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Abstract

Autonomous robot systems operating in an uncertain
environment have to be reactive and adaptive in or-
der to cope with changing environment conditions and
task requirements. To achieve this, the control ar-
chitecture presented in this paper uses reinforcement
learning on top of an abstract Discrete Event Dynamic
System (DEDS) supervisor to learn to coordinate a set
of continuous controllers in order to perform a given
task. In addition to providing a base reactivity through
the underlying stable and convergent control elements,
the use of this hybrid control approach also allows
the learning to be performed on an abstract system
model which dramatically reduces the complexity of
the learning problem. Furthermore, the DEDS formal-
ism provides means of imposing safety constraints a
priori, such that learning can be performed on-line in
a single trial without the need for an outside teacher.
To demonstrate the applicability of this approach, the
architecture is used to learn a turning gait on a four-
legged robot platform.

Introduction

Autonomous robot systems operating in an uncertain
environment have to be able to cope with new sit-
uations and task requirements. Important proper-
ties of the control architecture of such systems are
thus that it is reactive, allows for flexible responses
to novel situations, and that it adapts to longer last-
ing changes in the environment or the task require-
ments. In many cases this adaptation is achieved us-
ing a learning process and has to occur without the
direct influence of an outside teacher, making the re-
inforcement learning paradigm(Barto, Sutton, and An-
derson 1983; Barto, Bradtke, and Singh 1993) an at-
tractive option since it allows to learn from the sys-
tem’s interaction with the environment. However, while
these exploration-based techniques have been applied
to simple robot systems(Gullapalli 1992) and in sim-
ulation(Barto, Sutton, and Anderson 1983; Lin 1993;
Crites and Barto 1995), the complexity of the action
and state spaces of most robots renders these methods
impracticable for on-line learning of continuous control
strategies on such systems. To address this, as well

as the lack of reactivity in the presence of novel situ-
ations, behavior-based techniques have been combined
with such learning techniques(Maes and Brooks 1990;
Mahadevan and Connell 1992; del R. Mill£n 1996).
While this somewhat expands the scope of problems
that can be addressed, the ad hoc character of the be-
haviors and the control mechanism still severely lim-
its the scope of such systems. Furthermore, most such
learning systems still do not provide a means for in-
troducing a priori knowledge, thus permitting the oc-
currence of catastrophic failures which is often not per-
missible in real world systems which potentially have to
learn new tasks in a single trial. To address these issues,
the control architecture presented here uses a set of sta-
ble and convergent continuous controllers which are co-
ordinated using a DEDS(Ramadge and Wonham 1989;
Sobh et al. 1994) defined on an abstract, discrete state
space. The corresponding supervisor, represented as a
nondeterministic finite state automaton forms then the
basis within which the given task is learned. The use of
such a hybrid control architecture as a basis for a learn-
ing task promises to make it possible to address more
complex tasks and platforms. Much of this promise
stems from the fact that the learning component can
treat the resulting system as an event driven system
rather than a continuous (or clock driven) one, while
the progression of the system in the underlying physi-
cal space is controlled locally by the continuous control
elements. This dramatically reduces the set of points
at which the learning agent has to consider a new ac-
tion to the times when certain control or sensor events
happen. While this allows for optimal decision points
to be missed if the corresponding sensor signals lie out-
side the scope of the current set of control and sensor
alternatives, it also leads to a focus of attention and can
dramatically reduce the time required to learn a policy
for the given task. To illustrate this and to demonstrate
the applicability of the approach, it has been applied to
a walking task on a four-legged walking robot.

The Control Architecture

The approach presented here uses a hybrid control
structure as an interface between the physical world
and the learning component. This structure effectively
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reduces the size of the state space used by the learning
component and provides a means to guide the explo-
ration and thus to influence the learning performance
explicitly. In order to achieve this, the underlying con-
tinuous control elements used here are stable and con-
vergent closed-loop control policies. This implies that
they divide the underlying physical space into a set of
stable regions within which they drive the robot sys-
tem towards an attractor. This attractor, in turn, can
be characterized abstractly by means of predicates in-
dicating the achievement of the functional goals of the
associated control policies. If these controllers are exe-
cuted until convergence, the behavior of the system can
largely be described by these attractors, which therefore
allow to transform the underlying continuous space into
a set of discrete system equilibria. Using the conver-
gence of controllers as control events, the behavior of
the system can thus be modeled approximately as a hy-
brid DEDS with a discrete state space corresponding to
the convergence predicates of the controllers. The ac-
tion dependent choice of the predicates should thereby
ensure that the discrete space encompasses all tasks di-
rectly addressable by the underlying closed-loop con-
trollers. This DEDS then forms the basic substrate
for the reinforcement learning problem and, through
the formal techniques available in the DEDS framework
and local models of the behavior of the individual con-
trollers, allows constraints to be imposed a priori in
order to limit the set of admissible actions to safe and
relevant control alternatives(Huber and Grupen 1996).
Control alternatives available to the DEDS and learn-
ing systems are thereby the individual closed-loop con-
trollers, as well as the hierarchical, concurrent activa-
tion of multiple of these controllers using the "subject
to" ("<f’) constraint. Similar to nullspace control for
linear systems(Yoshikawa 1990) this constraint priori-
tizes the control actions such that a lower priority con-
troller operates within an "extended nullspace" of the
higher priority ones and can thus not counteract their
progress. This in turn ensures that the stability and
convergence properties of the original controllers are
inherited by the composite controllers. Using this, the
learning component uses Q-learning(Watkins 1989) 
acquire a control policy which optimizes the given re-
inforcement while maintaining within the range of con-
trol actions allowed by the DEDS supervisor. At the
same time the exploration process allows to build an im-
proved abstract system model by estimating the transi-
tion probabilities within the DEDS model. This overall
architecture is shown in Figure 1.

As shown in this figure, all direct sensory input and
actuator output in this approach is handled by the con-
tinuous control elements in the bottom layer. Activa-
tion and convergence of these individual or composite
controllers are then interpreted as discrete events in
the abstract DEDS model of possible system behav-
ior which forms the basis for the reinforcement learning
system. A priori constraints imposed on this model can
be used to limit the range of possible actions to keep
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Figure 1: The Control Architecture

the system within a safe mode of operation, as well as
to implement temporally varying "maturational" con-
straints to improve learning performance. In addition
to this, this structure also promises the possibility of
hierarchical action spaces since learned control policies,
together with the corresponding predicate space mod-
els, could be included as higher level controllers into the
DEDS model and thus into the learning process.

Walking Experiment

To illustrate this hybrid learning and control architec-
ture, the following shows an example of the overall ar-
chitecture applied to the task of learning a turning gait
on-line in a single trial on the four-legged walking robot
shown in Figure 2.

Figure 2: Walking Robot

97



Locomotion gaits are formed here as sequences of con-
current activations of a set of feedback controllers and
represented as nondeterministic finite state machines.
The set of feedback controllers used at the bottom layer
of the architecture, is constructed using a control basis
approach(Grupen et al. 1995). In this approach con-
trollers are established by attaching a set of input re-
sources (sensor abstractions) and output resources (ab-
stract actuators) to a control law which addresses 
generic control objective. In the case of the locomotion
tasks, three control laws are used:

¢0: Configuration space motion control- a har-
monic function path controller is used to generate
collision-free motion of the robot in configuration
space(Connolly and Grupen 1993).

¢1-* Contact configuration control - contact con-
trollers locally optimize the stability of the foot pat-
tern based on the local terrain(Coelho Jr. and Gru-
pen 1997).

(I)2: Kinematic conditioning control - a kinematic
conditioning controller locally optimizes the posture
of the legs.

Each of these control laws &i can be bound on-line to
input resources a and output resources T derived as
subsets of the system resources (legs 0, 1, 2,3 and po-
sition and orientation x, y, (f) of the four-legged robot
illustrated in Figures 3.

Control Basis : Ineut / Outout Resources :

-- Path Controller

(~1-- Contact Controller

~2-- Posture Controller

3 0

Figure 3: Controller and Resource Notation

The resulting feedback controllers &i~ can be acti-

vated concurrently under the "subject to" ("<~") con-
0,1,2,3 0,1,2

straint. The composite controller ¢2 v_-----’-<] (I)1 o_----, for
example, attempts to achieve a stable stance on legs
0, 1, and 2 by moving leg 0 with the dominant con-
troller while the subordinate controller optimizes the
kinematic posture of all four legs within the "nullspace"
of ¢1 by rotating the body. For the example presented
here, the set of possible controllers was limited in or-
der to allow for a concise notation for the predicate
space model. The set of closed-loop controllers avail-
able to the system consists here of all instances of the

¢ a_,b,ccontact configuration controller of the form 1 a_ ,
where a,b,c E {0,1,2,3}, a # b # c # a are three
legs of the robot, and one instance of the kinematic

(]~ 0,1,2,3conditioning controller, 2 ~ . Using this set of 13

primitive controllers, the "<J" constraint can be used to
construct a total of 157 composite controllers available
to the DEDS and learning components. In addition,
this choice of continuous controllers limits the set of
convergence predicates to 5 elements (Pl , P2, P3, p4, Ps 
since multiple controllers have identical control objec-
tives and their predicates can thus be combined. The 5
predicates correspond to the convergence of individual
controllers in the following way:

1,2~3 0,2,3 0,1,3
Pl +-- (I)l* -’’- , P2 /-- (I)l * , P3 +-- (~1 *_-- ,

_ 0,1,2 0-,1,2,3
P4 +- (Pl.:--- , P5 +- ¢2._- ,

where *_ is a wildcard and indicates the independence
of the predicate evaluation from the output resource.
These predicates, together with initial, abstract models
of the behavior of the controllers, form then the basis
of the DEDS system which represents the space of all
possible system behavior. The DEDS framework allows
then to impose a quasistatic walking constraint of the
form Pl V P2 V P3 V 1o4 (at least one stance has to be
stable at all times) to determine the set of admissible
control actions in each of the abstract predicate states.

To address a new task, Q-learning(Watkins 1989;
Watkins and Dayan 1992), a widely used temporal dif-
ference method that learns control actions that maxi-
mize the expected future reward, is used to acquire a
control policy for a given reinforcement signal on top of
the constrained DEDS model. This scheme allows the
acquisition of control policies even if their objective is
not represented as a state in the underlying state space,
and thus permits cyclic policies. In the experiment pre-
sented here an immediate reinforcement proportional to
the rotational progress, rt = (fit - (ft-1, is used to ac-
quire a counterclockwise rotation gait. The safety con-
straint imposed in the DEDS layer allows thereby to
simply start the robot in an arbitrary configuration on
a flat surface and to learn the policy on-line in a sin-
gle trial. A characteristic learning curve for this task is
shown in Figure 4.

This graph, in which a control step indicates one
controller activation, i.e. one transition in the DEDS
model, shows that the robot rapidly acquires a good
policy for this rotation task. The complete learning ex-
ample executes on the real platform in approximately
11 minutes.

At the same time that such a policy is learned, the ex-
ploration can also be used to estimate transition prob-
abilities between predicate states and thus to improve
the abstract model of the system behavior. Such a
model can be useful for off-line learning, as well as for
system analysis and planning purposes in future tasks.
Figure 5 shows the learned policy and the correspond-
ing system model.

Here the numbers in the states represent the values of
the 5 predicates, the controller definitions on the right
indicate the learned policy for the core of the turning
gait, and the width of the transition arrows indicates
the acquired transition probabilities, with bold arrows
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Figure 4: Learning Curve for Counterclockwise Rotation Task (left) and Performance of the Learned Policy without
Exploration (right)

Figure 5: Learned Rotation Gait

for the central gait cycle indicating probabilities greater
than 98%. The execution of this central cycle, which ef-
fectively leads the system through a sequence of stable,
three-legged stances, is also depicted in Figure 6.

These robot pictures illustrate the angular progress
achieved throughout execution of one gait cycle. The
middle schematic, in which circles correspond to foot lo-
cations and the cross indicates the center of mass, shows
the support polygons maintained throughout each con-
troller transition, demonstrating that the system is al-
ways in a safe state throughout the execution of the
learned policy.

Conclusions
The hybrid control architecture presented in this paper
is designed to address on-line learning and control in
complex systems and unstructured environments. To
achieve this it employs a set of closed-loop controllers
together with a DEDS layer which allows to incorpo-
rate certain types of a priori knowledge into the system
and permits action dependent state abstractions in or-
der to reduce the complexity of the subsequent learning
problem. The learning example presented in this pa-
per and other locomotion experiments performed using
this architecture(Huber and Grupen 1998) show that
this represents a feasible approach to perform learning
for more complex tasks on-line on real robots. In ad-
dition, the use of such a hybrid control scheme allows
to reason at a more abstract level within the discrete
component of the architecture while the continuous as-
pects are locally controlled by the continuous control
elements. This in turn promises to facilitate the design
and construction of the control system~ as well as to al-
low the use of a large variety of planning methods to aid
in the construction of task specific control policies, and
thus to further improve the adaptivity and autonomy
of robot systems.
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