||™ throughout the last evo-
lution eg, .

Defining e and ¢ to denote the relational sum (union)
of, respectively, the relations for the e,’s for ¢ € @, and
the relations for the cq,¢’s for (¢,¢’) € G, the dynamics
of the class of all hybrid trajectories with finite discrete
traces are captured by the dual fixed-point definable
modalities:

(h) e
[h] ¢

Since the corresponding semantic operator is w-chain-
additive, the sentence (h)y “unwinds” to the infinite
union of all sentences of the form (1); dually, [h] ¢ cor-
responds to the intersection of all sentences of the form
(2). Semantically, (h) and [h] correspond to the dual
3 and V pre-image operators of the reachability rela-
tion h of the system under the control of #; that is,

[le

uZ. () v (e)(c)Z
vZ. [e]p Ale]lc]Z2

[le



(g,2) LN (¢', ') iff some trajectory (d;,q:,7;)ier with
go = ¢ and 7,(0) = z passes through the point (¢’, z’).

We now have the formal linguistic machinery to suc-
cinctly express various system specifications. The safety
sentence

Init — [h] ¢
is true in the model I = My exactly when every tra-

jectory that starts in the set ||Init||™ always remains

within [|¢||™. From the fixed-point rules of Kozen’s
axiomatization of the p-calculus, one readily derives an
obvious invariance rule for hybrid trajectories:

Yo prede o= [eqqlp
¥ — [h]p

the hypotheses holding for all ¢ € @ and (¢,¢') € G;
c.f. (Manna & Pnueli 1993), (Manna & Sipma 1998).

To express liveness properties, we use the “box-
diamond” construct, as in temporal logic. For example,
the sentence

¢ — [h)(e)(c)(e) tt

is true in M = My exactly when every maximal X tra-

jectory from a state in ||¢||™ has an infinite discrete
trace. This is so because [h](e){(c)(e)tt denotes the
set of states from which every trajectory with a finite
discrete trace can be properly extended. Similarly, the
sentence ¢ — [h](e)(c)(e)y is true in M exactly when

every trajectory from [|o||™ returns to ||¢||™ via a con-
trolled jump infinitely often. And [h](h)e denotes the
set of states from which every hybrid trajectory even-
tually reaches ||o||™.

The modularity of the modal p-calculus allows us
to succinctly express not only desired properties — i.e.
those to be verified, but also various of the structural
properties of an LTS model My that it will typically
possess by assumption. The full paper proposes a list
of 16 such axioms. As one example, it is immediate
from Definition 4 that the controlled jumps relations
cq.q' : Xq ~ Xg have the relational decompositions
g’ = Tq,¢ N(Grdy ¢ x Invy); this is expressed modally
by the sentence scheme:

(cqq')Z ¢ Grdg,g A(rq,e)(Z Alnvy)

The constrained evolution relation e, : Xg ~» Xg may
be characterized as a restriction of the (positive) orbit
relation fq : Xq ~ Xg of the semi-flow ¢, (Akin 1993)
given by:
EELNPES (3teR?) z' = $q(,1)

When the set Inv, is conver with respect to the semi-
flow ¢, — in the sense that no curve segment of ¢, with
both endpoints in Inv, ever leaves Inv, at an inter-
mediate point — we have the relational decomposition
eq = foN(Invg x Inv,), which is likewise expressible in a
modal sentence scheme. With the addition of relational
converse, we can also modally express the convexity

property.
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Adding topological structure

Within modal logic, there is a well-known way of rep-
resenting a topology 7 on the state space X of an LTS
or Kripke model. From McKinsey and Tarski’s work
in the 1940’s (McKinsey & Tarski 1944), (Rasiowa &
Sikorski 1963), the axioms for the box modality of the
modal logic S4 correspond exactly to those of the Ku-
ratowski axioms for the topological interior operator,
and dually, the S4 diamond corresponds to topological
closure. The logic S4 is better known by its relational
Kripke semantics in terms of pre-orders: reflexive and
transitive relations X C X x X. In showing that the
Kripke semantics are a special case of the topological
semantics, one is lead to a study of Alezandroff topolo-
gies (Davoren 1998b).

Let F, o(®,X) denote the collection of formulas de-
fined as in Definition 2 with an additional clause for
a plain (unlabeled) O modality. The diamond is de-
fined by the usual duality: G = —O-¢p. For LTS

models M = (X, T, {a™} ez, {||pl|™ }pea) additionally
equipped with a topology 7 on X, the extra semantic
clauses for formulas ¢ € F,, o(®, X) are:

Mm o . m m o m
Bl = intr (lelF) and 00l = clr (llel])

In the enriched language, we can simply express topo-
logical properties of sets of states, such as being open,
closed, dense or nowhere dense.

The appropriate topological notions of continuity are
those for relations/set-valued maps, as introduced by
Kuratowski and Bouligand in the 1930’s. Instead of the
functional continuity “the inverse-image of every open
set is open”, there are two distinct notions of semi-
continuity: the u.s.c. property is “the V-pre-image of
every open set is open”, while the l.s.c. property sub-
stitutes the J-pre-image operator. The two properties
are expressible by the sentence schemes:

[@]0Z - 0O[a]Z and (a)0Z — D{a)Z

In the setting of compact metric spaces and relations
with closed set-values, there is an analog of the familiar
¢-0 characterization of continuity of functions for each
of the two semi-continuity properties (Akin 1993). For
the orbit relation of a semi-flow, the picture is that of
an e-tube, as illustrated in Figure 3.

Figure 3: The u.s.c.
setting.

property in the compact metric



Adding metric tolerance structure

Metric structure on the state space of an LTS model can
be used to define explicit metric tolerance relations. For
X a metric space with metric dx, and ¢ > 0, define a
relation of ¢-tolerance or e-indiscernability (¢) : X ~ X
by:

z (¢) «’

iff dx(z,z') <e

Such a relation is reflexive and symmetric, but not tran-
sitive. Formally, we extend the transition alphabet X
with a new symbol €, and interpret the new modalities
(€) and [€] in the standard way with the corresponding

pre-image operators. The sentence (e)yp thus denotes

the e-ball around the set ||o||™. In the full paper, we
explore ways of relaxing the definition of “perfect pre-
cision” hybrid trajectories using metric tolerance rela-
tions.

Conclusion

We demonstrate that the modal y-calculus and various
of its polymodal extensions provide an expressively rich
yet highly usable logical framework for the formal anal-
ysis of hybrid automata and related hybrid dynamical
systems.
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