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Abstract

We present a new representation for hybrid phase-
portrait analysis, called the qualitative state/param-
eter space, wherein a physical system’s dynamics are
classified into discrete regions of qualitatively identi-
cal behavior. This classification is performed using
automated phase-portrait analysis techniques and an
abstraction scheme from the dynamical systems liter-
ature called cell dynamics. This hybrid representation
is useful for input-output modeling of dynamical sys-
tems; among other things, it is a very natural way to
reason about multiple sets of observations over a given
system. Issues about the transitions between these dis-
crete regions are analogous to many of the issues found
in the hybrid systems literature. Our representation
is an essential element of the input-output modeling
component of the PRET automated system identifica-
tion program.

Hybrid Qualitative Phase-Portrait

Knowledge
One of the goals of the qualitative reasoning (QR) com-
munity(Forbus 1997) is to abstract specific instances
of behavior into more-general descriptions of a system.
An 80kg adult bouncing on the end of a bungee cord,
for instance, will produce a different time series from
a 50kg child, but both produce similar damped oscilla-
tory responses. Reasoning about these two behaviors in
their time series form can be difficult, as it requires de-
tailed examination of the amplitude decay rate of and
the phase shift between two decaying sinusoids. The
phase-space representation, which suppresses the time
variable and plots position versus velocity, brings out
the similarity between these two behaviors in a very
clear way. Both bungee jumps, for example, manifest
on a phase-space plot as similar decaying spirals. Auto-
mated phase-portrait analysis techniques(Bradley 1995;
Yip 1991; Zhao 1993), which combine ideas from
computer-vision, dynamical systems, discrete mathe-
matics, and artificial intelligence, generate qualitative
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descriptions that effectively capture this kind of infor-
mation.

A discretized version of the phase-space representa-
tion can abstract away many low-level details about
the dynamics of a system while preserving its important
qualitative properties. The cell-to-cell-mapping formal-
ism(Hsu 1987), for instance, discretizes a set of n-di-
mensional state vectors onto an n-dimensional mesh of
uniform boxes or cells. The circular phase-space tra-
jectory in Fig. l(a), for example, -- a sequence of two-
vectors of floating-point numbers -- can be represented
as the following cell sequence

[...(0, 0)(1, 0)(2, 0)(3, 0)(4, 0)(4, 1)(4, 

Because multiple trajectory points are mapped into
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Figure 1: Identifying a limit cycle with phase-portrait
analysis.

each cell, this discretized representation of the dynam-
ics is significantly more compact than the original series
of floating-point numbers and therefore much easier to
work with. Using this representation, the dynamics of
a trajectory can be quickly and qualitatively classified
using simple geometric heuristics -- in this case as a
limit cycle. Part (b) of the figure shows a different tra-
jectory with identical topology; this, too, would be clas-
sified as a limit cycle by the cell dynamics algorithm. A
key concept here is that a set of geometrically different
and yet qualitatively similar trajectories -- an "equiva-
lence class" with respect to some important dynamical
property -- is classified as a single coherent group of
phase-space portraits.
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Dynamical systems can be extremely complicated;
attempting to understand one by analyzing a single be-
havior instance is generally inadequate. Rather, one
must vary a system’s inputs and control parameters
and study the change in the response. Even in one-
parameter systems, however, this procedure can be dif-
ficult(Abelson 1990); as the parameter is varied, the
behavior may vary smoothly in some ranges and then
change abruptly ("bifurcate") at critical parameter val-
ues. A thorough representation of this behavior, then,
requires a "stack" of phase portraits: at least one for
each interesting and distinct range of parameter values.

Similar kinds of problems arise in the hybrid sys-
tems literature. Hybrid modeling techniques describe
continuous nonlinear behavior using an ontology of
piecewise-continuous regimes and discrete inter-regime
transitions(Mosterman, Zhao, & Biswas 1998). In this
representation, if a control parameter is changed or a
state variable moves into a prescribed phase-space re-
gion, a transition function moves or "jumps" the hy-
brid model into that new operating regime and simul-
taneously invokes the appropriate governing equations.
If one attempts to use this representation to capture
the type of complex behavior described in the previous
paragraph, however, the requirement that different op-
erating regimes occupy physically distinct phase-space
regions poses some serious problems. The same phase-
space region may exhibit radically different behaviors
for different control parameter values, and the simple
hybrid system representation cannot handle this.

An example from (Branicky, Borkar, & Mitter 1994)
makes this clearer. A manual transmission can be mod-
eled by:

d f-f (x2) throttle]
-~xl(t) = Xl = x2 ; x2 l + gear

where Xl is the velocity, x2 is the engine RPM, f is some
function of x2, throttle position varies between 0 and
1, and gear E {1, 2, 3, 4}. It is difficult to build a model
like this from observed behavior -- say, velocity Xl --
because it is impossible, without knowing the engine
RPM, to distinguish whether the car is in first or second
gear. At 15 MPH the engine could be at 3500 RPM in
first gear or 2000 RPM in second gear, and an external
observer would not be able to distinguish between these
two states. Even if the engine RPM could be measured,
model building might still be impossible, as the throttle
position may depend upon loading factors (e.g., pulling
a heavy load or going down a hill). The problem is that
there is a family of phase-space portraits for each gear,
parameterized by velocity, RPM, and throttle position.
If only a subset of these parameters are observable --
say, velocity and RPM -- then the families of phase
portraits for each gear can overlap, which makes iden-
tification of the actual system very difficult.

In this paper, we propose an approach that solves
some of these problems. In particular, we use a
combined state/parameter space and decompose into
discrete regions, each associated with an equivalence

class of dynamical behaviors, derived qualitatively us-
ing Hsu’s cell dynamics formalism. This collection of
discrete regions describes the behavior of the system
in a uniquely powerful way. Because each trajectory is
effectively equivalent, in a well-known sense, to all the
other trajectories in the same region, one can describe
the behavior in that region in a significantly simpler
way, which results in ease of analysis -- and great com-
putational savings.

Consider, for example, the driven pendulum system
described by the ODE model

~(t)+ ~)(t)+ sin0(t) = ~-~sinc~t

with mass (m), arm length (l), gravity constant (g),
damping factor (~), drive amplitude (7) and drive 
quency (c~). m, l, g and/3 are constants; the state vari-
ables of this system are 0 and a~ = ~). In many exper-
imental setups, the drive amplitude and/or frequency
are controllable: these are the "control parameters" of
the system. The behavior of this apparently simple de-
vice is really quite complicated and interesting. For low
drive frequencies, it has a single stable fixed point; as
the drive frequency is raised, the attractor undergoes
a series of bifurcations between chaotic and periodic
behavior. These bifurcations do not, however, neces-
sarily cause the attractor to move. That is, the qualita-
tive behavior of the system changes and the operating
regime -- in the standard hybrid systems view -- does
not. Traditional analysis of this system would involve
constructing phase portraits of the system, like the one
shown in Fig. 1, at closely spaced control parameter val-
ues across some interesting range. The standard hybrid
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Figure 2: The state/parameter (S/P) space portrait
of the driven pendulum: a parameterized collection of
phase portraits of the device at various drive frequen-
cies. Each (O, w) slice of this S/P-space portrait is a
standard phase portrait at one parameter value.

representation does not handle this smoothly, as the op-
erating regimes involved are not distinct. If, however,
one adds an axis to the space, most of these problems
vanish. Fig. 2 describes the behavior of the driven pen-
dulum in this new state/parameter space (S/P space).
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Each 0, w slice of this plot is a phase portrait; the con-
trol parameter varies along the Drive_Frequency axis.

Combining this state/parameter space idea with the
qualitative abstraction of Hsu’s cell dynamics, yields
the new qualitative state/phase space (QS/P space)
representation that is one of the topics of this pa-
per. A QS/P-space portrait of the driven pendulum
is shown in Fig. 3. This representation is similar to
the state/parameter space portrait shown in the previ-
ous figure, but it groups qualitatively similar behaviors
into equivalence classes, and then uses those groupings
to define the boundaries of qualitatively distinct regions
of state/parameter space.
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Figure 3: The qualitative state/phase-space (QS/P-
space) portrait of the driven pendulum. This is an ab-
straction of the state/parameter space, wherein qual-
itatively similar behaviors are grouped into equiva-
lence classes and those groupings are used to de-
fine the boundaries of qualitatively distinct regions of
state/parameter space.

This qualitative state/ parameter-space representa-
tion is an extremely powerful modeling tool. One can
use it in the traditional hybrid-systems approach, iden-
tifying each operating regime, creating a separate model
in each, and then using a finite-state machine to model
transitions between them. More importantly, however,
the QS/P-space representation lets the model builder
leverage the knowledge that its regions -- e.g., the five
slabs in Fig. 3 -- all describe the behavior of the same
system, at different parameter values. This is exactly
the type of knowledge that one needs for input/output
modeling, in which one attempts to learn more about
a system by changing its inputs and observing the re-
sults. The remainder of this paper expands upon this,
describing how the QS/P-space representation can aid
input/output modeling of dynamical systems.

Hybrid Phase-Portrait Analysis in
Model Building

System identification (SID), the process of inferring
an internal ordinary differential equation (ODE) model

from external observations of a system, is an ideal test
case for hybrid phase-portrait analysis using the QS/P
space. The computer program PaEw(Bradley & Stolle
1996), a QR modeling tool that automates the SID
process by building an AI layer around a set of tradi-
tional system identification techniques, constructs ODE
models of lumped-parameter continuous-time nonlin-
ear dynamic systems. It first uses domain knowledge
to combine model fragments into ODEs, then observes
the target system using sensors, and finally tests those
ODEs against the sensor data using a body of math-
ematical knowledge encoded in first-order logic(Stolle
& Bradley 1998). In order to interact with the tar-
get system, PRET makes use of sensors and actuators,
as shown in Fig. 4. Distilling available sensor infor-
mation into qualitative form is reasonably straightfor-
ward(Bradley ~ Easley 1998), but reasoning about the
information so derived is subtle and difficult. If the tar-
get system has 34 state variables, for example, and one
can only measure one of those 34 signals~ it would ap-
pear that the conclusions that one can draw from the
sensor data are fundamentally limited. This is control
theory’s observer problem: the task of inferring the in-
ternal state of a system solely from observations of its
outputs. A general solution to this is an open prob-
lem; PRET uses delay-coordinate embedding to effect
a partial solution. Reasoning about actuators is even
harder because of the nonlinear control theory that is
involved. Determining what experiments one can per-
form from the system’s present state involves compli-
cated reasoning about reachability. That is, given a
black-box system, a partial measurement of its current
state, some knowledge about the available actuators,
and some preliminary ideas about a candidate model,
PRET must reason effectively about what experiments
are (i) possible and (2) useful. This is a difficult, 
problem for nonlinear systems, and the hybrid view of
qualitative phase-portrait analysis described in the pre-
vious section plays a critical role in the knowledge rep-
resentation and reasoning involved in PRET’S solutions
to this input/output modeling problem.

modeling
spec

ODE model

data ~

excitation

Figure 4: PRET uses sensors and actuators to interact
with target systems in an input-output approach to dy-
namical system modeling.
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Input-Output Modeling in PRET

The goal of input-output modeling is to apply a test
input to a system, analyze the results, and learn some-
thing useful from the cause/effect pair. In this section,
we show how PRET reasons about this process.

PRET’s knowledge representation and reasoning
framework is designed specifically for model building.
PRET follows a generate-and-test paradigm, using do-
main knowledge (e.g., force balances) to combine user-
specified model fragments ("hypotheses") into ODE
models, and then testing those models against the
known behavior of the system ("observations") using
ODE theory rules like "the divergence of a dissipa-
tive system is negative." I/O modeling via the QS/P
representation contributes to this process in a variety
of ways. Firstly, it allows PRET to reason effectively
about test inputs; a good test input excites the behav-
ior in a useful but not overwhelming way, and choosing
such an input is nontrivial. The I/O modeling tech-
niques described in the previous section also allow PFtET
to reason about sensible hypothesis combinations -- a
process without which the generate phase would be re-
duced to blind enumeration of an exponential number
of candidate models. Finally, qualitative I/O modeling
techniques help PRET reason about state variables and
observations -- information whose sole source would
otherwise be the user.

The "input" part of PRET’S input-output reason*
ing takes place in the intelligent sensor data ana-
lyzer(Bradley & Easley 1998). This module first recon-
structs the hidden dynamics from the sensor and then
analyzes the results using geometric reasoning. The
first of these two steps is necessary because fully observ-
able systems, in which all of a system’s state variables
can be measured, are rare in normal engineering prac-
tice. Often, some of the state variables are either phys-
ically inaccessible or cannot be measured with avail-
able sensors. Delay-coordinate embedding(Abarbanel
1995), PRET’s solution to this problem, creates an m-
dimensional reconstruction-space vector from m time-
delayed samples of data from a single sensor. The cen-
tral idea is that the reconstruction-space dynamics and
the true (unobserved) state-space dynamics are topo-
logically identical. This provides a partial solution to
the observer problem, as a phase portrait reconstructed
from a single sensor is qualitatively identical to the true
multidimensional dynamics of the system1. Given a re-
constructed phase portrait of the system’s dynamics,
the intelligent sensor data analyzer’s second phase dis-
tills out its qualitative properties using the cell dynam-
ics paradigm discussed in conjunction with Fig. 1. The
results of reconstructing and analyzing the sensor data
are a set of qualitative observations similar to those a
human engineer would make about the system.

Reasoning about actuators is much more difficult,
so the development of PRET’s intelligent actuator con-

lit also allows PRET to estimate the number of state vari-
ables in a system.

troller has been slow. The problem lies in the inher-
ent difference between passive and active modeling. It
is easy to recognize damped oscillations in sensor data
without knowing anything about the system or the sen-
sor, but using an actuator requires a lot of knowledge
about both. Different actuators can have different prop-
erties (range, resolution, response time, etc.); consider
the difference between the time constants involved in
turning off a burner on a gas or an electric stove. Iden-
tical actuators can affect systems in radically different
ways. Step, impulse, and random signals are common
choices for test inputs in linear system analysis, but
they elicit tremendously complicated responses from
nonlinear systems, making output analysis very diffi-
cult. In nonlinear systems analysis, one typically ap-
plies constant inputs and ignores any transients. Rea-
soning about these issues involves a multitude of ques-
tions; e.g., Should the drive be a high frequency sine
wave or a low one? A current or voltage source? These
are the kinds of questions that we hope to use the qual-
itative state/phase space representation to answer.

Deciding how to use an actuator is only the first part
of the problem. Experimenters must also consider the
set of possible states -- those that are reachable from
the existing state with the available control input. The
system state that one wishes to explore simply may not
be reachable from the existing state with the available
actuators. Finally, effective input-output modeling re-
quires reasoning about useful experiments: those that
increase one’s knowledge about the target system in a
productive way. The ultimate goal of PRET’s intelligent
sensor/actuator control module is to find and exploit
the overlap between these sets of useful and possible
experiments.

To perform these tasks, PRET uses hybrid system
techniques to reason about multiple sets of observations
about a system. Using the QS/P paradigm developed
earlier, we treat changes of the control parameter --
those that take the system into a new regime -- as
discrete transitions between operating regimes. This
process, known in the dynamical systems literature as
bifurcation analysis, involves varying a parameter to
drive the system into different regimes and then ana-
lyzing these behaviors. To use this information to fit a
model to a system, one simply matches up the bound-
aries between regimes2. The following example demon-
strates how these ideas help PRET manage its sensors
and actuators.

Table 1 displays the ODEs that describe the behav-
ior of the driven pendulum in each of the five qualita-
tive state/parameter-space regions shown in Fig. 3. Al-
though four of these five ODEs are different, all five are,

2This is similar to hybrid systems analysis procedures
that reason about controlled switching/jumping or ex-
ternally induced discontinuities(Branicky, Borkar, & Mit-
ter 1994). PRET makes no use of autonomous switch-
ing/jumping (internally induced) discontinuities because the
ODE theorems that are the source of its power and general-
ity constrain it to continuously differentiable input signals.
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in reality, instances of a single ODE that accounts for
the physical behavior across the whole parameter range.
PRET’s goal is to identify these distinct QS/P-space re-
gions, build a model for each regime, attempt to recon-
cile models across all the regimes, and finally unify this
collection of ODEs into a single, globally valid model.
This process continues though all regimes in the region
of interest. In the driven pendulum, PRET analyzes
the system in the small-angle regime3 and discovers the
model 0(t) = -~e(t). If it then analyzes the system 
a limit cycle regime with a larger angle, the small angle
solution will no longer hold, forcing a new model search,
which would yield the model ~(t) = -~ sin e(t). 
would then try to reconcile the two models, applying
both of them in both regimes. Since 0(t) = -~e(t)

is a special case of 0(t) = -~sine(t), the former 
hold in only one of the two, whereas the latter will hold

in both, so PRET discards the ~(t) = -~e(t) model
and goes on to the next regime, repeating the model
building/unification process. Once PRET finds a sin-
gle model that accounts for all observed behavior in all
regimes across the range of interest, its task is complete.
Such a model may not, of course, exist; a system may
be governed by completely different physics in different
regimes, and no single ODE may be able to account
for this kind of behavior. In this case, the models in
the different regimes would be mutually exclusive, and
PRET would be unable to unify them into a single ODE,
and so it would simply return the list of regimes, mod-
els, and transitions -- which is exactly the standard
"hybrid model" of the system.

Drive
None
Low
Med.
High
V. High

ODE
e(t) = - ~(t) - ~ sin 

e(t) = - ~ sin e(t)
o(t) + 6(t) + sine(t) sin t

e(t) - ~ sin e(t)
e(t) 

Table 1: Valid models of the driven pendulum in differ-
ent behavioral regimes.

Relationship to Related Work

Most of the work in the AI/QR modeling commu-
nity focuses on qualitative models by combining a
set of descriptions of state into higher-level abstrac-
tions or qualitative states(de Kleer & Brown 1984;
Forbus 1987). Many tools also reason about equations
at varying levels of abstraction from qualitative dif-
ferential equations (QDEs) in QSIM(Kuipers 1986) 
standard ODEs in PRET. PRET’S approach differs from
many of these other tools in that it works with noisy,

awhere sin 0 ~ 0 and the system acts like a simple har-
monic oscillator

incomplete sensor data from real-world systems, and
attempts not to "discover" the underlying physics, but
rather to find the simplest ODE that can account for
the given observation.

The QR research that is most closely related to PRET
is (Capelo, Ironi, & Tentoni 1993), who build ODE
models by evaluating time series using qualitative rea-
soning techniques and then use a parameter estimator
to match the resulting model with a given observed
system. Capelo et M.’s modeling tool selects mod-
els from a set of pre-enumerated solutions in a very
specific domain (linear visco-elastic systems). PRET is
much more general; it works on M/linear and nonlin-
ear lumped-parameter continuous-time ODEs and uses
dynamic model generation to handle arbitrary devices
and connection topologies.

The idea of building a more-accurate model in a
piecemeal fashion is similar to work done in the hybrid
systems community. The dstool simulation tool, for
instance, takes a set of differential equations and their
operating regimes and uses numerical integration tech-
niques to display a phase portrait of that system(Back,
Guckenheimer, & Myers 1992). dstool has been used
to analyze a hopping robot with four behavior phases --
flight, compression, thrust and decompression -- where
each phase is governed by a distinct ODE model. Like
our driven pendulum, the hopping robot has a control-
lable parameter as well -- the thrust force -- which
can switch the system from regime to regime and model
a variety of behaviors, ranging from a simple periodic
"hopping" response (a single limit cycle) to a "limp-
ing gait" response (a period doubling bifurcation of the
single limit cycle). PRET could reproduce this work,
finding ODEs for each separate operating regime and
then using a finite state machine to govern transitions
between models. However PRET’S primary goal is to
find a single model that unifies all of these behaviors --
if such a model exists.

Future Work
PRET’8 sensor-related reasoning is essentially complete,
but its reasoning about the relationship between mod-
els and excitation sources -- as well as final design de-
cisions about how to treat actuator knowledge in an
explicit way -- are still under development. PRET cur-
rently uses very little domain knowledge about its tar-
get systems; instead, it relies upon general mathemat-
ics and physics -- principles that are broadly applica-
ble and supported by a well-developed, highly formal-
ized body of mathematical knowledge that applies in
any domain. The point of this decision was to make
PRET easily extensible to other domains; because of this
choice, refitting PRET for some new domain is simply a
matter of a few lines of Scheme code. However, as we
extend PRET into more network-oriented domains, such
as electrical circuits, we are discovering that effective
use of domain theory may be critical to streamlining
PRET’s generate phase(Easley & Bradley 1999). This
poses another difficult representation problem; to solve
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it, we are exploring technique that combine generalized
components from bond graphs(Karnopp, Margolis, 
Rosenberg 1990) and network theory(Bose & Stevens
1965). This is a reasonable compromise between requir-
ing detailed, domain-specific knowledge and our current
goal of keeping PRET clean, general, and thus broadly
applicable. These ideas will not only help PRET gen-
erate better models, but also provide a framework for
automated reasoning about the relationship between in-
put excitations and output responses -- a critical task
in any active modeling process.

Conclusion
The goal of this project is to automate the type of
input-output analysis that expert engineers apply to
modeling problems, and to use that technology to im-
prove the PaET modeling tool, which automatically con-
structs ODE models of nonlinear dynamical systems.
The approach proposed in this paper solves some of the
problems that arise in phase-portrait analysis of com-
plex systems by combining a state/parameter space rep-
resentation with the qualitative abstraction of cell dy-
namics to obtain a useful new representation for I/O
modeling. This qualitative state/parameter space rep-
resentation, which allows a system’s dynamics to be
classified into discrete regions of qualitatively identi-
cal behavior, provides a useful framework for reasoning
about multiple sets of observations about a given sys-
tem. The largest obstacle in the I/O modeling path
is the set of control-theoretic problems involved in au-
tomating interactions with actuators and sensors. First,
PRET must autonomously manipulate a control param-
eter in order to perform a bifurcation analysis and find
the regime boundaries. Then, it must use knowledge
about the behavior in those different regimes to reason
about what experiments are useful and possible. Fi-
nally, PRET must use this information to perform the
experiments and analyze the results.
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