
Enhancing Discrete Event Simulation by Integrating Continuous Models

Jane T. Malin

Automation, Robotics and Simulation Division
NASA Johnson Space Center

Houston, TX 77258
malin@jsc.nasa.gov

Land Fleming

Hernandez Engineering
Houston, TX 7708

fieming@mickey.jsc.nasa.gov

Abstract
This paper describes CONFIG, an implemented hybrid
modeling and simulation approach, within a discrete event
system framework, and its application to control software
validation. CONFIG system models are made up of
connected devices and activities, and device models are
made up of mode transition models, with behavior models
for each mode. Behavior models can be discrete or
continuous, and characterize how changes in discrete inputs
produce changes in outputs and mode transitions. In
CONFIG, two operators, Integrate and Apply-When, are
used to compute states or time advances that depend on
continuous changes. The Apply-When operator calls
external algebraic functions to determine the time advance
for a rate-dependent event. The Integrate operator uses a
discrete-time approach, providing periodic updates of
variables. CONFIG simulations were used to validate
advanced control software for gas transfer between
chambers during a 90-day manned test of technology for
Lunar-Mars life support.

Introduction

Operation of production plants for life support or
propellant production in space requires a combination of
discrete and continuous control. Physico-chemical or
biological processors concentrate and convert gases and
liquids. While these dynamic processes are active, they
may require continuous regulation. When duty cycles
require reconfiguration of these processors and of the
system of storage and transportation equipment between
processors, discrete control is typically required. This
combination of discrete and continuous control presents a
challenge to modelers and designers of controllers, because
design solutions draw from two paradigms. In the
dominant hybrid systems paradigm, design is based on
continuous systems, with discrete extensions. In the other
hybrid systems paradigm that arises from discrete

manufacturing and reactive systems, design is based on
discrete systems, with continuous extensions. A powerful
control system would integrate both paradigms.

Our work on the CONFIG discrete event modeling and
simulation tool represents the discrete paradigm. A
substantial portion of intelligent autonomy software
performs discrete reactive control. The focus is on
executing procedures to configure and reconfigure
systems, and on detecting faults and failures during these
operations. For control, system modes are defined to
describe the major operational configurations of the system
(e.g., shutdown, standby, processing). Procedures change
operating modes of system components (devices) 
support the system mode being established. Otherwise,
control is typically event-driven. Use of continuous control
is relatively infrequent. Because the control focus is on
establishing system modes, analysis often focuses on
system-wide effects of events. When an event occurs
because of a control action or a failure, effects can cascade
through the system configuration. A valve that fails to
open when commanded will have local and global effects
on the configuration and the processors. Discrete event
simulation is well suited for this type of analysis.

In discrete event simulation, behavior of devices is
typically abstracted to correspond to functional operating
modes or states. Transitions among device operating
modes are events that are typically caused or prevented by
state changing events, including external commands and
externally or internally caused failures. Behavior within
such modes is typically represented as constant, with
simple pass-throughs of variable values. Within some
operating modes, some devices exhibit constant rate
behavior. A minority have variable rate behavior. In

117

From: AAAI Technical Report SS-99-05. Compilation copyright © 1999, AAAI (www.aaai.org). All rights reserved. 



discrete event simulation, the rate-related variable is
typically the time advance from one event to another.
Rather than variable changes being time-stepped (discrete
time), time advances are event-stepped (discrete events).

The discrete event system specification (DEVS) formalism
introduced by Zeigler (1976) specifies a system, with 
continuous time base but discrete inputs and state
transitions, as a structure:

M = [X, S, Y, dint, dext, 2, ta] where

X is the input value set (value-change events arbitrarily
separated from each other in time);
S is the sequential state set;
Y is the output value set (value-change events);
dint: S -> S, the internal transition function;
dext: Q x X-> S, the external transition function,

where Q is the total state set = {(s, e) / s 6 S, 0 < 
< ta(s}J;
ta: S -> R+O. ~,, the time advance function (a positive real
number for time to the next internal transition, computed
upon transition into the state);
2.’ S -> Y, the output function (value-change produced just
before transitioning to the next state).

The time advance can be a function of dint, dext, or 2.
Asynchronous changes in these systems are managed by an
event scheduler with a variable time advance.

Discrete event models are hierarchical models, composed
of coupled interconnecting components. The connections
are defined by the couplings of inputs and outputs between
the components. The behavior of the coupled model is a
result of the coupled behavior of its components. In the
CONFIG extension of DEVS, the model structure can be
"recomposed" during a simulation as the direction and
activation of interconnections changes, changing the
couplings.

In CONFIG the state space is further structured using
modes. Within modes, according to a behavior model,
state changes due to rate-influenced processes can occur at
regular intervals in time or value, or state changes can be
triggered asynchronously by an external change.
Transitions between modes are based on a conditions or
boundaries that are associated with a change in the model
of the behavior of the device. In DEVS, boundary-based
multimodels handle sets of complementary models that
describe processes that have phases of qualitatively
different behavior. Switching between models is handled
by the finite state machine that manages phase transitions

at boundaries. In CONFIG these phases transitions can
occur within or between modes of devices.
Continuous models are sometimes needed to handle
continuous behavior within operating modes that leads to
events. The problem is to embed hybrid system modeling
in a simulation system that is designed to operate in a
discrete event framework, where time advances in varying
step sizes from scheduled event to scheduled event
(Zeigler and Praehofer, 1998). Within a small subset 
the operating modes, a different continuous model may be
applicable to each of a set of qualitative states or phases of
behavior. Events in hybrid systems are not just scheduled
in time, but are rather conditions reached as results of
changing states, or "state events".

It is possible to incorporate a discrete-time approach,
providing periodic updates of variables within an operating
mode, but such an approach can trade performance against
"missing" a critical state event. In a more natural approach,
continuous models can be used to calculate the time
advances to critical state events in continuous systems.
Mechanisms can be developed to handle external events
that interrupt or change rates and require recalculation of a
time advance. Such capabilities have been developed in the
CONFIG extension of discrete event simulation. Another
approach to integrating continuous and discrete event
simulation that is consistent with the event-oriented basis
of discrete event simulation, is to quantize variables and
calculate the variable time advances associated with
quantized changes (Zeigler, 1998). There should 
benefits from combining all these approaches.

CONFIG Extension of Discrete Event

Simulation

CONFIG was developed to support analysis of designs for
systems and their operations (Malin, Basham, and Harris
1990; Malin and Leifker 1991; Malin, Ryan, and Fleming
1993, 1994). CONFIG extends discrete event simulation
with capabilities for continuous system modeling. The
purpose of these enhancements has been to make it
possible to apply discrete event technology for model-
based prediction, to support design and evaluation of
intelligent software for control and fault management.
Although discrete event simulation has typically been used
for stochastic analyses of scenarios, CONFIG simulations
are deterministic, for specific states and inputs.

CONFIG uses a state transition system formalism in a
system model made up of a set of connected components,
or "devices" structured within a configuration or "flow
path". The direction of physical flows and the effects of

118



flow reconfigurations are efficiently analyzed during
simulations. Two of the basic building blocks of a
CONFIG model are devices and activities. Devices model
the behavior of system hardware components and activities
model actions in procedures or software. Examples of
system devices are pumps, valves, tanks and condensers.
Device relations represent the connections between system
components. Activity-device relations are used to relate
activities to system components for control and monitoring
purposes.

The modular discrete event modeling approach provides a
framework for organizing and managing the application of
more detailed knowledge. In device models, time-related
behavior models are embedded within modes, and these
modes are within state-transition systems. Two modes of a
simple valve, for example, might be open and closed. The
way a device interacts with connected devices can depend
on the current mode. Failures can be modeled as modes or
as factors that precipitate or prevent transitions. Transitions
between device modes can be determined by control
variables, variable changes propagated through inter-
device connections, or by changes in system flows.
Activity models are also state-transition models. Several
levels of control can be modeled as activities. An activity
might be used to control the positioning of a set of valves,
for example. States of activity models, called activity
phases, have embedded control behaviors. These behaviors
can represent discrete or continuous control regimes, or
elements of schedules or simulation scenarios.

Life support system applications have required accurate
accounting of resource inventories transferred by
continuous flow at variable rates to various locations
within the modeled system. In CONFIG, two operators,
Integrate and Apply-When, are used to periodically
compute states or time advances that depend on continuous
changes. The Apply-When operator calls external
algebraic functions to determine the time advance for a
rate-dependent event. The Integrate operator uses a
discrete-time approach, providing periodic updates of
variables.

The Apply-When Operator

The primary value returned by the Apply-When operator is
the time of an anticipated event. The operator is supplied
with the definitions of two functions: a normal-call
function and an interruption-call function. The operator
invokes the specified normal-call function to compute the
values of a set of state variables and the time at which the
values are to be assigned given the arguments passed by
the operator to the function. The operator then schedules

the assignments of the computed variable values at the
time determined. If any of the state variables passed as
arguments to the normal-call function change value prior
to the time of the scheduled value assignments, the
computed values will in general no longer be valid. The
interruption-call function is then invoked to compute the
values of the assignment variables at the time of the
interruption. In addition to all the arguments passed to the
normal-call function, the interruption-call function must
accept as an argument the increment of time that has
passed since the invocation of the normal-call function.
The Apply-When operator then removes the invalidated
assignment event from the simulator’s schedule and the
normal-call function is re-invoked to compute a new set of
variable values and a new event time.

The Integrate Operator

The Apply-When operator is best suited for representing
continuous processes internal to a device that are largely
unaffected by interactions with other devices and for
which the intermediate values of the continuous variables
are not of interest. The Integrate operator was devised for
representing continuous processes in a device that are
extensively affected by interactions with other devices and
for which a simulation of continuous change in variable
values is of interest. While the Apply-When operator may
be used to describe arbitrarily complex behavior, this is
determined by the functions it invokes rather than the
operator itself. In contrast, the Integrate operator permits
complex behavior to emerge from the interaction of
devices having relatively simple descriptions of internal
continuous processes. The Integrate operator, when
included in the description of a device’s internal behavior,
performs a simple linear approximation of the
continuously changing quantity to be integrated.

For example, the pressure differential between two tanks
causes gas to flow from the higher-pressure tank to the
lower-pressure tank if a valve connecting them is opened.
The descriptions of the mass of gases in both tanks may be
represented as:

mass <- INTEGRATE (mass mass.rate update, interval)

where mass is the integrating variable and the
update.interval is the time interval over which the rate is
assumed to be constant.

Interactions of the two devices may cause the rate of flow
to vary in complex ways that are not explicitly represented
in the internal behavior descriptions of any of the devices.
The mass.rate out of the high-pressure tank is always the
same as the mass.rate into the low-pressure tank, but this

119



rate varies continuously as the pressure differential
between the two tanks decreases. CONFIG’s data-driven
simulation engine causes a new pressure differential to be
computed at~er each update of the gas masses, resulting in
a smaller mass.rate and therefore a smaller increment of
mass transfer on the next update of the two tanks.

The exponential decay in mass flow rate is easily
approximated in this manner, even though the exponential
relationship is not stated in a device description. The
approximation to exponential decay is, of course, more
accurate for smaller update intervals. However, regardless
of the accuracy of the flow rate computed, the mass
balance is at all times maintained to the precision of the
floating-point facilities of the programming environment.
In the enclosed life-support system simulations, accurate
mass balances are of much greater importance than
maintaining accuracy in the rates of flow. Mass cannot
appear or disappear from the system as a simulation
artifact. For simulated operations spanning many days,
considerable accuracy can be sacrificed in the
representation of flow rates as a function of time. By
choosing large update intervals, simulation speed can be
increased with no ill effects on the usefulness of the
simulation.

Several enhancements have been implemented to make the
Integrate operator flexible and useful.

Simulation Performance and Constraints on Time
Interval Selection. It was frequently desirable to specify
different update intervals for interacting devices. In the
example of the two connected tanks, if one is much larger
than the other, the pressure in the larger tank may vary
almost imperceptibly over the same time interval in which
the pressure in the smaller tank varies significantly.
Constraining the update interval for the larger tank to be
the small value chosen for the smaller tank would force
recomputations of pressure of unneeded accuracy for the
larger tank, serving only to reduce simulation performance.
However, choosing different intervals would cause flow
rates to differ between the two devices, and would
therefore violate the mass balance. This problem was
addressed by adding a mechanism to the Integrate operator
that accounts for changes of rate between scheduled
updates of the integrated variable. When the variable is
finally updated at the scheduled time, the new value is
based on all rates of flow in effect since the last update.

Changing Update Intervals. Conditions may be
specified to change the Integrate update interval at any
time during simulation, to greater or smaller values. This is
useful when greater accuracy is needed while software

interacts with the simulation at a control point, or when a
threshold value of the integrated variable is approached. It
is also useful when the magnitude of a rate changes
substantially.

Limiting Values and Time Interval Selection. It can
sometimes be difficult to choose a fixed update interval
that will not violate a physical constraint of the real
system. For example, in a system consisting of a tank from
which gas is being vented to space, use of an update
interval that is too large will result in the tank taking on a
negative mass. Avoiding such overshoots can be
troublesome to the modeler. If a sufficiently small update
interval is chosen, the overshoot will not occur. But
determining what the interval should be can be time-
consuming. The interval selected may result in unneeded
accuracy and degradation of performance during most of
the simulation.

A modified form of the Integrate operator, Integrate-
Within-Limits, allows specification of limits that are not to
be violated. If scheduling an update of the integrating
variable at the specified time interval would cause the
variable to exceed the specified maximum or fall below the
specified minimum, the operator instead schedules the next
update for the time at which the variable would attain the
limiting value at the current rate of change. Changes of
rate are accounted for in the same way as for the Integrate
operator.

CONFIG Application for Validating

Autonomous Control Software

CONFIG has been used for dynamic simulation-based test
and validation of reactive sequencing software. CONFIG
simulations were used to validate software that provided
control during the Lunar Mars Life Support Test Program
(LMLSTP) Phase III 90-day manned test, for Interchamber
Monitoring and Control (IMC) of product gas transfer
(PGT) between the crew chamber, plant growth chamber
and an incinerator. The basic configuration of chambers
for the test is shown in Figure 1.

The IMC PGT reactive task sequencer is the middle tier in
the three-tiered (3T) autonomous control architecture
(Bonasso et al. 1997). It is implemented in the Reactive
Action Package (RAP) robot control language (Firby,
1997). The uppermost tier of 3T is a planner, which
interfaces with the sequencer and can alter the sequencer’s
task agenda. The lowest tier of 3T is the skill manager
layer that handles traditional low level control and

120



interfaces with both the sequencer and the LMSLTP Phase III testbed hardware. During simulation-based testing, the

Product Gas Transfer

Incinerator

02 Storage 02 Concentrator
02

20 Foot Chamber

/
Air Lock I lal

U
Exercise
Room

Variable Pressure Growth Chamber

Figure 1. Product Gas Transfer in the Phase III Life Support Test

IMC sequencer software monitored and controlled the
model rather than the skills layer and hardware. The model
included diverse components and systems for processing
02 and CO2 gases in a plant growth chamber, crew
chamber and incinerator, and for storing gases and
transferring them between chambers (Fleming et al. 1998a).
Figure 2 shows the Product Gas Transfer system model

during a simulation. The arrowheads along relations
indicate the directions of active gas flows. The default
graphic representations are rectangles for devices and
elongated ovals for activities. Modes are indicated by the
text in the rectangles and ovals, or by appearances of icons
that indicate device modes.

PR-CO2-O03

CRS-IC

O2 -CONC-~, O2-CONC-B

Figure 2. Product Gas Transfer System Model

121



The model devices include the chambers, various gas
processors that convert oxygen to carbon dioxide or vice
versa, gas concentrators, and PGT hardware that directs
and regulates flow and pressure. The model activities
include discrete and continuous control of the hardware
that directs and regulates flow and pressure, schedules for
crops and human activities, and some manual procedures.
The activities model control by the 3T planning or skills
tiers, local controllers or human operators. There are only
two continuous feedback controllers in the 3T skills tier.
The rest of the control is discrete, based on deadbands and
schedules.

The simulation-based testing and its results are
documented in Fleming et al. (1998b) and Malin et al.
(1998). The testing uncovered some software bugs and
some issues concerning software requirements. The most
interesting issue was observed in the context of a complex
interaction including elements of the crew chamber and the
plant growth chamber. It is not likely that this type of
software problem would have been found during
conventional software testing because it involved a
sequence of interactions of multiple devices and controllers
in the system that would be difficult to conceive of or
emulate in conventional software testing.

During simulation tests, when the CO2 accumulator was
depleted the IMC software switched the source of CO2
from the accumulator to the facility supply as intended,
except when the plant chamber CO2 level was between the
alert-low and alarm-low thresholds. When the plant
chamber CO2 level was below the alert-low level (1000
ppm) and the CO2 accumulator on the crew chamber side
was also at its alert-low limit (12 psi), the IMC software
failed to switch to the facility CO2 supply. The IMC
software disabled continuous flow into the plant chamber
and handed over control to the local CO2 controller in the
plant chamber. The local controller then switched to the
backup pulse injection system to raise the CO2 level in the
plant chamber. Because the IMC software had failed to
switch the CO2 source from the accumulator to the facility
supply, the backup system attempted to draw CO2 from
the depleted accumulator. The CO2 level in the plant
chamber continued to drop even with the backup system
on.

Future Work: Interaction of Discrete

Simulators with Continuous Control Software

CONFIG has been used successfully and productively in
validation of discrete control software. It would be
desirable to extend its capabilities to test software that

performs continuous process control functions, such as
PID control. Two examples of such control were present in
the Phase III Product Gas Transfer control software. One
controller maintained the rate of carbon dioxide from an
accumulator to the plant growth chamber so that the
concentration of CO2 in the chamber air was maintained
within close tolerances as the consumption rate of the
plants varied. Another controller performed a similar
function for supplying the plant chamber with carbon
dioxide produced by incineration of waste. Rather than
providing the plant chamber with CO2 from a pressurized
source, this supply method involved circulating air
between the airlock and the plant chamber. As the
concentrations of CO2 in the two chambers equalized, the
blower fan rate had to be increased by the controller. The
CONFIG model contained "Activity" representations of
both these control functions to support testing of the
discrete control software. However, constructing these
activities was in effect duplicating the work of the
programmers who wrote the continuous control software.

It would be more useful if, in the future, CONFIG
simulations could interact with such continuous process
control software so that the simulation could provide a test
platform for continuous as well as the discrete control
software. It is anticipated, however, that there will be
problems in interfacing continuous control software not
encountered with discrete control software due to the
incompatibilities between discretized representations of
continuous processes and software designed to interact
with truly continuous processes.

The concept of operating modes of devices is needed for
validating reactive discrete sequencing software for control
and fault management. Therefore, we expect that
continuous-model-based hybrid simulation will be
integrated within operating modes of devices. A change in
an operating mode or transition to a failure mode can have
both local and global effects. We have developed a
simulation capability to handle global Changes in flow
existence and direction that can result from local mode
changes. Otherwise, in CONFIG, complex behaviors can
emerge from the interaction among devices. We anticipate
problems with integrating hybrid continuous models that
cross device boundaries. A global approach such as the one
used to compute flow changes may be needed. We hope to
discuss some of these issues at the workshop.

122



References

Bonasso, P., R.J. Firby, E. Gat, D. Kortenkamp, D. Miller
and M. Slack. 1997. Experiences with an architecture for
intelligent, reactive agents. J. Experimental and
Theoretical AI, 9:237-256.

Firby, R. J. 1997. The RAP Language Manual. Neodesic
Corporation.

Fleming, L., Hatfield, T. and Malin, J. 1998a. Simulation-
Based Test of Gas Transfer Control Software: CONFIG
Model of Product Gas Transfer System. Automation,
Robotics and Simulation Division Report, AR&SD-98-
017, NASA Johnson Space Center.

Fleming, L., Hatfield, T. and Malin, J. 1998b. Simulation-
Based Test of Gas Transfer Control Software: Software
Validation Test Results. Automation, Robotics and
Simulation Division Report, AR&SD-98-018, NASA
Johnson Space Center.

Malin, J. T.; Basham, B. D.; and Harris, R. A. 1990. Use of
qualitative models in discrete event simulation for analysis
of malfunctions in continuous processing systems. In
Mavrovouniotis, M.ed., Artificial Intelligence in Process
Engineering. San Diego, Calif.: Academic Press, 37-79.

Malin, J. T. , Fleming, L. and Hatfield, T. R. 1998.
Interactive Simulation-Based Testing of Product Gas
Transfer Integrated Monitoring and Control Software for
the Lunar Mars Life Support Phase III Test. SAE Paper
No. 981769. SAE 28th International Conference on

Environmental Systems, Danvers MA.

Malin, J. T.; and Leifker, D. B. 1991. Functional modeling
with goal-oriented activities for analysis of effects of
failures on functions and operations. Informatics &
Telematics 8(4):353-364.

Malin, J. T.; Ryan, D.; and Fleming, L. 1993. CONFIG -
Integrated Engineering of Systems and their Operation. In
Proc. Fourth National Technology Transfer Conference,
97-104. NASA Conference Publication CP-3249.

Malin, J. T.; Ryan, D.; and Fleming, L. 1994. Computer-
aided operations engineering with integrated models of
systems and operations. In Proc. Dual Use Space
Technology Transfer Conference and Exhibition, 455-461.
NASA Conference Publication CP-3263.

Zeigler, B. P. 1976. Theory of Modeling and Simulation.
New York: Wiley.

Zeigler, B. 1998. Systems Theory Background for
Continuous/Discrete Integration. SAE Paper No. 981767.
SAE 28th International Conference on Environmental
Systems, Danvers MA.

Zeigler, B. and Praehofer, H. 1998. Interfacing Continuous
and Discrete Models for Simulation and Control. SAE
Paper No. 981725. SAE 28th International Conference on
Environmental Systems, Danvers MA.

123




