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Abstract

Wc describe a hybrid system to model context formu-
lation and resulting expectations created by a listener
while attending to tonal music. The model is hybrid
in that we use modular sub-networks to simulate the
distinct yet mutually influential schemas involved in
constructing expectations for sequential events and the
temporal cyclical grid that creates metrical support for
these expectations. Using a unified neurosymbolic ap-
proach wc visualize the fluctuations of musical expec-
tations that arise as a consequence of the dynamically
changing musical context.

Introduction

Artificial intelligence techniques find a rich exploratory
domain in music. Symbolic systems (e.g., the EMI
system for style replication described irl (Cope 1991;
1996); ext,crt systems (e.g. (Ebcioglu 1992)’s
first order predicate calculus rule based system for
Bach chorale style, composition), arid sub-symbolic ap-
proaches (e.g., the use of a Jordan sequential network
for generating music described in (Todd 1991)) have
t)cen used to create generative models of a variety of
nmsical activities. However the multidimensionality of
music deems (’omplexities beyond the reach of a single
paradigm. With this in mind, hybrid systems present
attractive directions for music based AI research. Nev-
ertheless, relatively little research has been done with
this promising approach. In this paper we present our
(:urrent research in modeling the audition of functional
tonal nmsic using a unified neurosymbolic integrative
approa(:h.

Neurosymbolic integration can be classified into two
strategies: unified strategies and hybrid strategies (Hi-
lario 1995) . Unified strategies enrich neural networks
with symbolic capabilities. Hybrid strategies combine
neural networks and symbolic approaches at different
levels. Wc use a unified neurosymbolic approach to
buihl a neural network model to visualize the fluctu-
ations of musical expectations that arise as a conse-
quen(:e of the dynamically changing nmsical context.
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The nmdel is hybrid in that it uses modular subnet-
works to simulate the distinct yet mutually influential
schemas involved in constructing expectations for se-
quential events and the temporal cyclical grid that cre-
ates metrical support for these expectations.

In this paper we describe a series of experiments us-
ing a version of a Jordan sequential network (Jordan
1986) to model the creation of contexts and expecta-
tions along with tile perception and cognition of musi-
cal meter (that is, the imposition of a periodic grid of
accentuated and non accentuated pulses to support and
assist music cognition) during the audition of harrnonic
progressions of common practice, hierarchically related,
functional tonal music.

Modeling Expectations of Musical
Listening

The sequential and temporal nature of
music

Music is, by nature, sequential and multidimensional.
Musical listening involves processing a stream of se-
quential information. Within the stream are hierar-
chical relationships that occur simultaneously at dif
ferent scopes from local to global. The sequences are
information rich often involving multidimensional com-
plexity. The dimensions can be independent, can influ-
ence other dimensions or can be mutually influential.
Listening to music involves building contexts that are
built dynamically and involve memory. Memory has
a dynamic nature of its own - it can be short or long
term, and can decay at variable rates and over wlry-
ing time spans. Memory conditions how we understand
tile present, and, in turn, how we predict the future.
Contexts are used to predict the next elements in the
sequence. These predictions are influenced by, as well
as affect dynamic changes of context. Musical expec-
tations involve formulating and interpreting the predic-
tions, and substantiating these interpretations by com-
paring with the sounded event.

Although musical information is sequential, listening
associates a temporal dimension to the sequence. A lis-
tener not only predicts what will occur next, but also,
when it will occur. Listeners use simple periodic pat-
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terns to organize the temporal dimension. These pat-
terns impose an imaginary periodic grid of accentuated
and non accentuated pulses. These metric groups di-
rect the prediction of ’when’ tile next event will occur.
The s(,(pmntial event influences the preference of a given
metric organization ow;r others. This means that met-
rlc orgmfization and prediction are mutually influential.

Sequential neural network modeling of
contextualization and expectations

Listening, performing, and some other nlusical activ-
ities can be represented using a sequential stream of
information. The (’]loice of Jordan’s sequential net
(Jordan 1986) is aI)pealing in such cases. Jordan’s 
quential net is a version of tile back-propagation al-
gorithm (Rumelhart, Hinton, & Williams 1986). Us-
ing the learning algorithm, the sequential net is able
to learn and predict sequential elements (such as the
sequ(,nce of a melody’s notes or h~monic progression).

The sequential net, contains three layers. In our spe-
cific ease the layers are flflly connected. The first layer
contains a pool of state units and plan units. The sec-
ond layer is the hidden layer, and the third layer is the
output layer. The output layer is fed back into the state
units of the first layer for the computation of the next
sequential element.

The value of a state unit at time t is the sum of its
value at time t - 1 multiplied by some decay param-
(,ter (the value of the decay parameter is between 
and 1) and the value of the corresponding output unit
at tim(" t - 1. The state units represent the context
of the (:urrent sequential element, and the output layer
r(’prescnts the t)rcdiction of the net for the next sequen-
tial (’h’m(,nt. The feature of feedback distinguishes the
Jordan sequential n(,t as a version of back propagation.
Th(, impli(:ations of this distinction results in the ability
to incorporate some sort of the history of the sequence
in predicting the next element.

By so doing, a context is recreated from the start of
the sequ(,nc(, as each new clement is introduced, l%r-
th(,rmore, the plan units in the first layer are used to
associate labels for sub sets of the sequences by en-
coding differ(,nt wflues in the plan vectors. Interpo-
lation mid extrapolation of tile vahms represented in
the plan milts (’an t)(; used to generate new sequences.
Each of these new sequences shares interesting proper-
ties with previously learned sequences. These variants
of the original sequence can be interpreted as creative
analogies to the learned sequences. Todd (Todd 1991)
describes previous work that applies this strategy to
compose melodies that share common features with one
another. This principle of meh)dic variation is a perva-
siv(, d(,vice throughout the history of western music.

We demonstrate how processing a sequential stream
of information in a version of a Jordan sequential net-
work represents list(,ning to music. The Jordan sequen-
tial n(,twork provides the ability to:

¯ l(,arn s(,quences of inch)dies, notes or harmonic pro-

gressions in the learning phase (in our case harmonic
progressions). We use the term sequence here to
mean an ordered stream and not the musical concept
of sequence. Harmonic progressions are sequences
of simultaneously sounding pitches sharing common
syntactic conventions and hierarchically related to
produce sensations of increasing tension and repose.

* establish dynamic contexts in the state units.

. predict the next element for a specific element in tile
generalization phase (which we interpret as expecta-
tions)
In addition to the above properties, the extension of

the Jordan sequential network presented here integrates
modular subnets. This integrated approach simulates
the distinct yet mutually influential schemas involved in
building contexts and expectations. In this case, har-
monic sequences are learned by the Jordan sequential
net. A metric subnet is integrated with the harmonic
subnet to provide a periodic iterative index that creates
a framework for temporal organization. In music cogni-
tion the rate of change of harmonic elements and the hi-
erarchical relations between adjacent chords create the
aforementioned percepts of tension and repose. This
rate of change is measured against a periodic metric
grid. The sensation of this metric grid is commonly ex-
pressed by physiological responses such as foot tapping
or clapping. The decision as to the pulse rate and pat-
tern of accentuation that determines the meter results
from real time pattern analysis by the listener. Once
the metric pattern is determined, the imagined peri-
odic repetition of pulsed patterns provides a framework
within which a listener can comprehend the control of
perceived tension in harmonic progressions. Cognition
of meter involves an interpretation of the speed of pul-
sation (a beat) and a pattern of accentuation. Accen-
tual patterns can be pairs (duple or quadruple meter) 
triples (triple meter) distinguished by an accented pulse
followed by one or more unaccented (or lesser accented)
pulses.

Task and Design
The task of this work is to model cognitive processes
involved in listening to music by using the unified ap-
proach. The model integrates two sub networks that
represent distinct yet mutually influential and com-
plexly intertwined entities, that of harmony and of me-
ter. These two schematic entities combine to formu-
late context. The mutual influence of these contextual
entities are established and learned during the course
of formulating corresponding harmonic and metric pre-
dictions. These predictions are output in three distinct
vcctors, one with twelve activations corresponding to
each pitch-class, and two for metric pulse units in vec-
tors of three (representing triple meter) and four (rep-
resenting quadruple meter) units.

We use a learning set of functional tonal harmonic
patterns, all in major keys (that is, a single collection
of available pitches). The patterns were evenly divided
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into dut)h’, and triple meter progressions. Harmonic
rhythm in the learning set ranged from one chord per
measure to one chord per beat, although the weighting
was on one and two chord changes per measure for both
duple and triph; patterns.

In the nlodel expectations are not directly learned
but rather are an emergent property of the process of
learning specific harmonic progressions. In the learning
phase tile network is trained with 30 metered harmonic
progression. The errors are computed by comparing
the actual output and the target of a specific metric
index amt harmony. These errors were used to derive
the iterative process of setting the weights of the net.

In the generalization phase we introduce the net with
fiw,+ new metered harmonic progression. In this phase
the metric target does not exist, while tile harmonic
target is established by the actual harmony heard. Nev-
ertheless, we are interested in the actual predictions of
the net, nmre specifically, in the distribution of the acti-
vation of tim units in the output, which are by-products
of the learning process.

Architecture and Representation
In previous publications (Berger & Gang 1996; 1997)
we describe a neural network model of the interaction of
duple and triple metric schemas with isochronous har-
monic progressions. In this model we trained a sequen-
tial neural network with a repertoire of metered tonal
progressions in duple and triple meter. We then in-
troduced unambiguous, ambiguous and anomalous pro-
gressions to our artificial listener and studied the inter-
action and mutual influence of metric and harmonic
expectations.

A general view of the neural network architecture is
shown in Figure 1. Our model uses a sequential neu-
ral network with two pools of metric units (3 units for
triple and 4 units for quadruple meter) and a pool of 12
units representing tile pallet of available musical notes
that can be combined to create a chord. These notes
are represented as normalized pitch class (PC) that 
the notes arc relative to a comnlon first scale degree
and are represented in such a way that the order of
their at)pearance in the chord is irrelevant. The state
layer is comt)osed of the two pools of metric units and
the pool of PC’s. The state units are used to establish
a context that influences the prediction of the next el-
ement of tile sequential information. The output layer
contains the same pools of units as the state layer. The
metric units represent the prediction of the net for the
current metric position. The 12 PC units in the out-
put layer represent tile predi(’tion for tile subsequent
chord tones. In the case of the nletric units the output
is ti’,(t back into tile corresponding pool in the metric
state and added to the context. In tile case of the PC
units the context is updated with the target instead of
the actual output. The metric pool of units are fully
connected to the hidden layer together with the pool of
PCs actually implementing the integration of the mu-
tual influen(:es of meter and harmony. The hidden units

Figure 1: The Neural Network Architecture

are fully connected to the output layer (see Figure 1).
The update rule for the metric state units dictates

that the metric state is fed by the actual output. This
rule simulates the fact that the listener is unassisted in
her metric interpretation. In the learning phase we fed
back the actual output but used the target meter to
train the net. In the generalization phase tile meter is
unknown, hence there is no target. The update rule for
the PC state pool dictates that the harmonic state is
fed by the target (and not by the actual output). This
rule simulates the fact that the listener is concurrently
processing the present chord and expecting the chord
to follow. Thus we feed the actual sounded chord and
not the expectations of the chord into the state.

On the Hybrid Nature of Context and
Prediction

Our modeling approach is hybrid in its integration of a
continuous musical signal and of discrete metric pat-
terns. This integration represents the interaction of
two distinct but mutually independent schenms that
work together to create expectations. Cognition in-
volves segmenting the continuous musical signal into
discrete events which can be evaluated both in terms
of their (discrete) sequential position and of their tem-
poral placement within the continuum. The division
between the discrete and the continuous aspects of mu-
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sic is part of the very nature of tile musical experience.
We struggle to deal with tile continuum of the ever
fleeting musical present by evoking discrete schematic
memories, building discrete franms of context, and set-
ting discrete goals of expectation. In the visual domain
schemas help us distinguish between figure and ground.
In the auditory world schemas act as life. preservers
tossed into a continually flowing river in an attempt
to grab, hoht and associate moments in time.

Context
In our (’urrent architect, ure we have distinguished be-
tween four distinct types of hmg term memory(LTM):
The connections (HarmonyHidden and MeterHidden)
which commct the harmony and the meter in tile input
layer (ContextHarmony and ContextMeter) to the Hid-
den layer, respectively; and the connections (Hidden-
Harmony and HiddenMeter) which connect the Hidden
layer to tile harmony pool of units and the meter pool
of units in tile output layer (OutputHarmony and Out-
putMeter). In our model ’context’ is created by the ex-
ponential decay of the history (i.c. tile entire sequence
up to the given event). Thc context is seen to be a part
of a re(-ursive and mutually influential process in which
the four long-term memory types of connections affect
and are affe‘(’ted by tile context. Amo~lg the important
fa(:tors in contextualization the order and synchronicity
of these influences (ahmg with their possible cognitive
implications) are considered. The following formulation
demonstrates these mutual recursive features of tile net.

To the above notation we add: ExpectHarmony
and ExpcctMcter to denote tile actual outputs of har-
mony and meter, respectively. DecayHarmony and De-
cayMeter denote tile decay parameters for the harmony
and meter, respc(:tivcly. The value of a decay parameter
is between 0 and 1. TargetHarmony and TargetMeter
denote the harmonic and metri(: targets, respectively.
The notation layer-name(t) means the value of tile ac-
tivation of the units in the layer at time t.

Following the terminology of our simulator (Miyata
1991) wc define tile two operators: forward and activa-
tion. The operator forward(layer-name1, connection-
namlname2) sends activations forward from layer-
namcl to layer-name2. Tile activations are weighted
by the specified connections and are added to the in-
put of the layer-name2. Tile operator activation(layer-
name) (’omputes the activation values of tile units 
layer-nanle from their net inputs, using tim appropriate
a(:tivation flmction for those units (e.g., a non-linear
logistic flmction).

We use lisp-like formulation to define tile metric ex-
t~c(’tati(m at time t as a function of the harmonic con-
text and the harmonic expectations at time t as a flmc-
tion of the metric expectation.

Formula of metric expectations as a
function of harmonic context:

1. ExpectMeter(t) -- actiwltion( forward(activation(
forward(ContextHarmony(t), HarmonyHidden)),

HiddenMeter))

2. ContextHarmony(t) = DecayHarmony *
ContextHarmony(t-1) q- WargetHarmony(t-1)
Remark: ContextHarmony(t-1) is the sum of expo-
nentially decayed targets (up to t-2) + the target 
time t-2 according to the recursive definition above.
For reasons explained above we do not incorporate
OutputHarmony(t-1) however we describe it below
for completeness:

3. OutputHarmony(t-1) = activation( for-
ward(activation( forward(ContextHarmony (t- 
HarmonyHidden) + forward(ContextMeter (t- 
MeterHidden)), HiddenHarraony))

Formula of harmonic expectations as a
function of metric context:

1. ExpectHarmony(t) ---- activation( forward(activation(
forward(ContextMeter(t), MeterHidden)), Hidden-
Harmony))

2. ContextMeter(t) = DecayMeter * ContextMeter(t-1)
+ OutputMeter(t-1)

3. OutputMeter(t-1) ---- activation( forward(activation(
forward(ContextHarmony(t-1), HarmonyHidden) 
forward(ContextMeter(t-1), MeterHidden)), Hidden-
Meter))

Error Interpretation

In the learning phase we use the error as a means of
driving the learning. In the generalization phase we in-
terpret the net’s prediction and the error of the output
as related to the actual heard event. In so doing we cre-
ate a model that visualizes fluctuations in expectations
during the course of listening to music.

When a given interpretation is singular and, proves
to be correct, expectations are realized. We (:all this
a normative state. Inability to distinguish a singular
interpretation is called vagueness or ambiguity; non-
realization of the expected goal creates a surprise. We
describe and visualize these phenomena in our model.

In processing the output activations in terms of rela-
tive strengths and distributions within the output vec-
tor we distinguish between the strength and the speci-
ficity of a prediction. These two indicators, in their
various combinations, present particular classes of pre-
dictive states that can be measured in terms of tile de-
gree of realized expectation (DRE), which is comprised
of:

¯ the degree of ambiguity (DA), (a measure of tile dis-
tribution of activations in terms of the degree to
which tile prediction is specified), and

¯ the degree of surprise (DSp), (a comparative indica-
tor of tile disparity between the expectation and the
actual event that follows).

Thus, error measurement in terms of strength and
specificity of activations provides parameters for sym-
bolic functions to compute the DRE.
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The harmonic expectations whlch are described by
the DSp and the DA, together with the actual heard
eveIlt are used to measure a continuous scale of the
DRE. In a sinfilar way the DA of the metric expec-
tations can be evaluated however, because of the lack
of a(:tual heard metric event we can not measure the
metric DSp. We use the strength and specificity of the
nmtric pool of units to interpret the metric schema in
discrete terms of the index of the beat in a duple or
triple nmter.

Analyzing the Results
Our nmdel produces graphic visualizations of dynami-
(:ally changirlg musical contexts, and a means for qual-
ifying and quantifying the fluctuations of expectations
that result from and affect these changes. Our repre-
s(mtation allows us to visualize parallel interpretations
of t(mal expectation as well as multiple interpretations
of metric organization.

We first des(:ribe (:ognition of a tonal sequence that 
unambiguous both in its harmonic progression as well
ms in the metric t)lacement of harmonic events. In these
cases our model visualizes strong, specific and correct
metric and harmonic interprctations.

Wc proceed to introduce various types of anomalous
and ambiguous situations and demonstrate that our
system convincingly ext)rcsses these surprises and ambi-
guities. We qualify these cases of surprise and ambigu-
ity in terms of the strength and specificity described
above. Ambiguities result from strong or weak and
unspecific expectations, while surprise is qualified by
strong and specific but incorrect predictions.

Figure 2 shows an example of the output of the PC
and nmtcr pools. Relative strengths of activations are
represented by the size of the square associated with
each of the pitch (:lasses in the harmonic pool and beat
positions fl)r each metric pool. The Roman numeral
notation above represents the target. Roman numeral
notation represents the scale degree upon which the col-
lection of simultaneously sounding pitches (i.e., chord)
is rooted. By comparing the output activations to the
chord tone nmmbers implied in the associated target
chord we visualize the listener’s prediction and the de-
gree of similarity between the t)redictiorl and the target.
Furthermore, the metric pools visualize the listener’s
inference of metric schema and periodic index.

This example represents the outtmt of a standard four
measure progression in triple meter. The progression
should show a high DRE. The role of the metric subnet
is critical in the, network’s agility in detecting the cor-
rect harnmnic rhythm by beat five. The recurrence of
vi (i.e., PCs - 0, 4, 9) on [)eat 5 squelches the contin-
uation of metric expectation of duple meter after the
weak activaticm of a downbeat. This plausible listen-
ing strategy is entirely consistent with the harmonic
rhythm sin(:e the network is not trained with harmonic
rhythms that (:ross measure boundaries. Of particular
interest in this example is the distribution of activations
at beat 3 in the harnmnic pool. The implied harmonic
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Figure 2: Simulation of expectancies.
From bottom-up: the first row represents a periodic index
of duple meter, the second row represents triple meter, the
12 squares in the upper row represent the harmonic expec-
tations by 12 PCs. The size of the squares is proportional
to the strength of the units’ activity. The location and the
size of the squares visualize the net’s prediction for the me-
ter and harmony. Time proceeds from left to right. The
Roman numeral notation above represents the target. The
progression is:
[3/4III--viviii VVV7--III]
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change is a result of the quadruple meter interpretation.
The change to a submediant (vi) in beat 4 weakens the
plausibility of quadruple meter. Tile repetition of this
harmony in beat 5 completely obliterates activations in
the quadruple pool.

Discussion and Summary
Using a unified ncurosymbolic approach wc visualize the
fluctuations of musical expectations that arise as a con-
sequence of the dynamically changing musical context.
In our model cxpcctations are not directly learned but
rather are an emergent property of the process of learn-
ing harmonic progr(,ssions. The model uses modular
subnetworks to simulate the distinct yet mutually in-
fluential schemas involved in constructing expectations
for sequential events and tile temporal cyclical grid that
creates lm’trical support fl)r these expectations.

In the learning phase we train the network with spe-
cific metered harmonic progression (all in major keys
and in duple or triple meter). In the generalization
ph~r~c, we incorporate symbolic processing by applying
a fimction on the network’s prediction. This facilitates
quantification of tim degree of realized harmonic expec-
tations (DRE) and of tile corresponding inference 
nwtric schema.

W(’ introducc,d normative harmonic progressions,
progressions with harmonic anomalies, and normative
sequences with temporally offset elements. The model
visualizes variations in activations, which we measure
by strength and specificity of prediction. These mea-
sures provide qualitative means of describing the dy-
namic fluctuations of tile DRE. A high DRE results
when expectations arc satisfied in a normative situa-
tion. DRE is reduced when a surprise or ambiguity
appears in anomalous situations.

Distributing the tasks of predicting sequential ele-
ments and temporal organization into distinct modular
subnetworks provides a means of studying the mutually
influential nature of musical expectations and metric
awarcness.
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