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Autonomous Design Agent

In this paper, we present an overview of the project on
Autonomous Learning Design Agents which began
recently. An agent that addresses the task of Design by
Autonomous Learning (DAL) builds an abstract model 
the environment from the sensory data with the goal to
modify the environment to meet a new set of
functionalities. Any agent that addresses the DAL task is
confronted with a task of transforming the underlying
causes that produce the continuous data of the
environment to produce another set of continuous data.
In our work, we explore the possibility of such a
transformation through a hierarchical order of
discretizations each of which allows the agent to act
differently, and yet allows the agent to draw some global
conclusions.

The machine learning research has identified
formulation of environment models through multiple
levels of abstractions (Pierce and Kuipers 1997). Such 
formulation brings to focus some issues that need to be
addressed for DAL task.
1. How does an agent recognize satisfaction of a global

and abstract goal from continuous data?
2. How can an agent maintain the grounding of discretized

model at different levels, in continuous data?
3. How can an agent decide upon local actions based upon

global models?
4. How can an agent generate discretized models and yet

open to new continuous data?
5. How does an agent decide upon environmental

transformations that result in new continuous data?
In a theory driven hybrid system, the relationship

between the discrete model and the continuous data is
supplied by the theory (Zhao 1997). The data driven
approaches are able to cope with continuous data in a
large number of situations. They are limited to consider
abstract global goals at different levels which is often
required in design (Chapman 1991). Our approach
integrates the strengths of a data-driven and theory-driven
approaches and has the major contributing points
(Prabhakar 1999).
1. The models, at each level, are built by incorporating

the interaction mechanisms of the agent into the
continuous data. The interaction mechanisms allow
the discretized data to be grounded in continuous data.
These models are predictive.

2. Due to such an incorporation, the models can
incorporate new continuous data into them.

3. The models are based on the composition of data
elements, rather than the concepts of the agent. This
adds flexibility to the model to building.

4. The abstraction processes, at different levels, transform
the continuous data for prediction about different
aspects of the environment - topology, structure,
behavior and function.

5. The agent recognizes the goals at a level by identifying
a set of patterns in interaction outputs of the agent.

6. The models at each level allow the agent to explore the
compositional modeling at that level.
A design robot interacts with its environment, learn

models of the environment and reorganises the
environment such that it delivers a new functionality. An
example design robot can design a new drilling rig for its
needs in mines, or design a bridge on the surface of Mars.
The Mars designer changes its environment on Mars to
have the functionality of transporting a vehicle by
building a bridge.

Design by autonomous learning is closely related to
the functionality of the environment as perceived by the
agent. An environment is said to have a functionality if
the agent receives a set of percepts for a sequence of
actions. An example is the functionality of the
environment to produce light where the agent applies
pressure on a switch and the agent receives light. In
design, the environment initially fails to deliver this
functionality. The agent makes changes to the
environment structure such that the modified environment
delivers the new functionality. The agent also needs to
make changes to the environment such that some of its
functions are not disturbed. A design problem is specified
to the agent as (Fm, Fa), where Fm is the set of functions
of environment that need to be maintained, and Fa is the
set of functionalities that need to be modified. The set of
actions or action sequences Af, along with the resultant
set of percepts Pn, specifies the design goal.

All the functions F of the environment may not be
known to the agent. Knowing such a complete F may
require a very large number of interactions to be performed
by the agent. Instead, the agent limits its design goal to
the functionalities of the environment it has encountered.
The design goal is suggested to the agent, when it
encounters these functions in the environment.

A simple example of autonomous learning design task
can be illustrated by using the scenario of figure 1. In
statel, the agent cannot perceive the environment as
having the function of pushing the ball. The agent
performs the action specified in the goal - push the
stopper. This does not result in the percept that the ball is
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Figure 1. Transformation of an environment that enables satisfy ball pushing function.

in a new position. The agent performs a number of
actions on the environment and collects the continuous
sensory data. From this data, it builds a discrete model of
the environment. This model is predictive and enables the
agent to formulate sequences of actions that result in
changes to the environment which have desirable
perceptual consequences. In state2, the environment is
shown as satisfying the perceptual action of pushing the
ball.

In this paper, we consider the environments that are
closed, accessible and deterministic. We first present a
multi-level organization of semantic primitives (MOSP)
that allows the incremental discretization of continuous
data, then a control strategy that allows the agent to
interact with the environment based on the models built
and finally we describe the modeling strategy.

Overview of Methodology

Our multi-level organization of semantic primitives
(MOSP) has the following levels - topological,
structural, behavioral and functional (see figure 2). As 
said earlier, each of these levels corresponds to a level of
discretization and a type of pattern over the discretized
data for that level. For example, at structural level, the
continuous data corresponds to the spatial data and no
temporal changes. The patterns are the grouping of the

discretized data that correspond to the spatial features of
objects.

At each level of MOSP, the semantic primitives
include actions and percepts, a set of planning, modeling
and learning methods, and control rules. The actions are
of two types - perceptual and change. The perceptual
actions make the sensor to focus on a new aspect of the
environment or continue to focus on the current aspect of
the environment. The change actions make changes to
the environment.

The control rules enable the agent to respond
appropriately to every interaction between the agent and
the environment. They invoke actions, and modeling,
learning and planning methods. Thus they control the
modeling and interaction. The strategy that applies the
control rules enable the agent to select te actions such
that the agent converges onto the design goals.

Modeling methods map the continuous data of the
sensors onto a Situational Action Model. This model
helps the agent to select and order the actions at that
level. The first step in generating the Situational Action
Model is feature discovery at that level from the
continuous data of the environment (Prabhakar 1999).
For example, at behavioral level, a feature can be a
change in the topological relation between two objects.
A group of such features form the model that can predict
the consequences of the actions.
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Where,
E = Execution, Sel = Action Selection, S = Sensing CS = Control Schema
Select on, MI = Method Invocation, M = Modeling, P = Planning, L = Learning

Figure 2. The organization of MOSP
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The learning methods at a level generate a Conceptual
Model for the actions at that level. Conceptual model is
a generalization of the situational action model over a set
of interactions considered as examples. This
generalization allows the agent to apply its conceptual
model to new situations.

Over the concept space generated by learning, the
planning generates a sequence of actions that satisfy a set
of constraints. These constraints are generated from the
design goal or planning at higher levels.

Figure 2 illustrates the MOSP organization. The
central aspect of the organization is that the integration
between planning, modeling, learning and execution is
organized at three levels - at topological, structural and
behavioral levels. Functional level is not shown in the
figure. Using this organization, the agent forms four
levels of egocentric representations, incrementally.

At the lowest level of MOSP, the agent forms a
topological interaction representation of the environment.
In this representation, the surfaces of the objects provide
several topological elements which are connected to each
other through perceptual actions of the agent. At the next
level, the structural aspects of the environment are
represented. At the behavioral level, the changes in the
environment are represented as a network of concepts
corresponding to the changes. The changes are represented
as discrete entities. In the functional level the aspects of
the changes in the environment that correspond to the
goals of the agent are represented.

The application of methods at each level generates
models and generates a feedback to lower levels (this
feedback is not shown in the figure 2). This feedback
provides goals to be satisfied at lower levels. Thus
modeling is both bottom-up and top-down - the models at
higher levels are formed from lower level models, while
higher level models impose constraints on lower level
modeling.

Since central to DAL is the modeling and interaction
with the environment, we focus upon these two aspects in
he rest of the paper.

Controlling Interaction and Modeling

Two issues are central to dealing with the complexity of
autonomous learning task - selecting actions that enable it
to achieve the design goal and deciding upon which
method to apply. In MOSP, the agent uses a set of
control rules called Interaction Control Schemas (ICS) and
a simple control strategy.

Initially, the actions at any level of MOSP are not
grounded in a model of the environment but on a set of
internal parameters of the agent. Hence, the selection of
actions is arbitrary, in the beginning stages of interaction.
The agent builds a model of the environment after several
interactions with the environment. This will enable the
agent to select the actions to achieve a specified effect. If
the action fails to achieve the required effect, the agent
refines its model, thus enabling it to select actions more
effectively. This incremental selectivity also applies to
the perceptual actions.
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Figure 3. Selection function updating

Figure 3 illustrates this interaction between the agent
and the environment. The agent has a selection function at
every level of MOSP which helps it to select an action at
that level. Initially, this selection function is nil and
hence the actions are selected arbitrarily. As the agent
interacts with the environment, the environment model is
built which improves the selection function and the
selectivity of actions within that environment.

The ICS schemas enable the agent to react differently
to each interaction situation. The schema that is invoked
in a situation sends appropriate signals to methods for
planning, modeling, learning, action selection and
execution. The agent has a simple forward-chaining
strategy of selecting an ICS and executing it. Since the
ICS send different signals to different methods, the result
can be a complex behavior which converges onto
achieving the design goal.

Different levels of MOSP have different perceptual
actions. For example, at topological level, a perceptual
action is View_Surface, at structural level a perceptual
action is View_Object, and at behavioral level it is
View_Move. The change actions are also dependent on the
MOSP level. An example of behavioral action is
Stretch_Hand. An example of navigational action at
behavioral level is Turn.

An example of topological ICS for action selection is"
IF

Current-action = Nil
Current_Percept_Bundle = nonNil

THEN
Current-action <-- ASelection{At, PBc}
Current_Percept_Bundle <-- Nil

Learning Environment Models

As we said earlier, the agent forms environment
interaction models that help it in prediction, and
environment modification. The sensory data for the agent
is continuous data and can be a spatial distribution of
vision data or of a parameter such as magnetic field.
Through exploration within this data, the agent forms
more abstract models of interaction with the environment.
At each level, at every interaction step, first a situational
action model is formed and provides a feature space in
which the learning of the conceptual model is done by
inductive learning. Failure of a concept to predict a
percept may invalidate that concept at that level. This
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may require the concepts or models to be refined at that
level or at the lower levels.

Topological Model Formulation

Low level continuous data of environment does not allow
comparisons, moving a segment of data to new situations
and modification. We need a representation that allows us
to do all these operations on the data. Partial Topological
Networks (PTN) is such a representation and it provides 
basis for passing models to higher levels of MOSP.

At topological level, each surface encountered within
the environment is modeled as a group of connected
views. A view is a percept received for a spatially bounded
two-dimensional region. The representation of this view
is called a topological element and is represented by a 6-
tuple (a~, 8, ct, 13, 0, #): the view 0)), the distance 
the agent (5), the horizontal angle of surface normal from
the direction of viewing (ct), the vertical angle of surface
normal from the direction of viewing (13), the horizontal
beam angle of the view(0) and the vertical beam angle 
the view (~). This 6-tuple also forms the internal
parameters of the agent. Topological elements are
connected through perceptual or navigational actions taken
by the agent. The network of topological elements is
called Partial Topological Network (PTN). Figure 
illustrates a surface of an object and its corresponding
PTN.

?pal ~a4 ~ pa3 I

I (vl,a~,bl,dl)~-~-[ (v4,a4,b4,o4)]l

l~Rectangular surface ~
A ptn for this surface

Where,
vi = view, ai = horizontal angle, bi : vertical angle,
di = distance from robot, pal = perceptual action

Figure 4. A rectangular surface and its PTN

At a given time, the agent can maintain several PTNs,
each belonging to a different surface. All these PTNs are
connected in a bigger network through navigational or
perceptual actions.

A view of a topological element can be small or large
depending upon the angle of viewing upon the surface.
Thus the number of the topological elements is not a
measure for the surface area. The perceptual actions
determine how much angle or distance the agent needs to
move in order to record the view. One of the assumptions
for successful generation of the PTNs is that the agent can
automatically sense the boundaries of the surface and stop
producing the topological elements at the boundary of
surface.

Figure 5 illustrates how different points in a view of a
topological element become relative to the absolute
coordinate system, (X, Y). The view of each topological
element has its own coordinate-system (a, b), where a and
b are functions of x and y. When a topological element is
rotated in an absolute coordinate system (X, Y), its
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coordinate system (a, b) gets redefined. Every point 
automatically gets redefined. This enables the agent to
move the views without having to recompute the absolute
positions of each point in a view. Further the coordinate
systems of the boundaries of adjacent views are connected.
Hence, the points within a view become a part of network
of topological elements.

bl*pl "P2]~

a

x x
Where, pi = f(a,b) and a,b = g(x,y)

Figure 5. Making points of views relative.

If the surface belongs to a three dimensional object,
the algorithm is limited to accessing the surface
immediately visible.

Structural Model Formulation

The change of environment is often associated with
objects rather than with the surfaces. Hence, it is required
to generate object representations.

An object representation constitutes of several PTNs.
In order to get PTNs for all surfaces of an object, the
agent needs to navigate around the object. The other
surfaces are visible after navigation. The navigation is
triggered by modeling at higher levels of MOSP. For
example, a behavioral action called Stretch_Hand can be
applied on only objects, thus resulting in their
movements. If a single surface PTN is available for an
object, the agent actively acquires the rest of the PTNs for
the object PTNs. The network of object representation is
called a Partial Structural Network (PSN).

The object representation is required to provide its
spatial properties, in order for the agent to draw
conclusions about the spatial consequences of its actions.
The structural level captures object representations along
with inter object relationships. The spatial properties are
calculated from the vision data that is stored in the views
of PTNs.

Behavioral Model Formulation

Usage of behavioral model plays a central role in making
changes in the environment. These changes are caused by
the agent’s actions and the dynamic physical environment.
Initially, the agent does not have a behavioral model. The
agent explores the environment by arbitrarily selecting
and executing behavioral actions, that may result in the
movement of the objects within the environment. By
observing these changes, the agent is able to build a
model of the environment.

The model formed will not only help the agent to
select the actions in a specific environment, but also
discriminate between two behavioural actions in order to
achieve a goal. There are two distinct types of models.
Both of these models are derived from the PTNs and PSNs
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we have discussed earlier. One type of model is attached to
individual actions. These models enable the agent to select
an action as relevant for a situation by comparing the
model with the physical situation. An action can be
instantiated many times, each with a different model. The
second type of model orders two or more relevant actions
for a situation with respect to the goals of the agent. Both
of these models are learnt.

The agent develops the behavioral model in two steps.
First it forms the situational action model along with a
feature space¯ The features are derived from the changes in
the PTNs and PSNs. The feature space is made up of
different variations or summaries of the 6-tuples that
describe a topological element. This feature space is used
to encode the (action, percept) experiences of the agent.
An inductive learning algorithm generates concepts, from
these encoded experiences, that describe the events within
the environment.

The agent may not be able to form complete
behavioral models of objects due to incompleteness of
PTNs or PSNs. In this case, the agent poses a constraint
on lower level modeling to acquire additional PSNs or
PTNs. Win order to present the behavior of the learning
algorithm, we first discuss the generation of feature space
and then the concept space.

Model Formulation in a Passive Non-Impeding
Environment
The passive environment changes only when it is acted
upon. In a non-impeding environment, each physical
object does not interfere with the changes in the other¯ An
example of such an environment is a single block sitting
on a table and no other blocks are present on the table.
The movements are unimpeded within the environment of
the table. We will explain through an example, how an
agent models the environment under such situation. Let
us say the agent executes an action that results in the
motion of a block¯ One such behavioural action is
Stretch_Hand: ( 81, cxl, 131) --> ( 82, cxl, 131). This action
results in increasing the distance between the agent and
the block, but does not change the angles of the agent
with respect to the block. The modeling algorithm will
summarise the differences between the PTN for the
starting position of the block and the PTN for the
destination position of the block, as follows¯
Vtl, t2. (tl ¯ PTN1 ^ t2 ¯ PTN2) ̂ Stretch_Hand
(PTN1) =:~ (distance(PTN2) = max_length(Hand)) 
(distance(t2) > distance(tl))
This model of the changes retains its links with the
PTNs. This allows any further generalisation required of
model, by making use of the underlying PTNs.

The agent may not be able to sense all the
consequences of an action¯ In that case, the agent may not
be able to develop a correct model of the environment.
The agent develops a limited model of the environment
and keeps modifying it till the functionalities required of
the design goal are satisfied.

Model Formulation in a Passive and Impeding
Environment
In a passive impeding environment, a behavioral action
may not be completed. For example, the stretching of the
robot hand to its full length may not be possible due to
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interference by another block¯ In this case, modeling the
changes requires taking into account the action and the
blocking effect. The agent is able to perceive that the
action has been impeded by observing the change in the
internal parameter called the length of hand. This will
prompt the agent to select and execute a few actions that
can get the agent the PTN of the blocking object¯ The
comparison between the blocking PTN and the moved
block will reveal that they have the same distances. This
is summarised in the following model.
Vtl, t2. (tl ¯ PTN1 ^ t2 ~ PTN2)A(distance(PTN3) 
distance(max length(Hand)) ̂ (angles(PTN1) 
angles(PTN3)) ̂ Stretch_Hand (PTN1)
(distance(PTN2) < max_length(Hand)) A(distance(PTN2)
= distance(PTN3) ^ (distance(t2) > distance(tl))

Model Formulation in an Active and
Deterministic Environment
An active environment can change without being acted
upon. In this case, the agent needs to do more than act
and observe. It needs to actively track the environment for
its changes. Since the agent does not have the model of
the environment, perceptual action selection is not
purposeful. That is, the agent cannot decide which aspect
of the environment it should sense, how long it should
sense, what is the rate at which sense. Our methodology
has two aspects:
a. The agent has an initial PTN of an object. The agent

will be able to perceive that there are some changes in
the environment by repeatedly generating PTN of the
current physical situation and comparing in between
PTNs. If there are some changes in the object, then it
will use the PTN to model the changes. It adapts
these changes to perceptual actions¯ These changes act
as models to predict the changes¯ The failure of
prediction leads to modifying the model. This allows
the agent to incrementally adapt to track the
environmental changes.

b. The second method is for the agent to design
controlled experiments and build limited models of the
environment which are used to build larger models.
This method is not discussed further here.
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Figure 7. Summary description of spring PTN

To understand the modeling involved in changes of the
active environment, consider the spring of figure 1 again.
The agent forms a PTN of the spring from one side. Then
a behavioral action Sweep_Hand is applied on the open
end of the spring. This results in an oscillation of the
spring. The agent observes the changes between the new
PTNs and the stationary spring PTN. Based on the
differences, it forms a model and it keeps observing the
differences. The result of these observations is a sequence
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of PTNs, each slightly different from the others. A
summarising algorithm is applied on this sequence of
PTNs to generate a statement of the oscillation of the
spring. This summary description of the changes in the
PTNs captures the oscillations of the spring (as shown in
a pictorial form in figure 7). The length of the overall
rectangle corresponds to the length of the spring, and the
width corresponds to that of the spring. The topological
elements are spread throughout the overall rectangle. This
rectangle consists of several smaller rectangles each of
which corresponds to the density of changes occurred
within that region. The rarer the region is, the smaller
the changes occurred in the topological elements within
that region. For example, the region R4 has smallest
amount of changes compared to other regions. This means
that the topological elements change less frequently
compared to other regions. This frequency distribution is
symmetrical. Further, the change in PTNs has a direction
as illustrated in figure 7.

Linking Goals to the Action Models
The models we discussed till now help the actions to be
selected within a physical situation. But they are not
sufficient in informing the agent of the relevancy of an
action for a goal compared to the others. The model
learning needs to maximise this relevancy. The agent
develops a model that is able to compare several actions
for their relevance to the goal. At each interactive control
situation, the agent compares all the applicable actions,
based on their associated models. Depending upon the
closeness of their predicted consequences they are ordered.
This linking between the goal, the consequences of
actions and their attributed priorities forms a central
model. This model is revised at each interactive control
situation.

Related Work

Our solution for a hybrid system is related to several areas
Machine Learning, Computer Vision, Design and

Robotics.
In machine learning, especially in autonomous

learning, two approaches are followed prominently to
handle continuous data. The first, a hypothesis driven or a
theory driven approach uses a prespecified associations
between concepts about discrete data and patterns in
continuous data (Zhao 1997). The other approach has
behavioral mechanisms that interact with continuous data
but do not consider the goals at various levels (Chapman
1991). In our approach, we derive associations between
concepts and data patterns which are dynamically changed
as new associations become necessary.

In computer vision, for recognition of objects from
continuous data, associations are used in between
schemas and continuous data (Stark and Bowyer 1996). 
our case, the initial hypothesis space is set up bottom up
from data, then hypothesis driven exploration refines this
hypothesis space.

In our work, discovery of several new features at
various levels is made (Zhao 1994, Yip 1991, Shen 1993,
Fawcett 1993). Design systems need to explore the
continuous data while modifying the environment. Often
most design systems explore the continuous data without
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a need to remodel (Smith, Stalker and Lottaz 1996). Our
work integrates exploration, modification of the models
and changing the environment. Pierce and Kuipers use a
multi-level organization for semantic primitives for
learning from environment (Pierce and Kuipers 1997).
Their approach is statistical, whereas our approach is
symbolic.

Discussion

In our methodology, the agent starts with no internal
search space. Through interaction with environment, it
creates and structures a search space. Search in this space
together with exploration in the environment guides the
agent to achieve the design goals. A multi-level
organization of primitives, by discretizing continuous data
at various levels, generates environment with desired
continuous data.

A constructive induction algorithm has been
implemented for discovering topological change features
(Prabhakar 1999). For this algorithm to operate efficiently
in MOSP either heuristics or efficient interaction among
multiple levels need to be present. This is a very new
project and rest of the system is still being implemented
to perform simple design tasks in simulated
environments.
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