From: AAAI Technical Report SS-99-05. Compilation copyright © 1999, AAAI (www.aaai.org). All rights reserved.

Qualitative Reasoning about Continuous Processes with the Situation
Calculus

Todd G. Kelley

Department of Computer Science
University of Toronto
Toronto, Canada M5S 1A4
tgk@cs.toronto.edu

Abstract

A fundamental aspect of general reasoning about
physical systems is qualitative reasoning about
continuous processes. The situation calculus is
proposed as a framework for qualitative reason-
ing with some desirable properties that are less
evident in the traditional framework, qualitative
physics. However, in order to handle qualitative
reasoning about continuous properties, we extend
the concurrent, temporal situation calculus to in-
clude function variables. We show how param-
eters that are functions of time are specified by
successor state axioms in terms of pieces of other
functions of time. Finally, we present a qualitative
bouncing ball example.

Introduction

A formal framework for representing and reasoning
about dynamical worlds must address multiple chal-
lenges. A sample of the primary issues are agents
and their actions driven by free will, perceptual actions
and their effects on mental state, nondeterminism and
chance, natural actions that are the result of mechan-
ical laws of nature rather than free will, and change
due to continuous processes. Also, knowledge may be
qualitative or incomplete. A suitable formal framework
should handle each of these issues in light of the frame,
qualification, and ramification problems, which, in their
general forms, are still open research problems.

The situation calculus language (McCarthy & Hayes
1969) is showing promise as a formal framework for
representing and reasoning about dynamical worlds in
the presence of these challenges. For example, Reiter
presents a solution the frame problem for the situation
calculus in (Reiter 1991), based on adhering to a partic-
ular form for the axioms, called successor state axioms,
that represent knowledge of the effects of actions.

In this paper we take advantage of the progress with
the situation calculus, while concentrating specifically
on how to represent knowledge about natural actions,
continuous processes, and discrete events in dynami-
cal worlds, building on previous work by Sandewall
(Sandewall 1989), Pinto (Pinto 1994) and Reiter (Reiter
1996b). In particular, we extend the situation calculus

103

language of (Reiter 1996b) to facilitate the representa-
tion of qualitative knowledge of continuous processes.

We begin with a brief introduction to the situation
calculus, and then list some desirable properties for a
formal framework that are more evident in the situation
calculus than in the traditional framework of QSIM-
style qualitative physics. Next, we present the basics
of the situation calculus approach to modeling physi-
cal systems that involve continuous change and discrete
events. As is argued in the qualitative physics litera-
ture (Weld & de Kleer 1990) it is important to be able
to represent qualitative or incomplete knowledge about
physical systems. Addressing this need, we then in-
troduce an extension to Reiter’s concurrent, temporal
situation calculus that facilitates the representation of
qualitative knowledge of physical systems and their con-
tinuous processes. We illustrate the use of the extended
language with a qualitative bouncing ball example to
show how the extended situation calculus is used to rea-
son qualitatively about physical systems. We conclude
with a discussion of future work, namely, implementing
a simulator for the extended language.

Situation Calculus

The situation calculus is designed to formalize the be-
havior of dynamically changing worlds. A situation is
a history of action occurrences, and any situation iden-
tifies a complete evolution of the world. In particular,
a situation does not denote a state. A world state is
comprises the values of fluents which are functions or
relations whose values or true values, respectively, vary
according to situation. In a situation calculus specifi-
cation (i.e. model of a world), successor state axioms
specify the state of the world after it has evolved ac-
cording to a particular course of action (i.e. situation),
and precondition axioms specify which courses of action
are possible. The following sections elaborate on these
ideas.

Naming courses of action

The mechanism for all change in dynamical worlds is
one or more agents, perhaps including Nature, perform-
ing named, instantaneous, actions. Situations are histo-
ries of action occurrences, each denoting a different evo-

lution of the world. The constant symbol Sy denotes
the situation in which no actions occur. Other than S,
all situations have names of the form, do(a, o), intu-
itively meaning the result of doing action « just after
the world has evolved according to situation o. Actions
are denoted by functions, with the time ¢ of the action
occurrence being the last parameter. A coherent set of
actions is a concurrent action, where coherent means at
least that each action in the set has the same time of
occurrence. For example, consider the situation

do({stop-talking(T3)},
do({begin_walking(T1), begin_talking(T1)}, So),

which denotes the world history in which an agent be-
gins walking and talking at time 7j, and then stops
talking at time 73. The agent would not be talking af-
ter this course of action, but she would still be walking.

The State of the World

The state of a world resulting from a certain course of
action is determined by the values of fluents.

Relational fluents are denoted by predicate symbols
taking a situation term as their last argument. These
relations represent what is true about the world after
carrying out the course of action specified by their sit-
uation argument. For example, the fluent, happy(p, s)
might mean that person p is happy in s. Note that a
situation is not a state, but a history of action occur-
rences; so we take “p is true in s” to mean, “p is true
after carrying out, in order, all and only the actions
specified by s”.

Functional fluents are functions whose value varies
from one situation to another. For example,
const_position(ball,s) might denote the real-valued
constant position of a ball in situation s.

Specifying Which Courses of Action Can
Happen

Precondition arioms determine the conditions under
which an action is possible. A situation calculus spec-
ification of a world includes one precondition axiom
for each simple action. For example, the precondition
axiom for a bounce(t) action might state that a ball
bounces iff it is falling and it is at the floor.

Consider the function, dif f(f), which takes a func-
tion, f, as its argument and has as its value the func-
tion which is the derivative of f. We might write
dif f(h(s))(T) < 0 to say that the value of the time rate
of change of the height function of a ball at time T in s
is less than 0. In other words, the ball is falling at time
T. Hence, the precondition axiom for the bounce(t)
action is

Poss(bounce(t),s) =
t > start(s) Ah(s)(t) =0A
dif f(h(s))(t) <0 (1)

where Poss(a, s) means that action a is possible in sit-
uation s.

104

The Results of Courses of Action

The ways in which the values of fluents are affected by
action occurrences are determined by successor state
arioms. A situation calculus specification of a world
includes one successor state axiom for each fluent. The
axiom specifies all individual conditions under which
the fluent will change, and how the fluent changes under
those conditions.

Consider a world where a ball can bounce, and it
can be caught, and no other actions can affect it. The
successor state axiom for the h(s) fluent would state
that the value of h(do(c, s)) depends upon what simple
actions are in c. If ¢ contains a bounce and not a catch,
the ball’s velocity reverses. If ¢ contains a catch, the
ball’s position becomes constant where it is caught. If
¢ contains neither a bounce nor a catch, the behavior
of the ball’s position remains unchanged. Successor
state axioms embody Reiter’s (Reiter 1991) solution to
the frame problem.

Why the Situation Calculus?

Given that qualitative physics provides a modeling lan-
guage, and a system for simulating models in that lan-
guage, why do we look to the situation calculus as a
framework? We believe that a framework for qualita-
tive reasoning about physical processes should have the
following properties.

The language should be able to handle the full range
of degrees of incompleteness of knowledge. Ideally, it
should be possible to represent all of, and only, what
is known about a physical scenario, whether very lit-
tle is known about it, or everything is known about it.
The qualitative physics modeling language has been de-
signed primarily to represent physical situations where
equations, or relationships between quantities, are not
known exactly. Hence, it is quite natural for the qualita-
tive physics specification language to incorporate a pri-
ort abstractions of the quantities and their relation-
ships, namely the abstractions inherent in the quali-
tative differential equation (QDE). These abstractions
may force the modeler to discard knowledge, but the
qualitative physics specification writer does not regard
this as a problem, but rather as part of a specifica-
tion methodology. In fact, a procedure for translating
from ordinary differential equations into qualitative dif-
ferential equations is part of the repertoire of qualita-
tive physics.(See, for example, Section 3.3.1, Abstract-
ing structure from ODE to QDE, in (Kuipers 1994).)
The situation calculus, on the other hand, gives the
specification writer the freedom (and responsibility) to
choose whether such abstractions are appropriate.

The transition from specifying partial knowledge to
specifying complete knowledge should be seamless. The
task of enhancing the standard QSIM algorithm to han-
dle semi-quantitative information has been addressed
(Kuipers & Berleant 1988; 1990; Kay & Kuipers 1993).
However, these approaches involve an additional com-
ponent of processing that takes place after the QSIM

algorithm has produced its qualitative behavior repre-
sentation. The additional processing takes the semi-
quantitative information and uses constraint satisfac-
tion to discard some of the behaviors passed on by the
basic QSIM algorithm. The quantitative information is
not integrated into the base representation language. In
situation calculus specifications, all knowledge, whether
complete or incomplete, is expressed in the same gen-
eral manner in the representation language.

The language should have a clear semantics. QSIM
simulation has an operational semantics, because much
knowledge, for example the transition tables of {(Kuipers
1986), is embodied in the QSIM algorithm itself. There-
fore, the semantics of a QSIM specification is unclear
unless the reader has full knowledge of the rather sig-
nificant QSIM algorithm. The situation calculus, being
a logical language, has a standard logical semantics,
accessible to a broad audience who are familiar with
mathematical logic.

Specifications should be self-contained. The QSIM
specification language is not self-contained, because the
semantics of a QSIM specification is in terms of the
QSIM algorithm. On the other hand, a situation cal-
culus specification is self-contained because it alone de-
fines the behaviors of the specified scenario.

Wherever possible, standard mathematical notation
should be used. The qualitative physics representation
language employs a mathematical notation peculiar to
its qualitative mathematics. With the situation calcu-
lus, it is natural to use standard mathematical notation
when the axiomatizer assumes the standard interpreta-
tion of the real numbers and their relations.

Modeling physical systems

Processes

Much of the change in a dynamical world is thought of
as resulting from processes. Bringing water to a boil,
and filling a gas tank are examples of processes. Al-
though the notion of a process is not a fundamental
aspect of our knowledge representation paradigm, it is
an important concept, and in this section we explain
how processes are represented.

A process in the context of this paper is a manifes-
tation of continuous change in one or more real-valued
quantities as time progresses. Every process is initiated,
altered, or terminated by an instantaneous action.

A process is not directly tied to a particular sequence
of actions. For example, consider a bathtub-filling pro-
cess, in which the level of water in the bathtub is the
real-valued quantity that changes. If the stopper is in
the drain, this process might be initiated by turning
on the faucet, and terminated by turning off the faucet.
On the other hand, if the faucet is already on and water
is running, but the stopper is not in the drain, this pro-
cess might be initiated by inserting the stopper in the
drain, and terminated by removing the stopper from
the drain.

An important point to note is that no action has

105

duration—all actions are instantaneous. A proposed
“action” such as “wait_a_minute” is not an action at
all. However, it could be represented as a process, in
which the quantity that changes is the time waited, ini-
tiated by a begin_waiting action, and terminated by an
end_waiting action after a minute has elapsed.

Continuous processes in the situation calculus are
represented using functional fluents. * The important
idea, due to (Sandewall 1989) and (Pinto 1994), is
that although a continuous process involves continu-
ous change in the values of one or more parameters,
the value of a particular parameter can be considered
to have a behavior that does not change in a particular
situation. The behavior of the parameter is constant in
a situation, although the parameter itself varies accord-
ing to some (just one) function of time.

To illustrate this idea, consider a ball that, upon be-
gin dropped, falls under the influence of gravity. To
represent the time-varying height of the ball, we use
a functional fluent, h(s), which denotes a function of
time (as opposed to a real-valued height). The second-
order term, h(s)(¢), denotes the real-valued height of
the ball at time ¢ in situation s. So, h(do(drop(T1), So))
would denote a function of time, t, representing a falling
behavior, perhaps h(So)(T1) — 1/2g(t — T1)?, where
h{(So)(T1) denotes the position of the ball at the time
the drop(T}) action occurs in Sp.

Natural actions

Natural actions, as opposed to agent-performed actions,
are actions that happen mechanically without the “free
will” of any agent. Natural actions have the special
property that whenever one is possible, it must occur,
provided that no earlier action prevents it from occur-
ring. For example, when a bounce action is possible
for a ball (i.e. it is at the floor and moving downward),
it must bounce at exactly that time, unless a previous
action (perhaps a catch) prevents the bounce.

A domain of discourse in which all actions are natu-
ral is said to comply with Reiter’s (Reiter 1996b) Nat-
ural World Condition (NWC'). This condition is true
of worlds that consist of only a physical system that
evolves without any agent intervention. The behavior
of these worlds is deterministic, and can therefore be
simulated.

Natural actions occur in a situation s at the least
natural time point, Intp(s,t):
def

Intp(s,t)
(Ja)[natural(a) A Poss(a, s) A time(a) =t] A
(VYa)[natural(a) A Poss(a,s) D time(a) > t].

Informally, the least natural time point is the earliest

time at which any natural action can possibly occur in
a situation. The Least Natural Time Point Condition
(LNTPC) is the following:

(Vs).(3a)[natural(a) A Poss(a, s)] D (3t)intp(s,t). (3)
This condition states that every situation in which there
is a possible natural action has a least natural time

(2)

point (i.e. if there is any possible action, then there is
an earliest possible action).

Reasoning about physical systems in the situation
calculus is concerned mostly with ezecutable situations.
Executable situations are consistent with the laws of
Nature, which means all natural actions occur iff they
are required to by Nature. The following theorem de-
fines the executable situations for natural worlds.

LNTPCANWC D
ezecutable(do(c, s)) = {executable(s) A
Poss(c, s) A start(s) < time(c) A
(VYa)[a € c = Poss(a, s) Alntp(s,time(a))]}. (4)

Informally, this states that in any world for which
LNTPC and NWC are true, a situation is executable
iff it is the result of doing a possible concurrent action
in an executable situation, and every simple action in
the concurrent action occurs at the least natural time
point of that situation.

Also,

executable(Sp). (5)

Therefore, simulating a situation calculus specifica-
tion of a physical system amounts to finding executable
situations: starting with a situation, usually Sy, find-
ing the possible concurrent action that occurs at the
least natural time point of that situation, and then re-
cursively repeating this process on the new situation
resulting from doing the action. If there is no possible
concurrent action in a situation, that situation is stable,
and the simulation terminates.

Adding a function sort to the situation
calculus

In this section, we discuss an extension to Reiter’s
concurrent, temporal situation calculus (Reiter 1996a).
Also, we discuss how the extended language can be used
to express knowledge, qualitative or not, about param-
eters that are functions of time, and how their behavior
is affected by actions.

The extension
The extension consists of adding to the alphabet

e countably infinitely many one-place function vari-
ables of sort function

¢ A finite or countably infinite number of function sym-
bols of sort action x situation — function.

The latter are helper functions, one for each parameter
that varies continuously in the application. Intuitively,
a parameter that varies continuously is piecewise equal
to a selection of the functions “returned” by its corre-
sponding helper function. The naming convention for
helper functions is that they have the same name as the
corresponding fluent, but with an h subscript.

Adding the function variables to the language al-
lows the representation of important forms of qualita-
tive knowledge about the behavior of a parameter that

106

is a function of time. For example, we will often want to
represent the knowledge that an object in the real world
follows a classical trajectory without knowing what the
trajectory is. Besides the knowledge that its trajectory
is classical, often the only knowledge we will have about
a parameter’s behavior is that the time derivative of its
path is greater than or less than zero on some interval.
We express this knowledge making use of the following
function and predicates:

¢ function symbol dif f : function — function. The
intended interpretation of dif f(f) (abbreviated f’)
is that it denotes the function that is the derivative
of the function f.

o predicate symbol continuous : function x object.
The intended interpretation of continuous(f,t) is
that function f is continuous at ¢.

¢ predicate symbol dif fable : function x object. The
intended interpretation of dif fable(f,t) is that the
derivative of function f exists at .

To represent the notion of a classical trajectory, we will
use the following abbreviation:

ct(f) = [(Vt).continuous(f,t) A dif fable(f,t) A
continuous(dif f(f),t) A dif fable(dif f(f),t)]

A general example

In this section we explain how pieces of functions of time
are used to represent (perhaps incomplete) knowledge
about parameters that are functions of time.

Each such parameter is represented by a function-
valued functional fluent, which has a corresponding
helper function. Consider a parameter represented
by the function-valued functional fluent h(s), with
helper function hp(s). The intuitive idea is that if
Sp = do(an,do(an—1,do(...,S)...)), h(S,) is a func-
tion piece-wise equal to the functions, hp(a;, S;) (and
h(So)), for any a; that affects the behavior of the h
parameter.

Suppose that h is affected by only two kinds of ac-
tions, ag4n(t), and ayup(t). Also, suppose we know that
any ag4n(t) action causes the h parameter to follow a
monotonically decreasing classical trajectory, and any
ayp(t) action causes the h parameter to follow a mono-
tonically increasing classical trajectory. That is all we
know.

The successor state axiom for h(s) would be

h(do(a,s)) = f =
(Vt).t > time(a) A f(time(a)) = h(s)(time(a)) A
ct(f) A f(t) = hp(a,s)(t) A
[(Ft1).a = agn(ti) A (VE2)dif F(f)(t2) <OV
a = ayp(ts) A (VE2)dif f(f)(t2) > 0]V
[t < time(a) V (Vt1).a # aan(t1) A a # aup(t1)] A
£(t) = h(s)(2). 7
This says that h(do(a, s)) is a function, call it f, which
has the following properties:

def

(6)

’hh(adn(Tl), So)

hn (aup (TZ); do(a'dn (TI)’ SO))

S /

Figure 1: Three functions. Suppose that model U as-
signs each of the three functions named in the figure
the graph indicated by the arrow.

o for times ¢ > time(a),

— the value of f when the action occurs is the same
as the value of the parameter at that time in the
previous situation,

— f is a classical trajectory,

— on the interval [t, 00), f is equal hp(a, s),

— if the action is an a4, action, then f is monotoni-
cally decreasing, and

~ if the action is an ayp action, then f is monotoni-
cally increasing;

o for times ¢t < time(a), or if the action is neither an
Gyp NOT an agn action, then f is the same as in the
previous situation, as if no action occurred at all.

This is qualitative knowledge, since many functions
satisfy all of the above properties. That is, different
models (in the logical sense) will assign different func-
tions to the symbol h(S;) for some S;. Consider a
model U such that U assigns h(So), hn(adsn(T1), So)
and hj(aup(T2), do(aqn(T1), So)) the respective graphs
shown in Figure 1. Then, for model U, Figure 2 shows
the graph of h(do(aan(T1), So)), and Figure 3 shows the
graph of (h(do(aup(T2), do(adn(T1), So))). It may seem
odd that the function h(s) says things about the param-
eter h even before the start time of s. This apparent
oddness would probably stem from the habit of saying
something is true in a situation s; however, we must
keep in mind that every situation is a complete world
history, not a state. Even Sy is a complete world his-
tory in which nothing at all happens. So, as long as the
things that happen are only all the actions specified by
s, in order, then the value of the parameter h for any
t € (—00,00) is the value of h(s)(t).

Qualitative bouncing ball

In this section we work through an example where a ball
is moving up as if it has just bounced or been tossed
up, and we deduce that later, it bounces. We have the
following knowledge of the ball world.

There is only one kind of action in this world, the
bounce actions, all natural, possible only when the ball

107

Figure 2: Given Figure 1, this is a graph of the function
h(do(adn(T1),So))) for model U.

h

i

T Ty

Figure 3: Given Figure 1, this is a graph of the function
h(do(aup(T2), do(adn(T1),S0)))) for model U.

is at the floor (h = 0), and approaching the floor:
Poss(bounce(t), s)
t > start(s) Ah(s)(t) = 0Ah(s)'(t) <0 (8)

In the initial situation, the ball is above the floor,
moving up, and has a negative acceleration:

h(S0)(To) > 0 A R(So) (To) > 0 A (9)

(FeVt)R(So)"(t) < ¢ < 0, (10)

where Ty is the arbitrary start time of S5. We do not

know exactly what the acceleration is, because air re-
sistance exerts a varying force on the ball.

The bounce action causes the ball to have a positive
velocity, and a negative acceleration:

h(do(a,s))= f =
(Vt).t > time(a) A ct(f) A f(t) = hn(a,s)(t) A
f(time(a)) = h(s)(time(a)) A
(3t1)a = bounce(t1) A
f,(tl) >0A (Vtz)f”(tz) <C<0V
[t < time(a) V (Vt1)a # bounce(t1)]
AF(t) = h(s)).

We know of classical trajectories that:

(11)

Ft)<0D[ti <t2 D f(t1) > f(t2)] (12)
flt)<C<0D
[f(t1) >x D (3ta)ta > t1 A f(t2) = 2] (13)

With these axioms, we can prove the following.

exzecutable(Sy) (by definition) (14)
(3t)A' (So)(t) =0 (from 9,10,13) (15)
(3t).R'(So)(t) < OAR(SO)(t) =0
(from 9,10,12,13,15) (16)
(3t) Poss(bounce(t), So) (from 8,16) (17)
(3t)executable(do(bounce(t), So) (from 4,14,17) (18)
h(do(bounce(T3), So))'(T2) > O A
(Vt)h(do(bounce(T), S0))" (1) < C < 0 (from 11) (19)

We have proved that the ball will stop, reverse, reach
the floor, and bounce, without knowing the exact func-
tions for its velocity and acceleration.

Future work and discussion

We have shown how the situation calculus can be used
to represent knowledge, perhaps qualitative, of dynami-
cal worlds involving discrete events and continuous pro-
cesses. An obvious next step is to implement a simu-
lator that takes a specification (model) of a world, and
prints out its possible evolutions. A PROLOG technol-
ogy implementation that handles non-qualitative cases
is discussed in the context of modeling a toilet in (Kelley
1996b) and a steam boiler controller in (Kelley 1996a).

A simulator that handles qualitative cases is cur-
rently being developed. The simulator for qualita-
tive cases operates in basically the same way as non-
qualitative cases, but it includes in addition a PRO-
LOG procedure to do qualitative comparisons of the
values of quantities. All comparisons are diverted to
this procedure, which will attempt to determine the re-
sult of the comparison: whether one value is greater
than , equal to, or less than the other value. In cases
where the answer can be produced, the simulation pro-
ceeds normally. In cases where the answer cannot be
produced because knowledge of the values is not suffi-
cient, the procedure assumes each of the three possible
results in turn, asserting the assumption into the PRO-
LOG database, and the simulation proceeds. When
the simulation terminates, a possible world evolution
is printed, and that assumption, resulting in that par-
ticular world evolution, is printed out with any other
assumptions that were needed during that evolution’s
derivation. Then the simulator can backtrack to the
point where the qualitative comparison procedure made
an assumption, retract it, assume the next alternative,
and proceed again. Thus a simulation of a qualitative
specification will result in several possible world evolu-
tions, and the simulator prints out the conditions that
would give rise to each one.

References

Kay, H., and Kuipers, B. J. 1993. Numerical be-
havior envelopes for qualitative models. In Proc. of
the 11th National Conf. on Artificial Intelligence, 606—
613. AAAI/MIT Press.

108

Kelley, T. G. 1996a. Modeling complex systems in
the situation calculus: a case study using the dahgstul
steamboiler problem. In Aiello, L. C.; Doyle, J.; and
Shapiro, S. C., eds., Principles of Knowledge Repre-
sentation and Reasoning: Proceedings of the Fifth In-
ternational Conference (KR ’96). San Francisco, CA:
Morgan Kaufmann Publishers.

Kelley, T. G. 1996b. Reasoning about physical systems
with the situation calculus. In COMMON SENSE ’96:
the third symposium on logical formalizations of com-
monsense reasoning.

Kuipers, B. J., and Berleant, D. 1988. Using incom-
plete quantitative knowledge in qualitative reasoning.
In Proc. of the 7th National Conf. on Artificial Intel-
ligence. :

Kuipers, B. J., and Berleant, D. 1990. A smooth inte-
gration of incomplete quantitative knowledge in qual-
itative reasoning. Technical Report A190-122, Univer-
sity of Texas, Austin, Texas.

Kuipers, B. 1986. Qualitative simulation. Artificial
Intelligence 29:289-338.

Kuipers, B. 1994. Qualitative Reasoning: Modeling
and Simulation with Incomplete Knowledge. Cam-
bridge Massachusetts: The MIT Press.

McCarthy, J., and Hayes, P. 1969. Some philosophical
problems from the standpoint of artificial intelligence.
In Meltzer, B., and Michie, D., eds., Machine Intelli-
gence 4. Edinburgh, Scotland: Edinburgh University
Press. 463-502.

Pinto, J. A. 1994. Temporal Reasoning in the Situation
Calculus. Ph.D. Dissertation, University of Toronto,
Toronto, Ontario, Canada.

Reiter, R. 1991. The frame problem in the situation
calculus: a simple solution (sometimes) and a com-
pleteness result for goal regression. In Lifschitz, V.,
ed., Artificial Intelligence and Mathematical Theory
of Computation: Papers in Honor of John McCarthy.
San Diego, CA: Academic Press. 359-380.

Reiter, R. 1996a. Knowledge in Action: Logical Foun-
dations for Describing and Implementing Dynamical
Systems. To appear.

Reiter, R. 1996b. Natural actions, concurrency and
continuous time in the situation calculus. In Aiello,
L. C.; Doyle, J.; and Shapiro, S. C., eds., Principles
of Knowledge Representation and Reasoning: Proceed-
ings of the Fifth International Conference (KR ’96).
San Francisco, CA: Morgan Kaufmann Publishers.

Sandewall, E. 1989. Combining logic and differential
equations for describing real-world systems. In First
International Conference on Principles of Knowledge
Representation and Reasoning. San Mateo, CA: Mor-
gan Kaufmann.

Weld, D. S., and de Kleer, J., eds. 1990. Readings
in Qualitative Reasoning About Physical Systems. San
Mateo, California: Morgan Kaufmann.

