
Beyond HyTech:
Hybrid Systems Analysis Using Interval Numerical Methods*

Thomas A. Henzinger, Benjamin Horowitz, and Rupak Majumdar
Department of Electrical Engineering and Computer Sciences

University of California at Berkeley
(tah, bhorowit, rupak)@eecs.berkeley.edu

Howard Wong-Toi
Cadence Berkeley Laboratories, Berkeley, CA

howard@cadence.corn

Abstract

Though the hybrid system model checker HYTECH has
successfully verified some systems, it restricts the dy-
namics to linear hybrid automata. We have designed
an algorithm capable of verifying systems with more
general dynamics. This algorithm uses interval nu-
merical methods to conservatively overapproximate the
reachable states of a hybrid automaton. We have im-
plemented our new algorithm in HYTECH+. Using
three examples, we demonstrate that this algorithm en-
ables both a more accurate and a more direct analysis
of hybrid systems.

Introduction
In a hybrid system, digital controllers interact with
a continuous environment. Because of the increasing
ubiquity of embedded real-time systems, hybrid sys-
tems directly control many of the devices in our daily
lives. Moreover, hybrid systems are often components
of safety- or mission-critical systems. For these rea-
sons, it is necessary to have rigorous guarantees about
the correct performance of hybrid systems.

Hybrid automata (Alur et al. 1993) provide a model-
ing paradigm for hybrid systems. In a hybrid automa-
ton, the discrete state and dynamics are modeled by
the vertices and edges of a graph, respectively, and the
continuous state and dynamics are modeled by points
in ~’~ and differential equations, respectively. Sym-
bolic model checking on hybrid automaton models pro-
vides correctness guarantees. HYTECH (Henzinger, Ho,
& Wong-Toi 1997) is a model checker for hybrid sys-
tems that has been successful in analyzing many hy-
brid systems of practical interest (Ho & Wong-Toi 1995;
Ho 1995; Corbett 1996; Henzinger & Wong-Toi 1996;
Stauner, Mfiller, & ~-~chs 1997; Villa et al. 1998).

One shortcoming of HYTECH is that it restricts the
dynamical model to linear hybrid automata, in which

This research was supported in part by the NSF CA-
REER award CCR-9501708, by the NSF grant CCR-
9504469, by the DARPA (NASA Ames) grant NAG2-1214,
by the DARPA (Wright-Patterson AFB) grant F33615-98-
C-3614, and by the ARO MURI grant DAAH-04-96-1-0341.

the continuous dynamics are governed by polyhedral
differential inclusions. To make hybrid systems verifi-
cation practical, one would like to be able to analyze a
much wider class of continuous dynamics. Another de-
ficiency of the HYTECH is arithmetic overflows in the
use of geometrical algorithms (i.e. in polyhedral manip-
ulations): since points are stored as rationals, as the
computation progresses these rationals may grow too
large.

We have implemented HYTECH+, in which these in-
adequacies are corrected. In particular, we have aug-
mented HYTECH so that it allows more general dy-
namics. We can now directly handle dynamics express-
ible as a combination of polynomials, exponentials, and
trigonometric functions. Further, by restricting our at-
tention to rectangular regions, we avoid overflow prob-
lems. Given a hybrid automaton, HYTECH+ conserva-
tively overapproximates the set of reachable states of
the automaton. In order to obtain validated bounds
for reachable sets, we use interval numerical meth-
ods (Moore 1966; Rihm 1994).

One of the fundamental steps of verification algo-
rithms for hybrid automata is computing the flow suc-
cessors of a given region. For certain classes of hy-
brid automata, e.g. linear hybrid automata, this com-
putation can be performed exactly, either by quanti-
fier elimination in the theory of reals with addition,
or by polyhedral manipulation (Alur et al. 1993).
To compute the flow successors under more general
dynamics, algorithms may employ quantifier elimina-
tion in other theories (Lafferriere, Pappas, & Yovine
1999). However, such computations may be infea-
sible in practice, and approximation methods must
be used. Some approximation methods bound the
dynamics by piecewise constant inclusions, e.g. rate
translation (Henzinger, Ho, & Wong-Toi 1998); oth-
ers use numerical integration (Chutinan & Krogh 1998;
Dang & Maler 1998; Greenstreet ~ Mitchell 1998;
Tomlin 1998). Unfortunately, traditional numerical in-
tegration methods suffer from roundoff errors, and do
not necessarily yield validated results. On the other
hand, accurate rate translation suffers from state ex-

89

From: AAAI Technical Report SS-99-05. Compilation copyright © 1999, AAAI (www.aaai.org). All rights reserved.

plosion.
In contrast to traditional numerical methods, inter-

val numerical methods yield results in which the true
solution to an initial value problem is guaranteed to
lie within validated bounds. In the worst case, such
bounds may be unacceptably wide. However, interval
methods never yield false results. Interval methods are
based on interval arithmetic, for which several libraries
provide support. These libraries have been used suc-
cessfully in practice (Kniippel 1994). Interval methods
are about twice as expensive as traditional methods, a
worthwhile price to pay for obtaining validated bounds.

Hybrid Automata
To model hybrid systems, we use the simple, seman-
tically precise model of hybrid automata (Alur et al.
1993). A hybrid automaton H consists of the following
components:

¯ A finite set X = (Xl,... ,Xn} of real-valued vari-
ables. A valuation of these variables represents the
continuous state of a hybrid system.

¯ A finite directed multigraph (V, E). The vertices in
(called control locations) represent the discrete state
of a hybrid system. The edges in E (control switches)
represent transitions between discrete states.

¯ Three functions init, inv, and flow that assign to
each vertex in V a predicate. Each initial condi-
tion init(v) and invariant inv(v) has free variables
from X. Each initial condition init(v) represents
the continuous states in which the hybrid automaton
may begin executing, when control starts at location
v. Each invariant lay(v) represents a condition that
must be satisfied if the automaton is to remain in con-
trol location v. Each flow condition flow(v) has free
variables from {xl,... ,xn,xl,... ,xn}. Intuitively,
the ~is represent the first derivatives of the continu-
ous variables. For a control location v, the flow con-
dition flow(v) constrains the continuous dynamics of
the hybrid system at that location.

¯ A function pre that assigns to each edge e = (v, v’)
E a predicate pre(e), with free variables from X,
which represents the condition on the continuous
state that must hold if control is to pass from v to vt.

¯ A function post that assigns to each edge e = (v, v’)
E a predicate post(x), with free variables from X.
Intuitively, the xis represent the possible values of
the variables after the transfer of control from v to
VI,

¯ A function update that assigns to each edge e =
(v,v’) E E a subset update(e) C_ X. After traversing
e, the variables in update(e) get nondeterministically
reset so as to lie in post(e), while the variables in
X \ update(e) remain unchanged.

¯ A finite set E of events, and a function event that
assigns to each edge e E E an event.

~ =3 A z ~ =0~

~=1

Figure 1: Hybrid automaton for the thermostat

As an example, consider the hybrid automaton of Fig-
ure (1), which models a thermostat controller with de-
lays: after the thermometer detects that the tempera-
ture is too low or too high, there may be a delay of up
to one time unit before the appropriate control action
(turn the heater on or off, respectively) is taken. The
variable x measures the temperature. Initially, x = 2
and the heater is on. The temperature rises according
to the differential equation 2 = -x + 4. Eventually, the
temperature reaches 3; after a delay of one time unit,
the thermostat sends a turnoff signal to the heater.
(The variable z measures the delay.) The temperature
then falls according the equation ~ = -x until x --= 1.
One time unit after the temperature reaches 1, the ther-
mostat sends a turnon signal to the heater.

We now give a formal definition of the semantics of
a hybrid automaton. A state of a hybrid automaton is
a pair (v,x), with location v E V, continuous state x E
~, and x satisfying inv(v). The state space of a hybrid
automaton is the set of its states. If X = {Xl,... , Xn}
is a set of variables and u E ~n is a vector, we denote
by X := u the interpretation for the variables in X in
which xi = ui for i = 1,... ,n. A hybrid automaton
has two types of transitions:
Jump transitions, which correspond to instanta-

neous transitions between control locations. For-
mally, there is a jump transition from state (v, x)
state (v’, x’) if there is an edge e = (v, v’) E E
x satisfying pre(e), x’ satisfying post(e), and x~ -- xi
for x~ ¢ update(e).

Flow transitions, which correspond to the continu-
ous evolution of the system at a single control loca-
tion v according to the dynamics specified by flow(v).
Formally, there is a flow transition of duration t > 0
from state (v, x) to state (v, x’) if there is a differen-
tiable function f : [0, t] ~ I~n such that:

1. f(O) = x, f(t) =
2. for all reals t’ E (0, t), X := :(t’) satisfies inv(v);

and
3. X,:~ := f(t’),](t’) satisfies flow(v).

We say that (v~, x’) is a flow (respectively jump) succes-
sor of (v, x) if there is a flow (respectively jump) transi-

9O

tion from (v, x) to (v’, x’). run ofa hybrid automaton
is a sequence of states (v0, x0), (vl, xl),.., such that
satisfies init(vo), and for all i > 0, (Vi+l, xi+l) is a jump
or flow successor of (vi, x~).

Given a hybrid automaton H and a subset S of its
state space, the reachability problem asks if there is a
run (vo,xo),(Vl,Xl),... of H that visits S, i.e. such
that for some i, (vi,xi) E S. The reachability problem
is the fundamental subtask of safety verification.

Though the reachability problem is undecidable even
for simple subclasses of hybrid automata (Henzinger
et al. 1998), semidecision procedures often terminate
on specific problems of practical interest. These pro-
cedures symbolically traverse the reachable state space
of a hybrid automaton. In order to develop a symbolic
algorithm, it is necessary to have a compact represen-
tation of sets of states. Such an algorithm has been im-
plemented for particular subclasses of hybrid automata
in HYTECH, which uses unions of convex polyhedra to
represent sets of states.

HYTECH+ allows a dynamics which is more expres-
sive than HYTECH. In HYTECH+, for each location
v E V, flow(v) is an expression generated by:

E := id I interval I E1 * E2 I f(E)

where id is a variable, interval is an interval; * is one of
+, -,., or/; and f is an exponential or a trigonomet-
ric function. While the dynamical model of HYTECH+
is more general than that of HYTECH, HYTECH+ does
place several restrictions on its input automata. These
restrictions are more a convenience for building a quick
prototype tool than they are fundamental limitations on
the algorithmic capabilities of interval numerical meth-
ods. We are currently investigating how these condi-
tions may be relaxed.

Our restrictions are as follows. First, for each v E V,
init(v) and inv(v) are finite unions of rectangles. (Here,
a rectangle is a Cartesian product of n intervals, all of
whose endpoints are rational.) Second, for each e E E,
post(e) is a finite union of rectangles, and pre(e) is a
hyperplane. Third, for any control location v, and for
any point p in inv(v), there exists a unique edge e such
that some flow successor of p satisfies pre(e), and fur-
ther under the dynamics of v all points in lay(v) move
strictly monotonically towards the hyperplane pre(e)
and eventually cross pre(e). Fourth, we require that
points that have once crossed pre(e) do not return to
cross again. Condition three guarantees that the ap-
proximations that HYTECH+ computes are conserva-
tive. The uniqueness clause of condition three ensures
that we can stop the computation of flow successors as
soon as we have hit and crossed the first such hyper-
plane. Condition four excludes functions which cross
an exit condition multiple times. For a large class of
examples, including those analyzed below, these four
conditions hold.

Interval Numerical Methods
In numerical computations, for example the numeri-
cal solution of ordinary differential equations (ODEs),
rounding errors may distort the accuracy of a calcula-
tion. Ordinary numerical methods are thus not suit-
able for providing fully rigorous guarantees about the
safety of dynamical systems. Interval numerical meth-
ods (Moore 1966) address this problem by computing
sets of points that contain the true solutions to a nu-
merical problem. In particular, interval ODE solvers
are used to find guaranteed bounds for the solutions to
differential equations.

In interval methods, the fundamental object of com-
putation is not a floating point number, but rather an
interval. An interval Ix__, 5] is a nonempty set of real
numbers {x E ll~ I x < x < 5}, where x < 5 are both
real numbers. We can extend to intervals the usual
arithmetic operations over reals: if ¯ is an arithmetic
operation, then Ix_, 5] ¯ [y, ~] = {x * y I x E Ix_, ~], y ¯
[y,~]}. These operations can be implemented as:

=
[x__, ~]- [y, ~] " [min(x ̄ y, x. y, x. y, ~. ~),

max(x__, y, x__. y, x. y, 5- ~)]

= i/z] if 0 ¢

A computer implementation of these operations con-
trols the processor’s rounding mode so that it rounds
downwards when computing the lower bound of the re-
sult, and it rounds upwards when computing the up-
per bound. This guarantees that the computed result
always encloses the result of exact interval arithmetic
calculation. Similarly, we can define interval versions
of elementary functions (e.g. sin, cos, ez, etc.) so that
the computed result encloses the exact result. Several
implementations of interval operations exist, either as
libraries (Knfippel 1994) or as extensions to regular
programming languages (Klatte et al. 1992). In our
implementation, we have used the PROFIL/BIAS li-
brary (Knfippel 1994).

Interval methods to solve ODEs provide guaranteed
enclosures of the solutions of initial value problems.
These methods use as primitives the interval operations
+, -,., and / defined above, plus interval implementa-
tions of standard functions such as sin and cos. From
an initial condition (an interval x0 at time 0), these
methods usually compute a rough enclosure Xht of the
solution at time At, for some At specified by the user.
This rough enclosure, which is a rectangle, is usually
narrowed by a pruning procedure that reduces the ac-
cumulation of numerical errors, and mitigates the wrap-
ping effect. (The wrappping effect is the error result-
ing from enclosing a nonrectangular region by a rectan-
gle.) This iteration -- computing xiAt using x(~-l)ZXt
by finding, and then pruning, a rough enclosure at

91

time iAt -- continues for the number of steps specified
by the user. Several implementations of interval ODE
solvers are publicly available, for example (Lohner 1992;
Stauning 1997). These typically use Picard iteration to
prove the existence and uniqueness of solution, and to
find a rough enclosure. This enclosure is then pruned by
using a mean value method; by bounding the error term
in a truncated Taylor expansion; and by applying local
coordinate transformations, to reduce the wrapping ef-
fect. For a variety of examples, these implementations
find fairly tight solution enclosures.

Conservatively Overapproximating

Reachable States

For a complicated hybrid automaton H, precise ana-
lytic or closed-form descriptions of the reachable states
of H may not exist or may be extremely difficult to
find. In such cases, one must seek feasibly computable
approximations of the reachable states. A conservative
overapproximation of the reachable states of H is a set
T of states such that any state reachable in H must
be in T. For analysis of the safety of a hybrid automa-
ton, a conservative overapproximation T may be useful,
since if no unsafe state is in T, then no unsafe state is
reachable in H. However, since there may be states in
T which are not reachable in H, the presence of an un-
safe state in T does not necessarily imply that an unsafe
state is reachable in H. In such cases, one could try to
refine the automaton under consideration.

For a hybrid automaton with discrete state set V and
n real-valued variables, let a region be a finite union
of sets of the form {v) × S, where S is a subset of
~n. HYTECH’S algorithm works as follows: it maintains

two regions, R, the explored region, and R1, the to=be-
explored region. Initially, R = 0, and RI is the initial
region. As long as R’ # 0, it does the following:

1. Select and remove one member {v} × S from R~.

2. Add {v} × S to R.

3. Propagate S according to the dynamics of v, and add
to R~ at least the unexplored jump successors and
flow successors of {v} × S as necessary. For exact
(nonapproximate) algorithms, the regions added
R~ contain exactly the jump successors and flow suc-
cessors of {v} x S. Overapproximate algorithms may
add additional areas of the state space; that is, for
overapproximate algorithms, the regions added to R~

may strictly contain the jump successors and the flow
successors of {v} x S.

In HYTECH, the input automaton is a linear hybrid au-
tomaton, and S is a convex polyhedron. HYTECH uses
polyhedral manipulation to compute the flow successors
of S. Further, this computation is exact, in the sense
mentioned in step (3).

For our overapproximate algorithm, S is a rectan-
gle, and our overapproximation of the reachable flow
successors of S is a union of rectangles. We introduce
some terminology. For a given control location v E V,

an exit plane of v is any hyperplane pre(e) for some
e -- (v,v I) E E. In what follows, let E be the set of
points in the exit planes of v. Given a state (v,p),
time successor (v, q) of (v, p) crossed the hyperplane
7/if q and p lie in different halfspaces induced by 7/.
We extend this definition to sets of states and unions C
of hyperplanes in the natural way. We say that region S
has partially crossed E if some states in S have crossed
E while others have not.

The computation of flow successors is performed as
follows. We use an interval ODE solver to compute
SAt, the flow successor of S after a time step At. Note
that SAt is a rectangular overapproximation of the flow
successors of S at time At. The size of At must be
determined by the user; whereas computations will be
faster for larger values, more accurate analysis may re-
quire smaller values.

¯ If SAt has completely crossed the exit planes £, then
we compute the intersection of C with the rectangu-
lar hull of SAt and S, and add the unexplored jump
successors of this intersection to R~. (Our numerical
method ensures that all flow successors of S, for times
in [0, At], lie in the convex hull. Taking the rectan-
gular hull, as opposed to the more natural convex
hull, maintains rectangularity of the reached regions
at the cost of an overapproximation, and also ensures
numerical robustness.)

¯ If some portion P of SAt has crossed £, we compute
the intersection of $ with the rectangular hull of S
and P, add the unexplored jump successors of this
intersection to R~, and continue to propagate the set

¯ Otherwise none of SAt has crossed C. We compute
S~t and continue, using S~At in place of S~t.

Note that, unlike the algorithm of HYTECH, our algo-
rithm does not find all the flow successors in one step.
But for dynamics that require the use of numerical ODE
solvers, such a price seems unavoidable.

In our implementation, we use the ADIODES li-
brary (Stauning 1997) to compute the flow successors
of a region. ADIODES uses a Picard iteration to find a
rough enclosure of the solution, then computes correct
enclosures of the solution using a mean value method,
by bounding the error term of a truncated Taylor series
expansion of the dynamical equations. Automatic dif-
ferentiation techniques are used to compute the coeffi-
cients of the Taylor series expansion. Our choice of this
method is independent of the other parts of HYTECH+;
thus, any other interval ODE solver, e.g. AWA (Lohner
1992), may be used in place of ADIODES.

Our use of an interval ODE solver gives a conservative
overestimate of the region reachable from {v} x S. With
the use of enclosure methods, we obtain both a more di-
rect model of the target system (i.e. no rate translation
needed) and tighter bounds on the reach sets.

92

Three Examples

We now describe the results of running HYTECH+ on
three examples.

Thermostat with delay. Consider again the hy-
brid automaton of Figure (1). We wish to determine
the range within which the temperature always lies.
The nonlinear dynamics cannot be directly modeled
in HYTECH. Instead, the dynamics of x is enclosed
by piecewise-constant bounds. This approximation, de-
scribed in (Henzinger, Ho, & Wong-Toi 1998), is called
rate translation. Using this method, the best obtain-
able bounds are 0 < x < 4. This approximation may
be made arbitrarily accurate by splitting each control
location and using better bounds on the derivatives
in the new locations. By combining rate translation
with location splitting, and using a 20-location approx-
imation of the system, HYTECH obtained the bounds
0.28 < x < 3.76.

We ran our algorithm directly on the automaton of
Figure (1). Initially, x = 2, and the automaton is
location on. Our algorithm propagates the values of x
according to the differential equation 5 -- -x + 4, un-
til the interval containing the true value of x entirely
crosses the exit condition x = 3. At this point, there is
a discrete jump to location delay1. Now our algorithm
propagates the interval [3, 3] for one unit. At the end of
one time unit, x _< 3.64, and the automaton jumps to
location off. Continuing this process, our algorithm re-
ports that the minimum value of x (which is reached in
location delay2) is 0.367. Therefore, using HYTECH+,
the bounds are 0.367 < x < 3.64. The bounds found by
analytically solving this system are 1/e < x < 4 - 1/e.
Comparing our results with the analytic solution shows
that HYTECH+ computes a close approximation to the
actual reach set.

Railroad gate controller. As a second example, we
consider the nonlinear railroad gate controller from (Ho
1995) (see Figure (2)). The three hybrid automata
of Figure (2) model a train, a railroad gate, and the
gate’s controller. These automata can be composed as
in (Alur et al. 1993). The real-valued variable x repre-
sents the distance of the train from the gate. Initially,
in location far, the train is 1,000 meters from the gate,
traveling at 50 meters per second towards the gate. At
500 meters, a sensor on the tracks detects the train,
sending a signal app to the controller. The train slows
down, obeying the differential equation 5 = -x/25-30.
After a delay of five seconds, which is modeled by the
variable t, the controller sends the signal lower to the
gate, which begins to descend from 90 degrees to 0 de-
grees at a rate of -20 degrees per second. After crossing
the gate, the train accelerates according to the differen-
tial equation 5 = x/5 + 30. A second sensor placed 100
meters past the crossing detects the leaving train, send-
ing a signal exit to the controller. After five seconds,
the controller raises the gate. At least 1,100 meters
separate consecutive trains.

We wish to verify that if there is a train within 10

x = IOOA . pa~/
z~ = 1000 i . =

’tl~x= 0 / ~ ~ ,lower

Controller

Figure 2: Automata for the train, gate, and controller

inlet flow lkl

tank 2

tank 1 k31]lx2 I _
outlet flow k4

Figure 3: Two-tank system

meters of the gate, then the gate is closed. The nonlin-
ear dynamics of the train could not be modeled directly
in HYTECH. Instead, rate translations and additional
approximations were used. Using HYTECH+, we can
model and verify the entire system directly from its
specifications.

Two-tank system. As a final example, we consider
the two-tank system of (Stursberg et al. 1997) (see Fig-
ure (3)). The plant consists of two identical intercon-
nected tanks. Into tank 1 flows a stream characterized
by the loss parameter k1.1 Tank l’s outlet stream, char-
acterized by the loss parameter k2, flows into tank 2.
Tank 1 is k3 meters above tank 2. The outlet stream of
tank 2 is characterized by loss parameter k4. Let xl and
x2 denote the heights of the liquid columns in tank 1
and tank 2. Applying Toricelli’s law, the dynamics of
this system may be seen to be:

I kl -- k2%/Xl -- X2 + k3

(51)
k2~/Xl-X2+k3-k4v~/ ififx2>k3x2 <

x2 = kl -- kzV~ ’~
k3

k2x/~- k4v/-~J

1This loss parameter may be thought of as a friction loss
term.

93

H~m~h
::::::::::::::::,,.,~

Figure 4: A portion of the reachable space for the two
tank system. Clockwise from upper-left: At ---- 5, run
time: 24.27 s.; At = 2, run time: 53.39 s.; At ---- 1, run
time: 98.60 s.; and At = 0.5, run time: 190.64 s.(xl
and x2 are in centimeters.)

The dynamical equations change when the liquid level
in tank 2 is equal to the height of the connecting pipe.
Under this dynamics, the system moves towards an
equilibrium point for all xi > 0 and for all ki > 0.
For example, for the parameter values k2 -- k4 -- 1
~/meters per second, k3 = 0.5 meters, and kz = 0.75
meters per second, the system moves towards the equi-
librium point xz = 0.625..., x2 = 0.563 In (Sturs-
berg et al. 1997), rate approximation was used to
model this dynamical system as a 12-location hybrid
automaton; HYTECH was then used to overapproxi-
mate which states were reachable. With HYTECH+,
we directly model the system as a hybrid automaton
with two states, corresponding to whether x2 > k3 or
not. Further, the analysis is more accurate. For ex-
ample, HYTECH’S analysis of the 12-location rate ap-
proximation finds that starting from 0.70 _< xz _< 0.80
and 0.45 _< x2 < 0.50, some states in which both
0.60 < xz < 0.80 and 0.60 < x2 ~ 0.65 are reach-
able, whereas our algorithm shows that these states are
unreachable. As may be seen using MATLAB, these
states are actually not reachable.

In Figure (4), we show a part of the overapproxi-
mation of the reachable states of the two-tank system,
for four different choices of the time step At, with the
corresponding running times. The running times are
obtained on a Sun SPARCstation-20.

Future Work

These examples support our claim that HYTECH+ both
enables a more direct modeling of hybrid systems, and
finds tighter bounds on the set of reachable states. We
will apply our algorithm to more complex examples, to
determine whether these may be successfully analyzed.
We also wish to investigate whether interval numerical
methods may be used with more complex sets in ~n,

for example unions of convex polyhedra, or unions of
ellipsoids.

References
Alur, R.; Courcoubetis, C.; Henzinger, T.; and Ho, P.-
H. 1993. Hybrid automata: an algorithmic approach
to the specification and verification of hybrid systems.
In Hybrid Systems I, LNCS 736. Springer-Verlag. 209-
229.
Chutinan, A., and Krogh, B. 1998. Computing poly-
hedral approximations to flow pipes for dynamic sys-
tems. In Proc. 37th Conference on Decision and Con-
trol. IEEE Press. 2089-2094.
Corbett, J. 1996. Timing analysis of ADA tasking
programs. IEEE Transactions on Software Engineer-
ing 22(7):461-483.

Dang, T., and Maler, O. 1998. Reachability analy-
sis via face lifting. In HSCC 98: Hybrid Systems--
Computation and Control, LNCS 1386. Springer-
Verlag. 96-109.

Greenstreet, M. R., and Mitchell, I. 1998. Inte-
grating projections. In HSCC 98: Hybrid Systems--
Computation and Control, LNCS 1386. Springer-
Verlag. 159-174.

Henzinger, T., and Wong-Toi, H. 1996. Using
HYTECH to synthesize control parameters for a steam
boiler. In Formal Methods for Industrial Applications:
Specifying and Programming the Steam Boiler Control,
LNCS 1165. Springer-Verlag. 265-282.

Henzinger, T.; Kopke, P.; Puri, A.; and Varaiya, P.
1998. What’s decidable about hybrid automata? Jour-
nal of Computer and System Sciences 57:94-124.

Henzinger, T.; Ho, P.-H.; and Wong-Toi, H. 1997.
HYTECH: a model checker for hybrid systems. Soft-
ware Tools for Technology Transfer 1:110-122.

Henzinger, T.; Ho, P.-H.; and Wong-Toi, H. 1998. Al-
gorithmic analysis of nonlinear hybrid systems. IEEE
Transactions on Automatic Control 43(4):540-554.
Ho, P.-H., and Wong-Toi, H. 1995. Automated
analysis of an audio control protocol. In CA V 95:
Computer-aided Verification, LNCS 939. Springer-
Verlag. 381-394.

Ho, P.-H. 1995. Automatic Analysis of Hybrid Sys-
tems. Ph.D. Dissertation, Cornell University.
Klatte, R.; Kulisch, U.; Neage, M.; Ratz, D.; and Ull-
rich, C. 1992. Pascal-XSC: Language Reference and
Examples. Springer.
Knfippel, O. 1994. PROFIL/BIAS -- a fast interval
library. COMPUTING 94 53(3-4):277-287.

Lafferriere, G.; Pappas, G. J.; and Yovine, S. 1999. A
new class of decidable hybrid systems. In HSCC 99:
Hybrid Systems: Computation and Control. Springer-
Verlag. To Appear.

Lohner, R. 1992. Computation of guaranteed enclo-
sures for the solutions of ordinary initial and boundary

94

value problems. In Computational Ordinary Differen-
tial Equations. Oxford.

Moore, R. E. 1966. Interval Analysis. Englewood
Cliffs, N.J.: Prentice-Hall.
Rihm, R. 1994. Interval methods for initial value
problems in ODEs. In Herzberger, J., ed., Topics in
Validated Computations. North-Holland.

Stauner, T.; Miiller, 0.; and Fuchs, M. 1997. Using
HYTECH to verify an automotive control system. In
HART 97: Hybrid and Real-time Systems, LNCS 1201.
Springer-Verlag. 139-153.
Stauning, O. 1997. Automatic Validation of Numerical
Solutions. Ph.D. Dissertation, Technical University of
Denmark.
Stursberg, O.; Kowaleski, S.; Hoffmann, I.; and
Preussig, J. 1997. Comparing timed and hybrid au-
tomata as approximations of continuous systems. In
Hybrid Systems IV, LNCS 1273. Springer-Verlag. 361-
377.

Tomlin, C. 1998. Hybrid Control of Air Trajfic Man-
agement Systems. Ph.D. Dissertation, University of
California at Berkeley.

Villa, T.; Wong-Toi, H.; Balluchi, A.; Preussig, J.;
Sangiovanni-Vincentelli, A.; and Watanabe, Y. 1998.
Formal verification of an automotive engine controller
in cutoff mode. In Proc. of the 37th Conference on
Decision and Control. IEEE Press. 4271-4276.

95

