From: AAAI Technical Report SS-99-05. Compilation copyright © 1999, AAAI (www.aaai.org). All rights reserved.

Algorithms for Real-Time Game-Tree Search for Hybrid System
Control

Todd W. Neller*
Knowledge Systems Laboratory
Gates Building 2A
Stanford University
Stanford, California 94305-9020 USA

neller@ksl.stanford.edu

Abstract

This paper describes four algorithms for real-time
game-tree search for hybrid system control. A hybrid
system control game is a hybrid system with discretely
and continuously evolving scores, and an enabled ac-
tion set for each player. As computational speed in-
creases, we can expect simulation to become more use-
ful for informing control decisions in real-time. To this
end, we seek to extend existing game-tree search tech-
niques for real-time hybrid system control.

We introduce the notion of an n-player augmented cell-
map and apply both dynamic programming and an
anytime minimax algorithm with caching. For games
with zero-sum scores, we generalize alpha-beta for n-
players. Combining the best characteristics of these
algorithms, we introduce a generalized caching alpha-
beta algorithm for graphs. We discuss the benefits and
limitations of each algorithm.

1 Introduction

This paper describes four algorithms for real-time
game-tree search for hybrid system control. In (Neller
1998b), we formally define a hybrid system control game
as a hybrid system with discretely and continuously
evolving scores, and an enabled action set for each
player. (Basar & Olsder 1995) is an excellent reference
for differential game theory. However, most existing
game-theoretic techniques are not suited to the more
general dynamics of hybrid system. Model-based con-
trol’ has focused on systems which evolve slowly over
time. Expected increases in computational speed will
enable online decision-making for much faster dynam-
ics. To this end, we seek to extend existing game-tree
search techniques for hybrid system control with an em-
phasis on real-time constraints.

In this paper, we introduce the notion of an n-player
augmented cell-map and apply both dynamic program-
ming and an anytime minimax algorithm with caching.

*This work was supported by the Stanford Lieberman
Fellowship, and the Defense Advanced Research Projects
Agency and the National Institute of Standards and Tech-
nology under Cooperative Agreement 70NANB6H0075,
“Model-Based Support of Distributed Collaborative De-
sign”.

‘control using online models to inform control decisions

138

For games with zero-sum scores, we generalize alpha-
beta for n-players. Combining the best characteris-
tics of these algorithms, we introduce a generalized
caching alpha-beta algorithm for game-graphs. (Rus-
sell & Norvig 1995) provides a good introduction to
minimax search and alpha-beta pruning.

Ideally, a game-playing agent? would be omniscient of
all possible system behaviors and would play optimally
with respect to models of the other agents’ decision pro-
cedures. Simulation cannot give us such omniscience.
However, we can use simulation to sample the infinitely
branching game-tree and choose between alternatives.

There are two main optimizations at the core of hy-
brid game-tree search techniques. First, we wish to
optimize our agent’s choice of simulation to grow the
game-tree according to its relevance to decision mak-
ing. Discretization decisions concerning action and ac-
tion timing alternatives should be guided by relevance
to the control decision to the extent that such optimiza-
tion overhead doesn’t eliminate it’s own utility in real-
time. Second, we wish to optimize our agent’s choice
of action according to the game-tree. Interestingly, the
two are intertwined.

The algorithms in this paper perform variants of min-
imax search with a predetermined discretization of the
state space. They underscore the need for balance
in avoiding over-use or under-use of computational re-
sources. While many more interesting issues await in
the continuation of this research, this foundational work
brings into focus the computational tradeoffs which
must be addressed to exploit game-tree search for real-
time hybrid system control.

There are several motivations for this research. First,
we wish to enable greater autonomy of real-time hybrid
system control. Given models of hybrid system behav-
ior, we wish enable agents to use them to inform action
through game-play. We believe such game-theoretic de-
liberation with hybrid models will form an important,
necessary part of future intelligent control systems.

A second motivation for this research is to provide
efficient, incomplete search procedures to complement

®e.g. an unspecified controller or adversarial control dis-
turbance



complete verification techniques. We’ve seen how ver-
ification procedures proving safety of a system can
be complemented by an efficient, incomplete proce-
dure searching for an unsafe counterexample trajec-
tory (Neller 1998a). Likewise, complete, game-theoretic
hybrid system control verification techniques such as
that of (Tomlin, Lygeros, & Sastry 1998) should be
complemented by the incomplete, game-theoretic hy-
brid system control search techniques we are develop-
ing.

Finally, we’re motivated to bridge a perceived gap
between the Al chess researcher and the control game-
theorist by extending discrete game techniques for rele-
vance and irrelevance reasoning to the control of hy-
brid systems. Al discrete game-tree search research
has made interesting contributions concerning relevance
and irrelevance reasoning. While control can benefit
from these ideas, Al research can benefit from a greater
diversity of games. However, ideas and problems have
not flowed easily between these two disciplines. We seek
to bridge this perceived gap.

The paper is organized as follows: In Section 2, a
dynamic programming cell map method for offline con-
trol design is described. For online control, a graph-
based minimax algorithm with caching is described in
Section 3. Aiding game-play with irrelevance reason-
ing, an n-player generalization of alpha-beta pruning
for minimax game-tree search is described in Section 4.
The benefits of these algorithms are then combined in
the graph-based generalized alpha-beta method of Sec-
tion 5. Section 6 summarizes applicability of the algo-
rithms, discusses some of the issues not addressed by
them, and outlines future work.

2 Dynamic Programming Cell Map
Method

Cell mapping methods (Hsu 1987) have been used
to perform state-space analysis of dynamical systems.
In such methods the state-space is divided into cells.
Each cell is mapped to another cell to which it will
evolve after a fixed time interval. The resulting graph
approximation of the system dynamics is then ana-
lyzed. One advantage of cell mapping is that one can
form an approximation of the state space according to
computational space limits, and perform an efficient,
polynomial-time, global state-space analysis.

In seeking to extend such methods to n-player games,
we augment the cell map with set-valued mappings from
a [cell, player] pair to a set of cells, circumscribing
the possible effects of a player’s actions in that cell.
For each player, each cell is now mapped to a set of
cells to which it may evolve after a fixed time inter-
val. Rather than performing minimax on a tree, we
perform minimax on the approximating graph instead,
thus reducing the exponential complexity of a minimax
tree search to the polynomial complexity of a minimax
graph search. Our generalization of minimax for n-
players follows (Russell & Norvig 1995, ex. 5.8) where

139

each player seeks to maximize its component of a score
vector.

Algorithm 1 Procedure Iterated by Dynamic Pro-
gramming Cell Map Method

procedure HybridDPiter(augmentedCellMap, player)
for each cell in augmentedCellMap
cell.newScore := negInfVector
for each destCell in cell.playerMap|[player]
newScore :=cell.moveScore(player, destCell )+
destCell.score
if newScore[player] > cell.newScore[player]
then cell.newScore := newScore
for each cell in augmentedCellMap
cell.score := cell.newScore

Algorithm 1 is the core procedure for our dynamic
programming cell map method. Following initializa-
tion, this procedure is iterated on the cell map in re-
verse turn order in the dynamic programming styled.
To initialize, first zero the augmented cell map score
vectors. Then initialize the individual set-valued player
maps which indicate the possible actions of each player
at each cell. For example, we have applied this method
to the magnetic levitation (maglev) problem of (Zhao,
May, & Loh 1998) in which the goal is to suspend a
metal ball beneath an electromagnet. We take a game-
theoretic approach for the purpose of synthesizing safe
maglev control in the face of external perturbation and
error introduced through modeling approximations and
numerical simulation. The problem is thus described
as a game where the controller may change the mag-
netic coil current while the adversary may perturb the
behavior of the system in the period between controller
actions. The controller player map maps each cell to
all other cells which differ only in controller input (cur-
rent). The adversary player map maps each cell to the
set of cells possibly reachable during the continuous sys-
tem evolution phase, taking into account perturbation
and error.

Since players need not necessarily alternate turns, let
us for ease of analysis define b as the effective branch-
ing factor of the player mappings as used over successive
calls to Algorithm 1. Let ¢ be the number of cells and p
be the number of players. Then the time and space com-
plexity of Algorithm 1 are O(cb) and O(cpb), respec-
tively. With player maps compactly represented and/or
conservatively approximated, the space complexity may
be reduced to O(cp).

What we have not figured into this analysis is the
“curse of dimensionality” in the state-space. If we di-
vide a state-space into a uniform grid of cells, the num-
ber of cells will grow exponentially with the dimension
of the space. Thus this method is applicable to systems
with low-dimensional state-spaces.

3from terminal states at some time horizon backwards in
time through decision stages



This method also places the burden of cell-
partitioning and time discretization on the user. Too
coarse a cell-partition, and such computation yields
little information. Too fine a partition, and we vio-
late space constraints. Too large or too small a time-
step, and approximation and numerical errors domi-
nate. While adaptive techniques for cell-decomposition
are being developed (Bradley 1995), these discretization
issues are far from resolved.

We note that this method is not suited for real-time
online use. While such a method could be used offline to
form a control policy a priori, it is not designed to focus
on an immediately relevant control decision. Rather, its
computation is distributed across the entire augmented
cell map. This limitation is addressed through the al-
gorithm in the next section.

In summary, the dynamic programming cell map
method has polynomial time and space complexity
and is applicable to offline control design for low-
dimensional state spaces, assuming that a good dis-
cretization can be found. We now turn our attention to
online use of minimax.

3 Graph-Based Minimax

In this section, we introduce Algorithm 2 which per-
forms minimax on a graph and caches partial computa-
tions. This algorithm can be used in real-time to focus
computation on the decision at hand. Algorithm 2 is
presented for general game-graphs. There is a graph
node for each cell-player pair. We also allow for termi-
nal game nodes (no children). Keeping the same amor-
tized computational time complexity of Algorithm 1, we
trade off increased caching space requirements, bring-
ing the computational space complexity to O(cp(b+d)),
where d is the maximum search depth. This is a small
tradeoff for such a large gain in the immediate utility
of computation.

Algorithm 2 Graph-based Minimax

procedure GraphMinimax(node, depth)
if ((depth = 0) or node.complete[depth])
then return
if empty(node.children) then
bestScore := zeroVector
else
bestScore := negInfVector
for each child in node.children
GraphMinimax(child, depth — 1)
newScore :=node.moveScore(child)+
child.score[depth — 1]
if newScore[player] > bestScore[player] then
bestScore := newScore
node.score[depth] := bestScore
node.complete[depth] := true

In Algorithm 2, the “complete” flags of each node
signal when score information may be used by future

140

calls. Since this algorithm keeps track of which sub-
tree computations are complete, it may be used as part
of an anytime algorithm, and total minimax computa-
tional cost can be amortized over successive calls. At
time ¢, when a control decision is required at t + At,
simulate forward to choose the relevant node, and per-
form iterative-deepening graph-based minimax on the
node. That is, call GraphMinimax with successively
increasing depth until just before ¢t + At. The iterative-
deepening procedure is then interrupted, the best next
cell for the deepest complete minimax computation is
chosen, and a control action leading to that cell is exe-
cuted. 4

To summarize, graph-based minimax of Algorithm 2
has the same amortized time complexity as Algo-
rithm 1, but with a linear increase in space complexity.
From this increase, we gain a focus of computation rela-
tive to a specific control decision, thus Algorithm 2 can
be applied to an augmented cell map for online hybrid
system control for low-dimension state spaces, assum-
ing that a good discretization can be found. Of course,
minimax computation wastes much time deep in the
tree/graph, computing information provably irrelevant
to the top-level decision. For zero-sum scores® , one ap-
proach to reasoning about irrelevance in the game tree
is alpha-beta pruning. We look at an n-player general-
ized version of alpha-beta in the next section.

4 Generalized Hybrid Alpha-Beta
Method

In minimax search, a game-tree is generated with two
players MAX and MIN, alternately maximizing and
minimizing the score at alternating depths of the tree.
However, much of the tree need not be generated (i.e. it
can be “pruned”) since it is provably irrelevant given in-
formation gained during search. The idea of alpha-beta
pruning for minimax search was conceived by John Mc-
Carthy in 1956, but a full description of the algorithm
was not published until 1969 (Slagle & Dixon 1969).
The core idea is this: If, in evaluating a node of a game
tree, one can prove that a rational player will not choose
the path to that node, one can avoid examination of (i.e.
“prune”) the subtree rooted at that node. By simple
bookkeeping of the best score that each player can be
guaranteed to achieve, asymptotic optimality is gained
for such searches.

Our generalized extension of alpha-beta search, Al-
gorithm 3, allows zero-sum adversarial hybrid system
game-play for n players, discretizing times at which
each player may make decisions. For example, we may
allow one player to play every second while another is
allowed to play every half second. Such discretization
may correspond to the timing of a discrete controller,
but will more likely be determined by the complexity
of the search and the time horizon to which one wishes

“One should assume a default control action for incom-
pleted depth 1 to create a true anytime algorithm.
Splayer scores constrained to sum to zero in all states



to look forward. Initially all vectors are zeroed except
for the input prevGuaranteeVector which is initialized
to a vector of n —o0o’s. Unlike original alpha-beta, each
player in our generalized hybrid alpha-beta is seeking
to maximize its individual score (utility) which is possi-
bly affected by both discrete and continuous behaviors.
Whereas the state evolved discretely with alpha-beta,
generalized hybrid alpha-beta state evolves according
to the simulation of the underlying hybrid system.

Algorithm 3 Generalized hybrid alpha-beta search

function HybridAB(node, prevGuaranteeVector)
scoreGuaranteeVector := prevGuaranteeVector
bestMove := NULL.MOVE
if (LeafNode(node) or CutoffTest(node.state)) then
node.abScoreVector := node.scoreVector
return bestMove
m := GenerateMove(node)
prune := false
while not (m = NULL.MOVE or prune) do
child := SimulateMove(m, node)
Hybrid AB(child, scoreGuaranteeVector)
s := child.abScoreVector[node.player]
if (bestMove = NULL.MOVE or
s > bestScoreVector[node.player]) then
bestScoreVector := child.abScoreVector
bestMove := m
for i := 1 to players
if (not i = node.player) and
(bestScoreVector[i] < scoreGuaranteeVector]i])
then prune := true
if (s > scoreGuaranteeVector[node.player])
then scoreGuaranteeVector[node.player] := s
if not prune then m := GenerateMove(node)
node.abScoreVector := bestScoreVector
return bestMove

Algorithm 3 is briefly described as follows: After ini-
tialization, check if the node is a leaf-node and, if so,
assign the node score vector to the node’s alpha-beta
score vector, and return. Otherwise, for each allowable
player move in succession, do the following: Generate a
child node through hybrid simulation of the move. This
also evolves the child node score. Recursively perform
alpha-beta search on the child node and take note of the
score the current player would gain from making that
move. If it is the new best move from the node, check
if the subtree can be pruned and update the node score
guarantees. Discontinue this iteration if the pruning
condition is met. Finally, update the node’s alpha-beta
score vector.

The zero-sum algebraic constraint over the scores
provides the rational basis for this pruning, but what
if the game is not zero-sum? Interestingly, knowledge
of one’s problem domain may provide even more use-
ful constraints. If it can be proved that one player will
choose a move in a state which is guaranteed to cause
another player to preclude the possibility of reaching
that state out of preference for another line of play,

141

all search beyond that state may be pruned. For in-
stance, consider a cooperative form of the aircraft col-
lision avoidance problem of (Tomlin, Lygeros, & Sas-
try 1998), where all scores are identically the minimum
distance between any two aircraft over time. Once all
aircraft are receding from one another, we may obvi-
ously conclude that the scores will remain fixed. This
is an example of a constraint on future scores which en-
ables pruning without ever reaching cutoff states. Prun-
ing constraints may take on other forms as well. If,
for instance, it can be proved that the best adversarial
maglev perturbation is a maximal perturbation, we re-
duce the dimensionality of relevant adversary actions.
In broadening the constraints one considers, one may
introduce far more significant forms of pruning to min-
imax search.

For real-time control, such an algorithm could
be used within an iterative-deepening, or iterative-
refinement anytime algorithm. By iterative-refinement,
we mean that we start with a coarse discretization of
player decision points and compute an approximate so-
lution (recommended control action) with our hybrid
alpha-beta algorithm. We store the action, refine our
discretization (i.e. allow more frequent turns), and it-
erate, computing successively better approximate solu-
tions until the algorithm is halted and the stored action
is returned.

Although this approach does not require discretiza-
tion of the state-space, the user still has to supply dis-
cretizations of continuous ranges of actions and decision
times. However, there are possibilities for dynamically
choosing and refining such discretizations which will be
discussed in Section 6.

One limitation of this approach is one shared by all
tree-based methods: High branching factors quickly
force shallow search. Since we are dealing with a mini-
max search on a tree rather than a graph, the time com-
plexity is O(b%), where b is the effective branching fac-
tor and d is the maximum search depth. However, the
space complexity is O(d), so we’ve significantly traded
off time for space. We have not only under-utilized com-
putational space resources, but we’ve saved no informa-
tion for future use and cannot expect its performance
to improve over time. Given the infinite state-space of
the search, and the approximate nature of simulation, it
would make sense to use approximation and/or abstrac-
tion in order to achieve better performance over time.
One possible step in this direction is to use general-
ized alpha-beta with iterative-deepening on a cell-map,
caching results of partial alpha-beta computations in
order to speed-up future minimax searches and allow
greater depth of search over time. We introduce this
new synthesis of techniques in the next section.

5 Graph-based Generalized
Alpha-Beta

In this section, we propose a new synthesis of the pre-
vious techniques. This graph-based, generalized alpha-



beta algorithm (1) represents an n-player game as a
graph with zero-sum node and cost scores, (2) caches
results of partial computations to reduce amortized cost
of successive alpha-beta searches, and (3) is suited for
real-time use in an anytime algorithm. For brevity, we
ignore many details and present the algorithm for use on
n-player discrete game-graphs. For application to hy-
brid control systems, the game-graph is an augmented
cell map.

Algorithm 4 Graph-based generalized alpha-beta
search

function GraphGenAB(node, prevGuaranteeVector, depth)
if (depth = 0) or LeafNode(node) then
return {NULL_MOVE, worstScoreVector}
if node.complete[depth] then
return {node.bestMove[depth], worstScoreVector}
if (prevGuaranteeVector > node.pruneCondVector[depth))
then return {node.bestMove[depth],
node.pruneCond Vector[depth]}
scoreGuaranteeVector := prevGuaranteeVector
newPruneCondVector := worstScoreVector
newBestMove := NULL_MOVE
m := GenerateMove(node)
prune := false
while not (m = NULL.MOVE or prune) do
child := MakeMove(m, node, depth)
{childBestMove, childPruneCondVector} :=
GraphGenAB(child, scoreGuaranteeVector, depth—1)
newPruneCondVector :=
Max(newPruneCondVector, childPruneCondVector)
scoreVector := child.abScoreVector[depth]
s := scoreVector[node.player]
if (newBestMove = NULL.MOVE or
s > newBestScoreVector[node.player]) then
newBestMove := m
newBestScoreVector := scoreVector
for i := 1 to players
if (not i = node.player) and
(bestScoreVector[i] < scoreGuaranteeVector|i])
then prune := true
if (s > scoreGuaranteeVector[node.player])
then scoreGuaranteeVector[node.player] := s
if not prune then m := GenerateMove(node)
newPruneCond Vector[node.player] :=
Min(newPruneCondVector[node.player],
prevGuaranteeVector[node.player])
isComplete := (newPruneCond Vector = WorstScoreVector)
atomic:
node.abScoreVector[depth] := newBestScoreVector
node.bestMove[depth] := newBestMove
node.pruneCondVector[depth] := newPruneCondVector
node.complete[depth] := isComplete
return {newBestMove, newPruneCondVector}

Since Algorithm 4 is based on Algorithm 3 and shares
much the same structure, what follows is a description
of their differences: Almost all differences are concerned
with caching information to avoid redundant computa-
tion in future calls to the algorithm. In addition to
the best move at the node, the function also returns

142

Min Min

/!\ /!\1 _2/_!\

Figure 1: The importance of alpha-beta node ordering

the weakest score guarantees necessary to achieve the
same evaluation. Initially, in addition to checking if
the node is a leaf node, check if the minimax evalu-
ation is complete for the given depth, or if the input
score guarantees from the calling node are subsumed
by those of the previous call to the node. If so, cached
information is simply returned. Otherwise, perform re-
cursive alpha-beta search on the subtree, keeping track
of weakest pruning conditions needed to avoid repeat-
ing computation. Note the variables which must now
be indexed by depth of the alpha-beta call. The atomic
block of assignments at the end of the function must
either all be performed or not at all. This is important
for the use of the function in an anytime algorithm in
order to avoid leaving the graph data in an inconsistent
state when the algorithm is halted before completion.

Given that storing all information gained from all
pruning conditions of all calls for a given node and
depth would be prohibitive, we opt to store the most re-
cently used weakest necessary pruning conditions. This
does not pose a problem, as completely evaluated sub-
trees do not get re-evaluated.

Node ordering is important for alpha-beta pruning
optimization. Consider the standard two-player mini-
max tree of Figure 1. If nodes in this figure are searched
left-to-right, maximal pruning occurs with four of nine
leaf nodes left unevaluated. If the nodes are instead
searched right-to-left, minimal pruning occurs and all
nodes are evaluated.

This example is significant to our problem domain
because we’re searching continuous spaces where scores
may vary continuously over portions of the trajectory-
sampling search tree. Therefore node-ordering may be
very significant to pruning maximization. We may hap-
pily take advantage of this fact in our algorithm by
having the GenerateMove function use cached informa-
tion to heuristically order moves in order to maximize
pruning. For instance, one might first generate the best
move from previous alpha-beta searches in order to first
maximize the current player score guarantee. We get
this benefit without increased computational complex-

ity.

6 Summary and Future Work

With a goal of enabling real-time hybrid system control,
we developed and discussed extensions of discrete game-
playing techniques. Algorithm 1, our dynamic pro-
gramming method for augmented cell maps, has poly-



nomial time and space complexity and is applicable to
offline control design for low-dimensional state spaces,
assuming that a good discretization can be found. Al-
gorithm 2, graph-based minimax, has the same amor-
tized time complexity as Algorithm 1, but with a linear
increase in space complexity for caching subtree evalu-
ations. From this increase, we gain a focus of compu-
tation which makes it suitable for online hybrid system
control. Alpha-beta pruning is a form of irrelevance
reasoning which increases efficiency of minimax search.
Algorithm 3 is an n-player generalization of minimax
search with alpha-beta pruning, which increases the
depth of search but lacks the caching and approxima-
tion advantages of Algorithm 2. We finally synthesized
these approaches and introduced Algorithm 4, graph-
based n-player alpha-beta search with caching. This
provides a more efficient means of online hybrid system
control for low-dimensional state spaces, assuming that
a good discretization can be found.

Two issues concerning minimax and alpha-beta moti-
vate future research in reasoning about uncertainty and
relevance in game-tree search. First, minimax search
assumes no uncertainty in node evaluations, so small
errors in node-evaluations may significantly misinform
decisions. Second, alpha-beta pruning is concerned en-
tirely with provable irrelevance given such an assump-
tion. Without the ability to focus search direction
according to probable relevance to the root decision,
alpha-beta search is ill-equipped to handle large branch-
ing factors, forcing an arbitrary, pre-determined prun-
ing or discretization (for continuous ranges of actions).
Automatically choosing state-space or action-space dis-
cretizations according to the task of real-time reason-
ing about control is an open problem. Even given a
good discretization of a hybrid system control game, a
large branching factor can force an impractically shal-
low search and yield poor decisions.

Probabilistic game-playing methods (Russell & We-
fald 1991) have been developed to handle uncertainty
and to direct search with relevance to maximizing ex-
pected utility of the decision. We are currently extend-
ing these approaches for use with hybrid system con-
trol games. This still leaves overarching discretization
questions concerning continuous state-spaces, ranges of
actions, and decision points in intervals of time. We
expect that previous work on information-based opti-
mization (Neller 1998a) will be relevant in addressing
such questions. Briefly, information-based optimization
is concerned with using the information from previously
sampled points to inform the choice of future sample
points. Using such optimization to dynamically choose
the sampling of actions and decision points should prove
very interesting.

As algorithms employ increasingly computationally
complex meta-level reasoning, computational overhead
will grow to the point of diminishing returns in over-
all utility. Over time, we expect to develop a suite of
methods which lie along a spectrum of computational
complexities of meta-level reasoning, and describe their

143

applicability to different classes of hybrid system con-
trol games. We hope that these will contribute to devel-
opment of algorithms for real-time control and bounded
rationality.

References

Bagar, T., and Olsder, G. J. 1995. Dynamic Nonco-
operative Game Theory, 2nd Ed. London: Academic
Press.

Bradley, E. 1995. Autonomous exploration and con-
trol of chaotic systems. Cybernetics and Systems
26(5):499-519.

Henzinger, T. A., and Sastry, S., eds. 1998. LNCS
1386: Hybrid Systems: computation and control,
First International Workshop, HSCC’98, Proceedings.
Berlin: Springer.

Hsu, C. 1987. Cell to Cell Mapping; A Method
of Global Analysis for Nonlinear Systems. Springer-
Verlag.

Neller, T. W. 1998a. Information-based optimization
approaches to dynamical system safety verification. In
Henzinger and Sastry (1998). 346-359.

Neller, T. W. 1998b. Preliminary thoughts on the
application of real-time ai game-tree search to control.
In Proceedings of the IFAC Symposium on Artificial
Intelligence in Real-Time Control, October 5-8, 1998,
Grand Canyon National Park, Arizona, USA. Oxford,
UK: Elsevier Science.

Russell, S., and Norvig, P. 1995. Artificial Intelligence:
a modern approach. Upper Saddle River, NJ, USA:
Prentice Hall.

Russell, S., and Wefald, E. 1991. Do the Right Thing:
studies in limited rationality. Cambridge, MA, USA:
MIT Press.

Slagle, J., and Dixon, J. 1969. Experiments with some
programs that search game trees. Journal of the As-
sociation of Computing Machinery 16(2):189-207.
Tomlin, C.; Lygeros, J.; and Sastry, S. 1998. Syn-
thesizing controllers for nonlinear hybrid systems. In
Henzinger and Sastry (1998). 360-373.

Zhao, F.; May, J. A.; and Loh, S. C. 1998. Con-
troller synthesis and verification for nonlinear systems:
a computational approach using phase-space geomet-
ric models. Submitted to IEEE Control Systems Mag-
azine.





