From: AAAI Technical Report SS-99-05. Compilation copyright © 1999, AAAI (www.aaai.org). All rights reserved.

AMIA: an environment for knowledge-based discrete-time systems simulation

Michel Page

Jérome Gensel

Mahfoud Boudis

Université Pierre Mendés France, Grenoble
INRIA Rhéne-Alpes
655, avenue de I'Europe
38330 Montbonnot Saint-Martin, France
e-mail: {Michel.Page,Jerome.Gensel,Mahfoud.Boudis} @upmf-grenoble.fr

Abstract

In this paper, we present AMIA, a workbench for developing
knowledge-based discrete-time simulation systems. AMIA is
original in two respects. First it uses an algebraic modeling
language for combining discrete-time models (difference
equations) and symbolic knowledge. Second, it uses a new
simulation algorithm able to exploit this combination of nu-
merical and symbolic knowledge. AMIA also includes a model
management system for supporting the modeling and simula-
tion process.

Introduction

Numerical simulation models embody quantitative
knowledge about a specific system in the form of nu-
merical variables and mathematical relations (equa-
tions). An important problem with numerical modeling
is that much information and knowledge concerning the
system described by the model and the context in which
it operates are not numerical in nature. This includes:
the entities that compose the system, the properties of
these entities as well as the relations between them; the
context of validity (hypotheses) of the equations of the
model; the variants of the model and the domain
knowledge required to select one of them, adequate in a
specific context. Because of its symbolic nature, this
knowledge is not taken into account in present simula-
tion tools.

To overcome this problem, researchers in artificial
intelligence (Al) and simulation have spent much effort
during the last decade in studying knowledge-based
simulation systems; see (Widman, Loparo and Nielsen
1989) and (Kowalik 1986) for an overview. In these
systems, symbolic knowledge, stored in a knowledge
base and exploited by a reasoning system, is used for
various tasks of the modeling-simulation process: as-
sistance in formulating models or in performing simu-
lation, explanation of simulation results, ...

Most researchers working on knowledge-based
simulation attempt either to couple a numerical simula-
tion tool with an Al knowledge representation language
(Holsapple and Whinston 1988), (Klein and Methlie
1995) or to integrate numerical simulation facilities in
an Al knowledge representation language (Reboh and
Risch 1986), (Gelman et al. 1988). However, the result
is in both cases affected by a well-known bottleneck of

Copyright © 1998, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved

144

knowledge-based systems: knowledge acquisition, be-
cause using a knowledge representation language usu-
ally requires to be an Al specialist.

In this paper, we propose a new framework for
combining discrete-time models (expressed as sets of
difference equations) and knowledge-based systems.
This framework makes it possible to explicitly describe:

¢ the entities that compose a system, the properties of
these entities as well as the relations between them.
It thus reduces the conceptual gap existing between a
model and the system it describes. It also increases
the model intelligibility and facilitates the automatic
explanation of simulation results.

¢ the context of validity (hypotheses) of the equations
of a model. It reduces the danger of misusing a
model and increases its reusability.

o different variants of a model and the domain knowl-
edge required to select the adequate one in a specific
context. It enhances model reusability.

We combine difference equations models and symbolic
knowledge into an algebraic modeling language
(AML). An AML is a computer-readable language
similar to the algebraic notations used in mathematics.
AMLs have been primarily designed for numerical
modeling. However, their expressive power is very high
and, as we will show, they can also be used for repre-
senting symbolic knowledge. Furthermore, because
algebraic formalism is familiar to most modelers, they
are able to build a model involving symbolic knowl-
edge on their own, avoiding by this way the knowledge
acquisition bottleneck.

In order to exploit the combination of numerical and
symbolic knowledge, we have developed a new simu-
lation/inference algorithm for AMLs. This algorithm
combines graph-theoretic and numerical methods.

These ideas are implemented in a computer program
for building and exploiting knowledge-based discrete-
time simulation systems called AMIA.

The paper is organized as follows. We first explain
what AMLs are and why they are appropriate for repre-
senting numerical as well as symbolic knowledge. The
simulation/inference algorithm adapted to the AML of
AMIA and the model management system of AMIA are
then presented. Conclusions are finally drawn.

Representing numerical and symbolic
knowledge in AMLs

AMLs are based on algebraic notations. Algebraic no-
tations are widely used in scientific textbooks and pub-
lications for describing mathematical models consisting
of equations and/or constraints. Allowing indexed ex-
pressions, sets, variables and iterated operators like 3,
and [1, they provide a convenient way to form expres-
sions such as:

Vil 1 a, = A gy <Y

AMLs have become very popular in the Operations
Research community through languages like AMPL
(Fourer, Gay and Kernighan 1990) and GAMS (Brooke,
Kendrick and Meeraus 1988). More recently, AMLs
have also been used in Al for constraint programming
(Michel and van Hentenryck 1996).

The popularity of AMLs for numerical modeling
comes from different factors. First, it is not necessary to
be a computer scientist in order to use these languages:
the effort to implement a model using an AML is small
once the mathematical equations are available. Second,
AMLs are declarative: each mathematical equation or
constraint in a model forms an independent corpus of
knowledge, and the order in which the equations and/or
constraints are written is unimportant. These features
make AMLs very suitable for building numerical mod-
els.

The claim we make with AMIA is that AMLs are
also adequate for representing symbolic knowledge.
This claim may seem surprising because AMLs have
been designed for numerical modeling. However, we
now show that one can also use them for expressing
symbolic knowledge.

Knowledge encoded using an Al knowledge repre-
sentation language is usually of two kinds: factual and
deductive. Let us introduce how both kinds of knowl-
edge are expressed in AMIA.

Representing factual knowledge in AMIA

In AMIA, factual knowledge is encoded at three levels:
atoms, sets and variables. We introduce these concepts
through the example below referred as the "market
example" in the sequel of the paper.

Let us consider a market on which are shipped three
products: P1, P2 and P3. This market is divided in two
segments: A and B. Segment A corresponds to products
with a high price, say 10% more than the average price
of the products, and a high quality. Other products are
in segment B. Assuming that:

e the annual demand for segment A is approximated
to represent 20 % of the total annual demand in the
forthcoming years;

e the annual demand for products in segment A is
equally distributed over each product of this seg-
ment;

e the annual growth of the demand for each product
in segment B is 10%.

We want to forecast the demand for each product and
the total demand for the forthcoming years.

145

Data about the products: quality (assumed time-
independent), price and demand for the initial year
(1998) are presented in Table 1.

Product | Quality | demand price
1998 1998

P1 Medium 100 300

P2 high 20 600

P3 high 25 600

Table 1: data for the market example

Atoms are the most basic elements in AMIA. One can
think about them as distinguishable entities in the real
world, denoted by a symbolic constant. Examples of
atoms in the market model are product P1 and segment
A. Modeling in AMIA consists in defining properties of
atoms and the relations between them.

Sets are used to group atoms having common
meaning, properties and relations. PRODUCTS =
{P1,P2,P3} is an example of set in the market model. A
set can be used in two different ways in AMIA: first, as a
domain for the value of variables and expressions, i.e.,
a set in which a variable or an expression takes its value
and, second, as a way for indexing variables and ex-
pressions (see below). Predefined sets are provided in
AMIA for booleans, integers and reals. Time is also
treated as a set whose atoms are the relevant time points
for simulation.

A variable corresponds either to a property shared
by the atoms of a set or to a relation between atoms
from two or more (possibly equal) sets. From a mathe-
matical point of view, a variable ¥ is a total or partial
function:

Vi Six8§SHx.x8, = S
xn, X250 Xn) B V(x1, X250, Xi)

where S and each S; (i € {1,...,n}) are sets. For instance,
the quality of the products is defined as a variable
QUALITY indexed by the set PRODUCTS and taking its
value in the set LEVELS = {LOW,MEDIUM,HIGH}. Rela-
tions between sets are also represented by variables. For
instance, the price of the products at a particular time is
a relation between PRODUCTS and T (here, T denotes
time, i.e., the set of simulation time points) modeled by
a real-valued variable: PRICE.

We note V(51,52,...,5,) the variable ¥ indexed by the
sets 81,95,...,5,. For instance, the two above mentioned
variables are noted QUALITY(PRODUCTS) and
PRICE(PRODUCTS,T). For a particular tuple of atoms
(A1,42,...,45) € §1X8>2X...XS,, the variable ¥ applied to
(41,43,...,4,) is called a scalar variable and is noted
V(41,42,...,4,). For instance, the scalar variable denoting
the quality of product P1 is written QUALITY(P1).

Representing deductive knowledge in AMIA

In AMIA deductive knowledge is represented by equa-
tions. In a purely numerical simulation system, equa-
tions express numerical relations between numerical
variables; they allow the computation of unknown vari-
ables from known ones. In AMIA, equations can also
express symbolic relations between variables (see for
instance equations (5) and (6) below). Unary variables

represent properties of entities, while n-ary (n>1) vari-
ables represent relations between entities.

In AMIA, equations are expressed in a particular
form called explicit form. The left-hand side of an
equation in explicit form only contains one variable; the
right-hand side is an expression indicating how the left-
hand side variable is computed. An AMIA equation de-
fines the value of a variable V(S$},S5,...,5.) on a subset of
S1x82X...xS, with the following format:

x1 in 0/(S1), x2in 0xAS2), ..., Xu in Ou(S,):

V(x1,%2,...,Xn) = €xpr

where:
o 0i(S) (ie {1,...,n}) is a subset of set Sj;

e x; (ie {1,...,n}) are called indices; they have the
same meaning as in standard algebraic notations.
They are dummy identifiers (written in lower-case)
used as subscripts of variables and expressions, and
denoting an atom in a set.

® expr is an AMIA expression formed with numerical
constants and atoms, variables, sets, indices, opera-
tors and functions.

Each equation has two parts: the extent (x; in 0:1(S), x2
in 02(S2), ..., Xn in OGa(S,)) which delimits the domain of
validity of the equation and the defining expression
(V(x1,%2,...,xn) = expr) which states how the variable is
defined in this extent. A variable can be defined by
several equations as long as the extent of these equa-
tions are disjoint.

In AMIA, models are made of linear and/or non lin-
ear simultaneous equations. These equations can be
algebraic equations and difference equations (see for
instance equation (3) below). Equations can be piece-
wise defined, i.e., the defining expression of a variable
can be dependent on one or several condition(s). For
this reason, we call these equations piece-wise defined
equations (PWDEs). The kind of symbolic knowledge
discussed in the introduction: description of the entities
that compose a system, their properties and relations,
hypotheses of validity of equations and variants of a
model can be conveniently expressed with PWDEs
written in explicit form. This is due to the fact that
much of this knowledge is in the form "this property or
relation is defined this way in this context". This point
is illustrated below, on the market example.

Sets:
T = {1998,1999,2000,2001}
PRODUCTS = {P1,P2,P3}
SEGMENTS = {A,B}
LEVELS = {LOW ,MEDIUM,HIGH}

Variables:
TOTAL_DEMAND(T) - REAL
DEMAND(PRODUCTS,T) - REAL
SEGMENT(PRODUCTS,T) - SEGMENTS
PRICE(PRODUCTS,T) — REAL
AVERAGE_PRICE(T) = REAL
PRICE_LEVEL(PRODUCTS,T) = LEVELS
QUALITY(PRODUCTS) — LEVELS
Equations:
(1) tinT:
TOTAL_DEMAND(t)=
sum(p in PRODUCTS: DEMAND(p,t))
(2) p in PRODUCTS, t in T-{1998}:
DEMAND(p,t) =

146

if SEGMENT(p,t) = A
then 0.2 * TOTAL_DEMAND(t) /
card(pl in PRODUCTS:
SEGMENT(pl,t) = A)
else 1.1 * DEMAND(p,t-1)
(3) pin PRODUCTS, t in T-{1998}:
PRICE(p,t) = 1.1 * PRICE(p,t-1)
4)tinT:
AVERAGE_PRICE(t) =
average(p in PRODUCTS:PRICE(p,t))
(5) pin PRODUCTS, tin T:
PRICE_LEVEL(p,t) =
if 0.9*AVERAGE_PRICE(t) > PRICE(p,t)
then LOW
else
if 1.1*AVERAGE_PRICE(t) > PRICE(p,t)
then HIGH
else MEDIUM
(6) pin PRODUCTS, tin T:
SEGMENT(p.t) =
if QUALITY(p) = HIGH and
PRICE_LEVEL(p,t) = HIGH
then A
else B

AMIA simulation algorithm

Solving an AMIA model amounts to solving a system of
simultaneous piece-wise defined difference and/or al-
gebraic equations. In classical discrete-time simulation
systems, equations contain no condition, variables are
only indexed by time and every variable is numerical.
In such systems, simulation is generally performed in
four steps. First, an oriented graph is associated with
the system of equations. This graph, called dependency
graph, describes the variables dependencies. An or-
dered pair (v,w) of vertices (variables) in this graph
expresses that the variable v at time ¢ appears in the
right-hand side of the equation defining w at time ¢.
Second, the strongly connected components (SCCs) of
this graph are computed. Each SCC represents a sub-
system of simultaneous equations which can be solved
independently from the others. Third, a topological sort
is performed on the SCCs for determining the order in
which the associated sub-systems are to be solved.
Fourth, for each simulation time point, the sub-systems
of equations are solved in the order determined in the
previous step, using an adequate solving algorithm.

The previous algorithm would not work in AMIA,
because of the expressive power of its AML. First, in
AMIA, one writes PWDEs, i.e., equations which contain
conditions. The dependency graph cannot be computed
once for all, because the expression defining a variable
(the right-hand side of the equation) is known only
when the condition can be evaluated. Second, variables
can be indexed by several indices. It means that
PWDEs can be recurrent on any index, not only on
those denoting time. Hence, SCCs must be computed,
not from the variables themselves, but from each of
their associated scalar variables. Third, variables which
have a symbolical value cannot be handled by numeri-
cal equation solving algorithms.

For these reasons, we have devised a more powerful
simulation algorithm for AMIA. This algorithm is made
of two components (Figure 1): a simulation engine and
an equation solver. The simulation engine dynamically
builds and explores the dependency graph in order to
find sub-systems of simultaneous equations. When a

sub-system is discovered, it is sent to the equation
solver which attempts to numerically solve it and sends
the results (be they successful or not) back to the simu-
lation engine. This one then integrates the results ob-
tained and proceeds with the exploration of the graph.
We now detail these two components.

model

I system of equatiops
simulation engineJ¢& equation solver
result

Figure 1: architecture of AMIA simulation algorithm

The simulation engine

The simulation engine, described in details in (Boudis
1997), is based on Tarjan's SCCs detection algorithm
(Tarjan 1972).

To determine the SCCs of a directed graph, Tarjan's
algorithm explores it in a depth-first manner. A depth-
first search (DFS) from a vertex u in a graph induces a
tree rooted at u called DFS tree. During DFS, when
going from a vertex v to a vertex w, one of the state-
ments below must hold:

o w is unexplored: (v,w) is a tree edge;

¢ w is already explored and w is an ancestor of v in the
DFS tree: (v,w) is a back edge;

o w is already explored and w is a descendant of v in the
DFS tree: (v,w) is a forward edge;

e wis already explored and neither v is a descendant of
w in the DFS tree, nor w a descendant of v: (v,w) is a
cross edge.

Tarjan has demonstrated that the vertices of an SCC
form a subtree in the DFS tree. He named the root of
this subtree the root of the SCC. His algorithm deter-
mines the SCCs by identifying their roots. This is done
using an index, lowlink(v), corresponding to the vertex
with the smallest number in the same SCC as v and the
above edges classification which helps in maintaining
this index. Edge classification is handled using two
parameters:

o number(v), order in which vertex v is visited in DFS.
o stack, the stack of the vertices traversed in DFS.

When an edge (v,w) is traversed, it is first classified and
the lowlink parameter of v is then maintained accord-
ingly. A tree edge is characterized by the fact that w is
not yet numbered. A tree edge does not affect the low-
link parameter but indicates that the search must pro-
ceed deeper on. Forward edges are characterized by the
fact that w is already numbered and number(v) < num-
ber(w); they do not affect SCCs. Back edges and cross
edges in the same SCC are characterized by number(v)
> number(w) and w € stack. They affect the lowlink
parameter in the following way: if number(w) is smaller
than lowlink(v), then lowlink(v) becomes number(w).
Tarjan has demonstrated that v is the root of an SCC if
and only if lowlink(v) =number(v).

The simulation engine uses Tarjan's algorithm to
detect sets of simultaneous equations. It dynamically
builds and explores a graph, called scalar graph. The

147

scalar graph is similar to the dependency.graph used by
classical simulation algorithms, but it differs in three
ways. First, vertices of the scalar graph are scalar vari-
ables (and not variables). This is because the scalar
variables of the same variable do not have necessarily
the same defining expression. Second, the edges of the
scalar graph are determined dynamically because of the
presence of conditions in the PWDESs. Third, edges are
in the reverse order: successors of a scalar are the scalar
variables which appear in the expression that defines it.
This is because in Tarjan's algorithm, the SCC of a
vertex is determined after all the SCCs of its successors
have been discovered. This way, the set of equations
associated with an SCC are solved after the scalar vari-
ables appearing in the right-hand side of these equations
have been computed.

The algorithm of the simulation engine is presented
below.

variables
i: integer
v: scalar_variable
stack: stack of scalar_variable

procedure simulation_engine(m: model)
begin
i < 0;
Etack «—{
oreach v in unknown_scalar_variables(m) do

egin
set_value(v,UNKNOWN);
set_number(v,0);
set_lowlink(v,0);
end,
Iforeach v in unknown_scalar_variables(m) do
if number(v) = 0 then compute_scalar_variable(v)

end

procedure compute_scalar_variable(v: scalar_variable)
variables

w: scalar_variable

scc: list of scalar_variable

p: pwde

egin
if value(v) = UNKNOWN then

hegin

je—i+1;

set_number(v,i);

set_lowlink(v,i);

push(v, stack);

p « scalar_pwde(v);

foreach w in scalar_variables_of_pwde(p) do

be?In
if value(w)=UNKNOWN and number(w)=0 then

h

egin
1 compute_scalar_variable(w); .
set_lowlink(v,min{lowlink(v}, lowlink(w)))
end
else
if number(w) < number(v) and w € stack then
set_lowlink(v,min(lowlink(v), number(w)))

end;

if lowlink(v) = number(v) then

hegin

scc «{};

while stack#{} and number(head(stack)) = number(v) do
insert(pop(stack), scc);

equation_solver(scc)

end

end

end

Below is given a description of the functions and pro-
cedures which are used in the algorithm but not de-
fined:

e functions value, number, and lowlink (resp. set_value,
set_number, and set_lowlink) respectively return (resp.
set) the value, the number and lowlink parameters of
a scalar variable.

function unknown_scalar_variables(m: model) — set of variable
returns the set of unknown scalar variables of model
m.

function scalar_pwde(v:scalar_variable) — pwde returns the
scalar PWDE defining scalar variable v.

function scalar_variables_of_pwde(p: pwde) — set of sca-
lar_variables returns the set of scalar variables con-

tained in the right hand side of PWDE p. If this one
contains a condition, this one is recursively evalu-
ated using compute_scalar_variable.

procedure equation_solver(scc:set of vertex) passes the set
of equations associated with scc to the equation
solver. As a side effect, it assigns to the scalar vari-
ables of the scc the solution determined or UNKNOWN
if no solution is determined.

The termination of the simulation algorithm depends on
those of equation_solver. Regarding complexity, since
Tarjan's algorithm is linear in time relatively to the
number of vertices, the simulation engine is also linear
in time relatively to the number of scalar variables.

TOTAL DEMAND (1999)
4 137.5

5

DEMAND(P1, 1999)
¥ 110

SEGMENT (P1, 1999)
¢+ B

3

DEMAND (P1,1998)
100

7

QUALITY (P1)
MEDIUM

9

8

16

DEMAND(P2,1999)
4 13.75

—

SEGMENT (P2, 1999)
—_—

QUALITY(P2) PRICE_LEVEL(P2,1999) QUALITY (P3)
HIGH ~iTen HIGH

21
20

DEMAND(P3,1999)
¢ 13.75

SEGMENT (P3,1999)
18 19

PRICE_LEVEL(P3,1999)
¢ HIGH

AVERAGE_PRICE (1999)

4 550

10 2

PRICE (P1l, 1999) PRICE(P2,1999)

14

PRICE(P3,1999

¥ ooy

13

¥ 330
1

15

PRICE(P1,1998) PRICE{P2,1998) PRICE(P3,1998)
300 600 600

Figure 2: simulation of the market problem. Labels along edges correspond to depth-first search order. Underlined variables corre-
spond to a root of an SCC. Values computed by the equation-solver are preceded by: —.

Let us illustrate the functioning of the simulation algo-
rithm on the market example. Let us assume that a
simulation is performed for computing the value of
TOTAL_DEMAND(1999). This scalar variable is defined by
PWDE (1), which has no condition part. The successors
of TOTAL_DEMAND(1999) are DEMAND(P1,1999),
DEMAND(P2,1999) and DEMAND(P3,1999). DEMAND(P1,1999)
is not yet explored. The depth-first search thus proceeds
on this scalar variable, following edge 1 in figure 2.
DEMAND(P1,1999) is defined by PWDE (2). This PWDE
has a condition which is first evaluated. c¢om-
pute_scalar_variable(SEGMENT(P1,1999)) is thus run (edge 2).
SEGMENT(P1,1999) is defined by PWDE (6). com-
pute_scalar_variable(QUALITY(P1)) is hence run (edge 3).
QUALITY(P1) = MEDIUM is an input variable. The condi-
tion of the PWDE defining SEGMENT(P1,1999) evaluates to
FALSE. The expression defining SEGMENT(P1,1999) is thus:
B, which has no successor. SEGMENT(P1,1999) is hence the
root of the SCC corresponding to the system of one
equation {SEGMENT(P1,1999) =B}. This equation is passed
to the equation solver which assigns B to
SEGMENT(P1,1999). The simulation engine then returns to
the evaluation of the condition of DEMAND(P1,1999). The
expression defining this scalar variable is
1.1*DEMAND(P1,1998). DEMAND(P1,1998) is given, so
{DEMAND(P1,1999) = 1.I*DEMAND(P1,1998)} is transmitted

148

to the equation solver which computes: DEMAND(P1,1999)
= 110. The algorithm proceeds in the same manner with
the second successor of TOTAL_DEMAND(1999), i.e.,
DEMAND(P2,1999) until the algorithm reaches edge 16. At
this point, since 16 is a back edge, DEMAND(P2,1999) is
left on the stack and DEMAND(P3,1999), the third successor
of TOTAL_DEMAND(1999), is examined. Edge 21 is also
recognized as a back edge and when DEMAND(P3,1999)
has been explored, the SCC {TOTAL_DEMAND(1999),
DEMAND(P2,1999), DEMAND(P3,1999)} is detected. The set
of equations:

{DEMAND(P2,1999)= 0.2*TOTAL_DEMAND(1999)/2;
DEMAND(P3,1999)= 0.2*TOTAL_DEMAND(1999)/2;

TOTAL_DEMAND(1999)=
110+DEMAND(P2,1999)+DEMAND(P3,1999) }

is sent to the equation solver presented below.

The equation solver

The equation solver is a set of classical numerical
methods for solving sets of numerical equations. An
appropriate method is chosen according to the set of
equations transmitted by the simulation engine. For a set
consisting of only one equation in which the left-hand
side variable does not appear in the right-hand side vari-
able, the right-hand side is simply evaluated. For a set of

linear equations, a gaussian elimination is used. For a set
of non-linear equations, the Leverberg-Marquardt algo-
rithm is used. Since there exists no general algorithm for
solving sets of non-linear equations (using floating-point
arithmetic), the termination of the equation solver is not
guaranteed. The equation solver also handles equations
involving symbolic variables, but not systems of simul-
taneous symbolic equations.

If the equation solver does not successfully solve a
system of equations, failure is reported to the simulation
engine which propagates unknown values on every vari-
able dependent on one of the variables belonging to the
unsolved set.

Model management in AMIA

AMIA (Page 1996) has been designed for building large

discrete-time knowledge-based simulation systems. AMIA

contains an advanced model management system in-

cluding (Figure 3):

e a graphical environment supporting the modeling
and simulation process. It helps the modeler in
specifying and building a model, performing simu-
lations, managing data and simulation results. It also
includes specialized graphical editors.

e a code translator which compiles an AMIA model to
C in order to optimize simulation performance.

e a LATEX generator which produces a document of
the model.

AMIA has been successfully used in the development of
different knowledge-based discrete-time simulation sys-
tems, in various domains. One of them, developed for
energy demand forecasting in Europe (the MEDEE mod-
els family (Camos, Dumort and Valette 1986) is very
large (more than 1.000 equations).

AMIA runs on UNIX platforms and on PC under Win-
dows 3.x and Windows 95. AMIA can freely be obtained
from the authors.

Conclusion

In this paper we have presented AMIA, a workbench for
developing knowledge-based discrete-time simulation

149

systems. AMIA is innovative in two respects: first it uses
an algebraic modeling language for combining numerical
and symbolic knowledge. Second, it uses a new algo-
rithm able to exploit this combination of numerical and
symbolic knowledge.

References

Widman, L.; Loparo, K.; Nielsen N. eds. 1989. Artificial
Intelligence, Simulation, and Modeling. J. Wiley & Sons.

Kowalik, J. ed., 1986. Coupling symbolic and numerical
computing in expert systems. North-Holland.

Holsapple, C.; Whinston, A. 1988. Manager’s Guide to
Expert Systems Using Guru. Dow-Jones-Irwin.,

Klein, M.; Methlie, L. 1995. Knowledge-based decision
support systems. J. Wiley & Sons.

Reboh, R.; Risch, T. 1986. SYNTEL: knowledge pro-
gramming using functional representations. In: 44A41-86,
1003-1007.

Gelman, A.; Altman, S.; Pallakoff, M.; Doshi, K.;
Manago, C.; Rindfleisch, T.; Buchanan, B. 1988. FRM:
An Intelligent Assistant for Financial Resource Man-
agement. In: 4441-88, 31-36.

Fourer, R.; Gay, D.; Kernighan, B. 1990. A Modeling
Language for Mathematical Programming. Management
Science 36 (5), 519-554.

Brooke, A.; Kendrick, D.; Meeraus, A. 1988: GAMS: a
User's Guide. Scientific Press, Redwood City, CA.

Michel, L.; van Hentenryck, P. 1996. A modeling lan-
guage for global optimization. In: Proc. of PACT-96,
London, UK.

Boudis, M. 1997: Simulation et systémes a base de con-
naissances. Ph.D. Dissertation, Univ. Mendés France,
Grenoble, France, (in French).

Tarjan, R. 1972: Depth-First Search and Linear Graph
Algorithms. SIAM Journal of Computing 1 (2), 146-160.

Page, M. 1996. AMi4 3.0: manuel utilisateur. Tech. Rep.
176, Univ. Mendés France, Grenoble, France (in
French).

Camos, M.; Dumort, A.; Valette, P. 1986: MEDEE 3:

modéle de demande en énergie pour I'Europe. Technique
& Documentation-Lavoisier, Paris, France (in French).

