
Execution Monitoring of Domain-Independent Controllers for Hybrid Systems

Janos L. Grantner 1 and George Fodor2

1
Western Michigan University, 3058 Kohrman Hall, Kalamazoo, MI 49008-5066, USA

grantner@unix.cc.wmich.edu

2 ABB Automation Products AB, S-721 67 Vasteras, Sweden
george.fodor@seipr.mail.abb.com

Abstract
An autonomous control system working in a real-world
environment may encounter events that are outside the
bounds of the established safety criteria. In the case of a
hybrid system, unexpected situations in its environment may
violate assumptions that have been used to design the
continuous and/or the discrete segment. Hence, it is difficult
to design a control unit that can detect and recover from such
errors. An execution monitoring algorithm for this type of
faults will draw practical interest only if it is application
independent. This paper presents an execution monitoring and
fault detection method for hybrid systems along with its
limitations. This approach addresses a new class of problems
encountered with hybrid systems that needs to be considered
in the design and analysis phases.

Introduction

A safety critical system is designed with safety criteria
established before the system is commissioned. As it has
been extensively described in literature, a system working
in a real environment may encounter events that are outside
of the bounds of the established safety criteria. This
phenomenon is well known both for continuous (e.g.
robust control) and discrete systems (e.g. execution
monitoring). In particular, a safety critical hybrid system
(i.e. a proven correct hybrid system) working in a real
environment may encounter situations in which either the
continuous, or the discrete part of the system acts outside
of its expected operating ranges (statically, or
dynamically). Hence, it is difficult to design a control unit
that can cope with both problems. Moreover, an execution
monitoring system will draw practical interest only if it is
domain independent in the following restricted sense:
- An algorithm is developed for execution monitoring

such that it is applicable for a large class of systems.
- The particular data the algorithm uses can be extracted

before the control goes into effect.
- The data extraction uses yet another algorithm that is

based upon a formal description (model) of the
system, or heuristics.

In other words, the run-time execution-monitoring unit is
application independent, but the input it uses is application-
dependent and extracted off-line from a model of the
process.
In this paper, we present a method based upon a hybrid

process representation. Although other modeling
formalism may be conceived as well, we argue that this
method provides a good balance between a full model-
based approach that can provide sufficient error detection
capability and a domain-independent approach that may
not detect accurately application-dependent faults. The
results are illustrated using an example of industrial-
strength.
Cellier has introduced numerical methods (Cellier et al.

1993) for simulating numerically hybrid models. His
method requires a completely separate description of the
continuous segment (using sets of differential equations)
from the description of the accompanying events. Often it
is assumed that the separation between the continuous and
discrete segments is fixed and given by a model. However,
in complex applications the separation of the description of
the continuous segment is not practical due to its size, the
lack of accompanying models and due to the programming
method employed. Even in the case when a system has
formal continuous and discrete models, when implemented
on a real-time digital computer, a large chunk of the
continuous model becomes discrete implementations. The
discrete segment may consist of numerical algorithms,
initialization and reset values for integrators, range checks,
parameter changes using rules, etc. It is also true that some
discrete model may become continuous when
implemented. Thus there is a blurred boundary between the
continuous/discrete segments of the model and of the
implementation. We will refer to this "moving" boundary
as the hybrid model slip (HMS).
Another special case of execution monitoring is about

system stability. In a number of papers, instability in
hybrid systems has been considered using energy transfer
models that can be analyzed with Lyapunov functions. The

77

From: AAAI Technical Report SS-99-05. Compilation copyright © 1999, AAAI (www.aaai.org). All rights reserved.

HMS problem makes the application of the Lyapunov
functions difficult. In addition to the traditional instability,
as it is shown in (Fodor 1997) and in this paper, instability
at discrete state level may develop that is not related to
energy transfer (the control system may be in a steady state
from a continuous perspective, but may not be stable).
This paper proposes a uniform execution modeling of the

continuous and discrete segments using a fuzzy finite state
machine. The fuzzy automaton monitors the deviation from
expected next states in order to detect failures in the
continuous segment, and an ontological (supervisory)
controller monitors failures in the discrete segment.
Moreover, the fuzzy automaton can provide information
for the supervisory controller to attempt a recovery from
faults originated from either the continuous or the discrete
segment.

Execution Monitoring Principle

In many complex real-time industrial applications such as
chemical, pulp and paper, or marine vessels, the control
system is made up of a large number of smaller control
units (e.g., Programmable Logic Controllers-PLCs)
integrated into an overall control architecture. When
controllers act in a sequential fashion, the output of one
controller may be among the input signals of another
controller. It is often recognized that these types of systems
are complex due to the size, and the number of the possible
state combinations in the total state space. However, when
controllers of different makes and heterogeneous types are
connected together, even the knowledge about the total
state set may not be sufficient for a correct supervision.
There are always assumptions, often undocumented, about
the conditions under which a controller algorithm can be
used such that the intended control goals will be reached
(Fodor 1997).
In the case of high-speed networked control architectures,

the types of information that can be exchanged between
control units have been extended to state traces obtained in
real-time, process models, and real-time diagnostic
information. However, only a few research results have
been reported so far that take advantage of the additional
information transmitted among control units.
Industrial-strength complex control systems are required

to act consistently relative to the initial goals when meeting
unexpected situations in their environment. The capacity of
a system to identify and recover from an error after
meeting an unexpected situation is regarded in industry as
a very important property. However, a recovery
mechanism will be of practical interest only if it is
designed application-independent, (i.e. it can be
implemented, say, in the operating system of a PLC rather
than being re-designed for each application). That means

the recovery mechanism cannot be based upon a model of
the environment. Moreover, the error detection level is
required to be application-independent as well.

The research reported here proposes a solution to the
problem of extending the safety and recovery capacity of
complex control systems by introducing a new type of
execution monitoring. The solution employs the theories of
the Hybrid Fuzzy-Boolean Finite State Machine (HFB-
FSM) (Grantner, Fodor, Driankov 1998), and Ontological
Control (Fodor 1997). The main points of the approach are
as follows:

It has been shown in the theory of ontological control
that problematic control situations at the reactive level
(referred to as state de-synchronization) can be
formally represented and classified. Moreover, it has
also been shown that causes for state de-
synchronization can be identified up to the so called
violations of the ontological assumptions only when
the state set of the reactive controller has certain
syntactical properties (the state set is referred to as
well determined).
When the state set is well determined, a recovery
operation is possible within certain constraints. The
constraints are given in terms of an event-driven
dynamic linguistic model implemented by the HFB-
FSM. These boundaries can be used to specify the
recovery capacity of a control system with a given set
of actuator and sensor equipment.
It has been shown that the recovery operation cannot
be performed using the state of the reactive-level
controller that needs to be recovered. Thus the method
exploits a connected supervisory controller for the
recovery operation.
The state boundaries for the HFB-FSM are devised
using the continuous model of the system

When an unexpected change occurs in the environment of
a controller A, an execution monitoring unit which is
connected to A can detect that by using the theory of
ontological control. The execution-monitoring unit will
then invoke the fuzzy specification of the discrete states
that are involved in the erroneous situation. That includes a
set of fuzzy states of the HFB-FSM, and an algorithm for
triggering transients of fuzzy states. Then the execution
monitoring unit uses the information on the next fuzzy
state to determine if a recovery is possible, that is, the
HFB-FSM represents the specification of the bounds
within the recovery is possible. If the HFB-FSM enters a
suitable fuzzy state, it returns the particular control action
that will achieve the recovery of controller A. The
following two sections present the two main theoretical
tools involved, and then the method is illustrated by an
example.

78

HFB-FSM Model

The HFB-FSM is an extension of the former Fuzzy-
State-Fuzzy-Output Finite State Machine (FSFO FSM)
model (Grantner, Patyra 1994). It is implemented by
Boolean automaton based upon two-valued logic and is

given by the formulas (1), where F and ZF stand f or a

finite set of fuzzy inputs and outputs, respectively, WB and

Us stand for a finite set of two-valued logic inputs and
outputs, respectively. Defuzzified outputs are denoted by

zc, R* is a composite linguistic model (3), and o is the
operator of composition. Each crisp state of the HFB FSM

is characterized by an overall linguistic model Rs, or by a
set of linguistic sub-models in the case of multiple-input-
single-output (MISO), and multiple-input-multiple-output
(MIMO) systems.

ZF = XF o R"

R° = G(Rs)
z, = DF(Z~)

Ua=fu (Ya)
Xa = B(XF)

ZB = B(ZF)

Ya = f,(Xa, WB,Z,,Yn)

(1)

A fuzzy state is defined by a crisp (Boolean) state and
state membership function

SF~: Sk ’gsk (2)

where S~k stands for fuzzy state k, Sk represents crisp

state k, and gSk is the state membership function

associated with Sk. G stands for the matrix of state
membership functions, XB, ZB, Ya, and YB are two-
valued Boolean input, output and state variables,
respectively. B stands for a Fuzzy-to-Boolean
transformation algorithm to map a change in the status of a
fuzzy variable into state changes of a finite set of
corresponding Boolean variables. The zc crisp values of
the fuzzy outputs are obtained by evaluating a
defuzzification strategy, DF. On the basis of the concept of
a fuzzy state, the FSM stays in a number of crisp states
simultaneously, to a certain degree in each. One of these
states is referred to as a dominant state for which the state
membership function is a 1 (full membership). The early
concept of a fuzzy FSM based on a Boolean FSM and the
State Membership Functions, in this context, have been
introduced in (Grantner, Patyra, Stachowicz 1995).
formal representation was given in (Grantner 1994).

For each fuzzy state of the HFB FSM model, a R[

composite linguistic model is created from the finite set of

Rs~ overall linguistic models (i=l,..,p). Let the HFB-FSM

be in fuzzy state SFk, then

..... (3)
..., min(fl~, Rs,),..., min(fl~, Rs,)]

where /~,/~ /~p stand for the degrees of state

membership function gSk, and Rsl,Rs2,...,Rsp are the

overall rules in crisp states S~,$2 Sp, respectively.
With (3), a SISO system is assumed. In adaptive systems

R~ is not stored in memory, it is dynamically created by

computing (3), instead. By modifying the fl degrees

the state membership functions on-line, new R* composite
linguistic models can be created under real-time
conditions. The transition between active composite
linguistic models is determined by the state transients of
the HFB-FSM.

The state transients of the HFB FSM are specified by
means of a sequence of changes in the states of the fuzzy
inputs and outputs, as well as of the two-valued inputs. The
changes in the states of the fuzzy inputs and outputs are
mapped into the corresponding sequence of changes of
Boolean input and output variable sets, respectively, using
the B algorithm (Granmer 1994). In this domain, those
changes are joined by the state changes of the two-valued
inputs. On the basis of this combined Boolean input/output
sequence specification the crisp automaton section of the
HFB-FSM will then be synthesized. Hence, the HFB-FSM
model allows the integration of fuzzy and two-valued logic
specifications to describe a system’s behavior. The
integrated treatment of fuzzy and two-valued signals is of
great importance for designing complex systems in which,
in fact, many signals are of two-valued and need to be dealt
with as such.

A hardware accelerator of pipeline architecture for high-
speed applications was presented in (grantner, Patyra 1994)
for the earlier fuzzy automata model. It can be extended to
adopt the new features of the HFB-FSM.

The theory of HFB FSM will be used in the sequel to
model the changes in the control algorithm of a low-level
reactive system recovering from a violation of the
ontological assumptions (VOA).

Ontological De-synchronization

When a control system such as an autonomous agent is
designed, the modeling assumptions for its control
algorithm are inherently extended by additional
assumptions about the complex environment in which the
control will take place. These assumptions are not

79

represented by formal means, hence, an agent cannot verify
whether they are true. Ontological control investigates the
case when these assumptions are violated, situations in
which a controller acts under violations of the ontological
assumptions.

The architecture of an Ontological Controller (OC)
capable to detect violations of ontological assumptions
(VOA) in the context of a de-synchronization from the
execution of a goal path was shown in (Fodor 1995).
However, the OC is unable to recover from a VOA by
itself (Fodor 1995). The concept of a state is defined in the
OC by (4):

Si = (Yi, ui,i) (i,j=ln) (4)

where Yi stands for a two-valued Boolean formula (referred
to as a plant formula) showing the condition that is true at
a given time in the controlled plant. Each relevant plant
situation has a corresponding plant formula in some state.
A control action denoted as uij is executed when Yi is true.
The expected outcome of this action is that the plant
changes such that at the next time instance yj will be true.
However, if some external action (disturbance) occurs, the
expected change in the plant does not take place but a new
plant state, Yk, will materialize instead. The disturbance is
considered as an external action and, if known in advance,
is denoted as Ui.kext where the subscripts refer to the
respective two plant formulas before and after the external
action. The new state can be denoted as some Sk = (Yk, Uk,0.
The control will then proceed in a succession of states. The
states that can materialize from an arbitrary state Si by
external actions (disturbances) are referred to as collateral
states to S~ and the set of such states is denoted as K.(Si).

An example is given below to illustrate the problem of
ontological de-synchronization and the communication
between control units. A control system is used to control
the gap between two rolling mills for a metallurgic
application. The system consists of two controllers, A and
B. Controller A gives the setpoint for the gap and makes
sure that all conditions are satisfied for Controller B that
performs the control algorithm. Controller B, when enabled
by A, controls the size of the gap such that it measures the
position of the actuator and performs corrective actions to
bring the gap size to the setpoint value. The control action
is implemented by a pneumatic device that moves the rolls,
and thus modifies the gap. The relevant parts of the state
set and data exchanged between regulators is shown in
Figure 1.

In state So, an electric motor is started which builds up the
air pressure. In state Sin, a pump is started. It is assumed
that at the nominal speed of the electric motor, the air

pressure is large enough to start a pressure controller in
state $2, and state $3 will materialize, in which the nominal
value of the pressure is maintained. In state $3, if the
pressure decreases due to a high air load, corrective actions
are taken such as cooling the pump. A violation of the
ontological assumptions (VOA) occurs at a state Si = (yj,

Uj,k) if Ui,i is executed in state Si, but the expected yj does
not materialize in the plant, although no external action has
occurred. It has been shown in (Fodor 1995) that a VOA
manifests always as a state transition from Si to a state in
K.(Sj) where Sj is the consecutive (next expected) state
S~. This type of transition is referred to as an ontological
desynchronization. It has also been shown in (Fodor 1995)
that for certain state sets, a VOA has the effect such that
the controller enters a cycle. This cycle repeats indefinitely
such that the ontological de-synchronization will be
repeated as well.
For the system in Figure 1, let us consider the following

ontological violation: the pump has a leak such that at
nominal engine speed in state $2 the air pressure stays at a
level lower than the nominal one. That means a state
transition from $2 will occur directly to state $4, actually
bypassing the intermediate state $3. However, since the
cause for the current situation is not the high temperature
of the motor, states $4, $5 and $2 are passed quickly and the
loop continues indef’mitely by a new jump from state $2 to
$4, without any apparent error is being detected. The
recovery operation can be performed if two conditions are
met:

(i) The cause for the loop is recognized. That is done
the theory of ontological control.

(ii) Overload limits can be specified for the engine such
that the condition for nominal air pressure is satisfied. That
is, the boundaries of a state can be extended. That is done
by using the theory of the HFB-FSM.

The recovery from this situation requires the
determination of a state that corresponds to the current
plant situation, and it has a control action that can "break"
the cycle. For fuzzy controllers, there can be found
recovery solutions by adding extra rules to the rule base
(Driankov, Fodor 1996). However, for controllers such
PLCs that have discrete states, the problem of recovery
becomes more difficult since there is no state with
acceptable properties in the state space of the controller
that can materialize at a VOA. Thus the recovery algorithm
suggested in this paper relies on techniques that can
accommodate fuzzy states and yet produce two-valued
outputs.

80

Controller A Execution monitoring

So Sl $2 Start $3

/f--~Start E f.~, Starty/,~Control f ~EnableN°minaIBPressure

disturbance

/ Setpoint

~Low Pressure

S6 S5 "4

MeasurementIP°siti°ning1

>
HFB FSM

Actuator

Figure 1 - Example of Control System

Recovery Using HFB-FSM

The use of the HFB-FSM will be outlined here for a
single state transition at a VOA only. At design time, each
plant formula is associated with linguistic intervals. In
general, after an ontological de-synchronization is
detected, the reactive controller provides the HFB-FSM
with the following information:

(i) the relevant fuzzy input set F to the FSFO FSM that
includes the fuzzified plant formulas of Yi (the last state
materialized as expected), yj (the state with the VOA),
the fuzzified plant formulas of the states in K_(Sj),

(ii) the fuzzy output set F that consists of t he fuzzified
control actions of the expected next state, and in addition,
the fuzzified plant formulas of the collateral states of the
expected next state,

(iii) the set of two-valued inputs (if any)

(iv) state membership function degrees that are set such
that the expected next state (dominant state) is assigned the
degree of 1,

(v) the actual mapping scheme between fuzzy and
Boolean subintervals of the B algorithm,

(vi) the relevant section of the fuzzy state transition
graph along with conditions, in order to devise the next
state of the HFB-FSM.

Due to a VOA, a fuzzified plant formula in-between the
expected yj (leading to a state of the HFB FSM that
corresponds to state $3) and the fuzzified plant formulas
of the states in K_(Sj) will be passed to the HFB FSM. The
situation will be dealt with as a trigger condition for the
next fuzzy state of the HFB-FSM. The conditions for state
transients are specified in terms of membership functions.
If the received fuzzified plant formula is not too far from
the one for yj (i.e. despite the leak, the nominal air pressure
is still in the work range of the pump) then the HFB-FSM
will enter to a state corresponding to $3. A two-valued
control action signal asserted in this state will cause the
system to recover from the VOA. If the condition above is
not met, the HFB FSM will move to a state corresponding
to one of the states in K_(Sj). That means the controller
cannot recover from the VOA, hence it should be stopped.

81

The signals representing intervals in the plant formulas
for the discrete state sets of the PLCs are of, in fact, two-
valued. Fuzzification makes the boundaries between states
continuous such that a state preserves its properties beyond
its two-valued limits. Hence, fuzzification "balances" the
fuzzy boundaries of the states against the degree of the
ontological violation and, if it is possible, helps to choose a
control action to recover from a VOA.

Conclusions

Current research shows that by using a fuzzy state machine
along with an ontological controller in a proper
architecture, the error detection and recovery capability of
a hybrid system can be substantially improved. The
detection architecture and algorithm is application
independent. The method provides a uniform formalism
for execution-monitoring of hybrid systems.
A further research problem is to develop an improved

mapping method between the HFB-FSM model and the
continuous/discrete models of the system, and imposing
timing constraints on the changes of the linguistic models.

Acknowledgement

This research was supported by the Michigan Space Grant
Consortium (Grant #: 9633401), Western Michigan
University, ABB Industrial Systems AB, Sweden, and The
Swedish Research Council for Engineering Sciences
(271/96-134).

References

Cellier, F.E., H. Elmqvist, M. Otter, and J.H. Taylor 1993.
Guidelines for Modeling and Simulation of Hybrid
Systems, in Procedings of the 1993 IFAC World Congress,
Sydney, Australia, Vol. 8, pp. 391-397.

G. A. Fodor 1997. Ontologically Controlled Autonomous
Systems: Principles, Operations and Architecture. Kluwer
Academic Publishers, Boston/Dordrecht/London.

J.L. Grantner, G. Fodor, Dimiter Driankov 1998. Hybrid
Fuzzy-Boolean Automata for Ontological Controllers. In
Proceedings of the 1998 World Congress for
Computational Intelligence, WCCI’98, Anchorage,
Alaska, USA, Vol. I, pp. 400-404.

D. Driankov, G. Fodor, 1996. Fuzzy control under
violations of ontological assumptions, invited plenary talk.
In Proceedings of the FLAMOC’96 Conference, Sydney,
Australia, pp. 109-115.

G. Fodor, 1995. Ontological Control: Description,
Identification and Recovery from Problematic Control
Situations. PhD diss., Dept.of Computer Science,
University of Linkoeping, Sweden

J. Grantner, M. Patyra, 1994. Synthesis and analysis of
fuzzy logic finite state machine models. In proceedings of
the FUZZ-IEEE’94/WCCI’94 Conference, , Orlando, FL,
Vol. I, pp. 205-210.

J. Grantner, M. Patyra, M. Stachowicz, 1995. Intelligent
fuzzy controller for event-driven real-time systems and its
VLSI implementation. In the book Fuzzy Control Systems
(Eds. A. Kandel, G. Langholz), CRC Press, Boca Raton,
FL, USA, pp. 161-179.

J. Grantner, 1994. Design of Event-Driven Real-Time
Linguistic Models Based on Fuzzy Logic Finite State
Machines for High-Speed Intelligent Fuzzy Logic
Controllers. Diss. for the Degree Candidate of Technical
Science, Hungarian Academy of Sciences, Hungary.

82

