
On Situated Reasoning in Multi-Agent Systems

Mikhail Prokopenko

Applied Artificial Intelligence Project
CSIRO Mathematical and Information Sciences

Locked Bag 17, North Ryde, NSW 1670, Australia
mikhail.prokopenko @ cmis.csiro.au

Abstract

In this paper we aim to analyse relationships between
different approaches to formalising interactivity in dynamic
systems. Approaches developed in the framework of
Reasoning about Action are mostly logic-based, rely on a
centralised world model, and try to (explicitly) capture
various aspects of rationality. Another methodology evolved
in the field of Multi-agent Systems. It usually considers
autonomous agents reacting to changes in external
environment and (ideally) exhibiting emergent behaviour.
We first attempt to formally define various types of situated
agent architectures and encapsulate them in a hierarchical
framework. We then analyse and identify domain classes
and action theories corresponding to given agent architecture
types. This approach can specifically assist in mapping logic
theories of actions to reactive agent architectures, where
ramifications are embedded in situated behaviours. The
described hierarchical framework has been used in the
RoboCup Simulation League domain, resulting in
implementation of the Cyberoos’98 - a heterogeneous
soccer team of autonomous software agents (3’d place winner
of the Pacific Rim series at PRICAI-98).

Introduction
Behavioural and multi-agent approaches to artificial
intelligence often feature situatedness of agents reacting to
changes in environment instead of reliance on abstract
representation and inferential reasoning (Brooks 1991,
Kaelbling and Rosenschein 1990, Steels 1990).

The idea that reactive behaviours can be proved to be
correct with respect to a theory of actions (and in some
cases can be derived from it) is relatively new. For
instance, a connection between theories of actions and
reactive robot control architectures based on the paradigm
of situated activity is explored in (Baral and Son 1996).
This approach formalises further the concept of "an action
leading to a goal" defined at the representation level in the
situated automata approach (Kaelbling and Rosenschein
1990) and follows the latter in relating declarative agent
specifications and situated behaviours. Recently the related
problem of "formally proving high-level effect descriptions
of actions from low-level operational definitions"
(Sandewall 1996) was addressed in the context of robotic
knowledge validation. Unlike this approach, where both
descriptions are expressed in logic, we do not require from
an agent architecture derived from a higher-level
representation to be a logic-based formalism. On the

contrary, the resulting architecture may contain only
reactive behaviours validated with respect to a meta-level
action theory (Prokopenko and Jauregui 1997, Prokopenko
et al 1998). We must stress that our approach aims not only
at obtaining sound translation procedures but also (and
more importantly) at analysing and identifying classes of
domains corresponding to certain types of agent
architectures.

More precisely, an attempt is made to select a certain
class of domains and describe a procedure mapping a
domain description (given as a logic theory of actions) into
a behaviour-based multi-agent system. Such a conversion
should ideally preserve the meaning of the domain
description as compared with the multi-agent system’s
dynamics. In other words, state transitions produced by
behaviours of autonomous agents must be warranted by
logic-based reasoning about actions and change.

Initially, we describe a hierarchical framework for
situated agent architectures. Then a basic action theory
describing unconstrained domains is used to derive a
dynamic multi-agent system based on a simple reactive
agent architecture. A more complex class of domains with
logical and causal constraints is mapped into another
dynamic system (based on an extended architecture), using
an augmented translation procedure. Both translations are
shown sound with respect to underlying action theories.

Situated Agent Architecture

In this section we define various types of situated agent
architectures and analyse their formal properties. Some of
the architectures are well-known - for example, variants of
tropistic and hysteretic agents are discussed in (Genesereth
and Nilsson 1987). We first attempt to incorporate these
results in a framework suitable for situated synthetic
agents. Then we try to extend the architecture, while
retaining the rigour and clarity of fundamental definitions.

Environment Simulator

We define a Simulator agent as a tuple As

<W, P, A, E, C, view, projection, send, receive, do>,

where W is a set of all external states, P is a set of all
possible partitions of W, A is a set of situated agents, E is a
set of effectors, and C is a communication channel type.

158

From: AAAI Technical Report SS-99-05. Compilation copyright © 1999, AAAI (www.aaai.org). All rights reserved.

Function view structures situated agent perceptions by
selecting a partition of external states for each agent. In
other words, it maps an agent into an external states
partition and defines view: A ~ P.

Dependent on a current situation in the synthetic world,
the Simulator determines which particular element from a
viewable partition is currently observable by every situated
agent in A. In other words, the Simulator projects an
external state and a situated agent into an element of the
viewable partition of external states, by using projection: W
x A ---> 2w, where 2w is the power-set of W. The exact range
of the projection function is the external states partition
selected by view from the set P of all possible partitions of
W. More precisely,

~/ w ~ W, V a ~ A, projection(w, a) ~ view(a)

The projected partition element is a set of external states
(projection(w, a) c Be), and is sent by the Simulator to the
situated agent by means of the function send: A x 2w ---> C.
We will presume that situated agents are able to decode
projection(w, a) from the input message, and respond back
to the Simulator with an effector name. The received
communication is decoded by receive: A x C ---> E, and the
communicated effector is processed by the function do: E x
W ---> W, which maps each effector and an external state
into the next state.

Tropistic Agents

Having defined the architecture of the Simulator agent, we
formally describe an Abstract Tropistic agent as a tuple AAr

<C, S, E, sense, tropistic-behaviour, response>,

where S is a set of agent sensory states, and C and E denote
the same components as before. The sensory function is
defined as sense: C ~ S, where an element of C is
expected to carry the information on projection(w, a).
Activity of the agent is characterised by tropistic-
behaviour: S ~ E. We do not intend here to formally
define the notion of reactive planning. However, by
allowing the set E to include composite effectors el; e2 ,
where el ~ E, e2 ~ E, we can implicitly account for the
case of tropistic planning - when a situated agent reacts to
stimuli S with an n-length sequence of effectors. The
response function takes care of communicating the selected
behaviour to the Simulator by encoding response: E ---) C.
This abstract class may not have any instances because the
tropistic-behaviour function is not implemented at this
level of the hierarchy.

It is interesting at this stage to consider a very simple
sub-class of the Abstract Tropistic agent - a Clockwork
agent. This class has a specialised sensory function timer: C
---> S, and does not specialise the function sense in any other
way. In other words, a Clockwork agent is able to
distinguish only between external states with different time
values, having no other sensors apart from the timer. In
addition, this class specialises the tropistic-behaviour

function by introducing the command function defined as
command: S ---> E. Since the only sensor available at this
level is the timer, the agent behaviour is predefined and is
totally driven by time values. In other words, like a
clockwork mechanism, a Clockwork agent executes its
fixed behaviour as a sequence of commands sent to the
Simulator at predefined time points. Formally, the
Clockwork agent class is defined as a tuple Acw

<C, S, E, sense, timer, tropistic-behaviour, command, response>,

where the bold style indicates newly introduced functions.
The Tropistic agent class Ar is derived from the

Clockwork agent and finally allows us to implement the
tropistic-behaviour function.

In practice, it is almost impossible to express each
instantiation (e, s) of the tropistic-behaviour function e =
tropistic-behaviour(s) in terms of complete sensory states.
Instead, we represent such behaviour instantiations in terms
of partial sensory states. For example, the following rules,
given in the form similar to control rules (Baral and Son
1996) or condition-action pairs (Kaelbling and Rosenschein
1990), describe behaviour instantiations:

if [SeeBall: (distance, direction) ̂ Far(distance)]
then turn(direction); dash(2*distance)

The bracketed component on the left-hand side
correspond to elements of S and has to be evaluated as true
in order to activate effector(s) on the right-hand side.
sentence ¢x in this component specifies the set of states
from S consistent with oc. In other words, it specifies a
partial sensory state. Technically, each premise could be
represented by a DNF, where each conjunct describes a
complete sensory state. The DNF may be divided into a
number of conjunctive premises, where each modified
premise can be treated as a set of atomic formulae
describing a complete sensory state.

Hysteretic Agents

A Hysteretic agent is defined here as a reactive agent
maintaining internal state I and using it as well as sensory
states S in activating effectors E; i.e. its activity is
characterised by hysteretic-behaviour: I x S ---> E. Again,
we allow the set E to include composite effectors el; e2 ,
where el ~ E, e2 ~ E, covering the case of hysteretic
planning. A memory update function maps an internal state
and an observation into the next internal state, i.e. it defines
update: I x S ---> I. A Hysteretic agent reacts to stimuli s
sensed by sense(c) and activates effectors e according to
hysteretic-behaviour(i, s). The agent neither has full
knowledge about the state do(e, w) obtained by the
Simulator, nor reasons about the transition. The next
interaction with the world may bring partial knowledge
about its new state.

The Hysteretic agent class extends its superclasses by
adding the hysteretic-behaviour and update functions,
while retaining all previously defined functions (i.e., it is

159

sub-class of the Tropistic agent). So the Hysteretic agent is
defined as a tuple An

<C, S, E, I, sense, timer, tropistic-behaviour, command,
hysteretic-behaviour, update, response>

Hysteretic-behaviour instantiations may be represented
in terms of partial internal and sensory states as well. For
example, the following rule describes a hysteretic-
behaviour instantiation, where the effector on the right-
hand side is composite:

if [Orientation: angle] and [SeeBall: (b, dir) ^ Close(b)]
then weak_kick(angle - dir); turn(angle)

Two bracketed components on the left-hand side
correspond to elements of I and S respectively.

An Extended Hysteretic agent Aen is derived from the
Hysteretic agent. Its architecture contains two additional
communication components notify and listen, and is
defined as a tuple

<C, S, E, I, sense, timer, tropistic-behaviour, command,
hysteretic-behaviour, notify, listen, update, response>,

where the communication functions are responsible for
dealing with outcoming and incoming messages exchanged
among situated agents (rather than between a Simulator and
a situated agent). The listen function is specialised from the
sense function, and notify function is a specialised
hysteretic-behaviour. The reason for introducing these
communication functions is that domain constraints may
influence internal variables of other agents or require
invocation of other agents’ actions. The distinction between
structural ramifications when "the action can affect
features of other objects than those which occur as
arguments of the action" and local ramifications involving
only "features of the argument objects" was identified in
(Sandewail 1994). For example, the following domain
constraint

H(t, near(x): y) ~ H(t, near(y):

demands from a model to include the atomic formula
near(B): A, whenever it contains the atomic formula
near(A): B. Therefore, at the moment when agent
evaluates near(A): B as true (either by sensing a
observation, or by updating an internal variable), another
agent (B in this case) needs to be notified. If the agent
has limited sensory capabilities (preventing, for example,
direct sensing of near(B): A), then the communication
the only way of ensuring a synchronous assignment.

It is worth noting that "listening" to a message is a form
of sensing, and "speaking" is a form of action (Parsons,
Sierra, and Jennings 1998). Therefore, incoming messages
can be sensed (listen-ed) by a suitable sensor, let us say,
Told: e, and outcoming messages can be sent by the
specialised behaviour notify activating a suitable effector,
let us say, Tell(g, e), where e is an effector name, and g is

name of a receiving agent. For example,

if [SeePartner: (n, d, angle) ̂ SeeBall: (dist, dir) ^ NearBall(n)]
then Tell(NameOf(n), turn(angle - dir)
if [LookingForBall] and [Told: turn(x)] then turn(x)

An agent may send a message to itself. An execution of a
communicated effector modifies internal variables of the
receiving agent.

Dynamic multi-agent systems

A dynamical system can be characterised as "a system
whose state changes over time, and where effects flow
forward in time so that the non-input part of the state at one
time can only depend on its earlier states" (Sandewall
1994). The agents of the system perform actions
influencing state variables and changing the system state.

We define a dynamic multi-agent system by a set of
architecture types A _ { As, Acw, AT, An, AEH }, and a
particular value of a time parameter t. Given a finite set of
agents gk (1 < k < N) instantiated from the architectures in
A, one can construct a dynamic system VA (based on A)
which maps an initial state and a time value to a state.

More precisely, VA is a function U x R --+ U, where U is
the set of possible states 11 x ... x Is.t x W and R is the set
of real numbers - assuming, without loss of generality, that
agent go is a Simulator agent. We denote a state generated
by the dynamic system Va at the time instant t as VA(t).

Action Theories for Situated Reasoning

The approach to representing operational definitions and
effect descriptions of continuous actions (Sandewall 1996)
follows a narrative time-line approach and allows us to
define continuous change, discrete discontinuities, actions
with duration, composite actions, and the distinction
between success and failure of an action. We will adopt
from (Sandewall 1996) the following notation:

H(t, f:v): fluent f has the value v at time
X(t,f): fluent f is exempt from minimisation of discontinuities (the
occlusion operator);
G(s, a): the action a is invoked at time
A(s, a): the action a is applicable at time
D([s,t], a): the action a is successfully executed over the time
interval [s,t];
Dr(Is,t], a): the action a fails over the time interval [s,t];
D ([s,t], a): the action a is being executed during the interval [s,t).

The set of axioms in (Sandewall 1996) specifies properties
and relationships of these predicates. All state variables
(fluents) in a described domain may have an argument.
assume that multi-argument fluents can be reified and
alternatively represented by unary fluents without an
expressibility loss. In order to declare that a fluent does not
have a value we use the nil symbol: H(t, f:nil) abbreviates
~3v [H(t, f:v)]. Another syntactic sugar is introduced for
anonymous variables: H(t, f:_) abbreviates 3v [H(t, f:v)],

160

assuming that the sentence where the Skolem constant
replaced a variable, has had no two quantifiers referring to
the same variable v. By definition, H(t, f:ni/) ~-> ~H(t, f:_).
The reassignment operator := will be used to abbreviate
H(t,f:v) ^ X(t,f) as H(t, f:=v).

Basic Action Theory for Unconstrained Domains

We start with simple deterministic artificial worlds where
domain constraints are not defined, and therefore all action
effects are direct. All initially given formulae H(t, f:v) will
be called observation descriptions, and all initially given
formulae G(t, a) will be referred to as plan descriptions.

The action success description has the following form:

D([s,t], a) ---> H(t, COo (1)

where ~ is the post-condition of the action a given at the
termination time (Sandewall 1996). For example,

D ([s,t], PASS(x, y, p)) ---> H(t, possession(y))

describes successful execution of the PASS action,
applicability description of which can be given as

A(s, PASS(x, y, p)) ~-> H(s, possession(x))
H(s, free(y)) A H(s, sustains(x,

An action, once invoked, continues towards a success at
which instant it terminates (unless there is a qualification
that forces it to fail earlier). The invocation and termination
descriptions respectively are given as follows:

A(s, a) A G(s, a) ---> H(s,
I.t~ A Dc([s,t], a) ---> D([s,t],

(2)
(3)

where y~ is the invocation condition and ~ is one of the
termination conditions.

An action failure is defined by a failure description and
by a failure effects description:

8, ̂ D ([s,t], a) ̂ ~D([s,t], a) ---> Df([s,t],
Dc([s,t], a) A Df([s,t], a) ---> H(t,

(4)
(5)

where xo is the failure post-condition.
We will denote the described theory of actions as T1 =

<D, M>, where all domain axioms compose D, and M is a
specific minimisation policy. The chronological
minimisation of discontinuities in piecewise continuous
fluents should, in general, be complemented by
maximisation of action duration (Sandewall 1996).

Basic Translation

In this section we employ a basic translation Tr; D ~ Vs_u
from a domain described by the theory of actions T, to a
dynamic multi-agent system based on the Simulator and
Hysteretic agent architectures S_H = {As, An }.

We introduce a set G of agent sub-classes (derived from
elements of S_H) and assign all domain descriptions in

to corresponding classes. Formally, an assignment relation
P c G x D is defined such that V d ~ D, 3 g ~ G, (g, d)
P. For all agent classes g ~ G, the translation Tr,
introduces appropriate sensor, effector and internal
variables names tr(f), and processes all (assigned to
descriptions d such that (g, d) ~ P. In particular, the
following steps are performed:

¯ for all plan descriptions G(t, a) produce behaviour
instantiation

if [tr(cp,)] and [Timer: t] then start._a
where ¢p, is the applicability condition of action a,
Timer is a sensor, t denotes a current time reading; the
effector start_a executes the translated invocation
condition tr(yo) (2) and initiates the Started_a variable
as Started_a: t;

¯ for all observation descriptions H(t, f:v) produce
update and/or sense instantiation(s)

if [Timer: t] then {tr(f): v};
¯ for all termination descriptions (3) produce

behaviour instantiation
if [Started_a: s ^ tr(~a)] and [tr(lx) ^ Timer:
then stop_a

where a is the action in D,([s,t], a), o)o is its post-
condition; the effector stop_a executes the translated
success condition tr(~) (1) and sets the Started_a
variable as Started_a: nil;

¯ for all failure descriptions (4) produce behaviour
instantiation

if [Started_a: s ̂ ~tr(a)o v x,,)[and [tr(8~) ̂ Timer:
then halt__a

where a is the action in Df([s,t], a); ~ and x,, are its
post-condition and failure post-condition respectively;
the effector halt_a executes the translated failure
effects description tr(xa) (5) and sets the Started_a
variable as Started_a: nil.

The described theory of actions T~ = <D, M> provides a
validation criterion for the dynamic system Vs~. Although
the time in T, is continuous we can, nevertheless, validate
all non-auxiliary atomic formulae tr(f):v in Vs_u (t) at the
time instant t if H(t, f:v) is entailed by a consistent theory
Tr An auxiliary formula Started_a: s (s ~: nil) is valid
V~, (t) if s < t ^ D,([s,t], a) is entailed by a consistent
theory Tr Similarly, an auxiliary formula Started_a: nil is
valid in Vs_H (t) if a consistent theory/’1 entails 3s [s < t ^
(D([s,t], a) v D,([s,t], a))]. It is easy to verify that
following soundness proposition is true.

Proposition 1. Given a deterministic unconstrained
domain D described by a consistent action theory, there
exists an assignment relation P c G x D for a set of agent
class names G, such that the translation Tr; D ~ Vs_H
produces a dynamic system (based on {As, AH }) where all
atomic formulae are valid.

It follows immediately that a consistent action theory
describing a (trivial) domain with only plan descriptions

161

can provide a validation criterion for a dynamic multi-agent
system Vs_cw based on the Simulator and Clockwork agent
architecture S_CW = {As, Acw} :

Corollary 1. Given a trivial deterministic unconstrained
domain D described by a consistent action theory, there
exists an assignment relation P c G x D for a set of agent
class names G, such that the translation Tr,: D ~ Vs_cw
produces a dynamic system (based on {As, Acw}) where all
atomic formulae are valid.

Extended Action Theory

The extended action theory allows us to reason about
ramifications and interactions. Typically, indirect changes
(ramifications) are non-monotonically derived
consequences of domain constraints. For example,

H(t, near(x): y) ^ H(t, near(x): z) ---> H(t, near(y):=

This reassignment constraint uses the occlusion operator
X(t,f) and excludes (releases) the indirect effects from
law of inertia. This effectively specifies the direction of the
dependency and makes the latter look like a "causal rule"
producing necessary ramifications (McCain and Turner
1995, Gustaffson and Doherty 1996).

Another form of ramifications describes an interaction
when one continuous action triggers another:

g, ^ D([s,t], a) ̂ ~D,([s,t], a) --> G(t, (6)

where each 9~ represents an interaction condition, and b is
another action invoked by occurrences of ~,i during the
execution of the action a. For example,

H(t, see_opponent(x): z) 6 H(t, near(x): z) ^ H(t, see_.partner(x):
y) ^ D ([s,t], DRIBBLE(x, d)) ^ ~D,([s,t], DRIBBLE(x, d)) -->
G(t, PASS(x, y, distance(x, y)))

G(t, b) is the only specified effect of the interaction.
Therefore other effects of the action b (defined in its
success, failure, and/or interaction descriptions) can be
viewed as ramifications of this interaction. They do not
have to be specified explicitly with every such interaction
and are supposed to be implied indirectly. Possible
preconditions for the action invocation are checked by the
applicability description A(t, b). In general, any expression
of the form

3., ---> G(t, b) (7)

can be considered as a (trivial) interaction description.
Thus at least two ways to address the ramification

problem in a logic characterising piecewise continuous
change can be observed: by defining constraints and by
specifying interaction descriptions for continuous actions.

We will denote the described theory of actions as T2 =
<D, M>, where domain axioms composing D may include
domain constraints and interaction descriptions.

Extended Translation
The Reasoning about Action tradition proposes to use
domain constraints and/or causal laws separated from
action specifications in order to derive indirect effects of an
action. In a multi-agent framework, a similar solution can
be achieved by embedding indirect effects in situated
behaviours of autonomous reactive agents.

An extended translation Tr2: D ~ Vs~. from a domain
described in the theory of actions T2 to a dynamic system
based on the Simulator and Extended Hysteretic agent
architectures SEll = {As, AEu } translates every domain
constraint into a number of reassignment (causal)
constraints and introduces additional required names. In
particular, it adds the following steps to the translation Trl:

¯ for all interaction descriptions (6) produce notify
behaviour instantiation

if [Started_a: s ^ tr(~’~)] and [tr(3.) A Timer:
then Tell(gb, b_start),

and a listen behaviour instantiation for an agent g~,
if [tr(%)] and [Told(b) A Timer: t] then b_start

where b is the action in G(t, b), q~h is its applicability
condition, a is the action in Dc([s,t], a), xo is its failure
post-condition, and gb is the agent receiving the
communication;

¯ for each causal constraint H(t, ~) ---> H(t, f:=
produce a notify behaviour instantiation

if [tr(~) A ~(tr(f): v)] and [Timer: t]
then Tell(g,~, assign_#)

and a listen behaviour instantiation for an agent g~,<0
if [Told(assign#) A Timer: t] then assign_#

where a (sequentially numbered) assign_# effector
executes {tr(f): v}, and g,~n is the agent receiving the
communication.

It is worth noting that domain constraints and interaction
descriptions are translated into situated behaviours of the
same structure, thus allowing to uniformly embed possible
ramifications.

Translation of a definitional domain constraint produces
several causal constraints, where a right-hand side fuent is
partially defined in terms of the left-hand side. It is well
known that some fluents cannot be fully defined in terms of
their definitional counterparts. For example, the domain
constraint

H(t, free(x)) ~ ~qy [H(t, near(x):

fully defines the propositional fluent free(x) in terms of the
fluent near(x). However, the latter is not uniquely defined
in terms of the former. Nevertheless, in order to produce
causal constraints, it is sufficient to employ nil and _
values:

H(t, near(x): nil) ---> H(t, free(x):= True)
It(t, near(x): _) --> H(t, free(x):=
H(t, free(x): True) ----> H(t, near(x):= nil)
H(t, free(x): False) ~ H(t, near(x):=

The last constraint leaves open the question what object is

162

near x, but does not justify any unsound formulae.
The extended theory of actions T~ = <D, M> provides a

validation criterion for the system Vs~.u. All atomic
formulae tr(f):v in Vs_r.H(t) are validated as in Vs~(t).
Analogously, the following soundness proposition is true.

Proposition 2. Given a deterministic domain D
described by a consistent action theory, there exists an
assignment relation P c G x D for a set of agent class
names G, such that the translation Tr2: D ~ Vs~H produces
a dynamic system (based on {As, A~u}) where all atomic
formulae are valid.

Sometimes the translation Tr2 may produce a multi-agent
system based on the Simulator and Hysteretic agent
architectures S_H = {As, AH }. It occurs when all messages
are communicated internally within an agent. In other
words, interactions and domain constraints are defined in
terms of internal variables. The class of action domains
where the translation yields these particularly simple results
is the class of domains with local ramifications:

Corollary 2. Given a deterministic domain with local
ramifications D described by a consistent action theory,
there exists an assignment relation P c G x D for a set of
agent class names G, such that the translation Tr2: D
V.,._u produces a dynamic system (based on {As, Au}) where
all atomic formulae are valid.

Furthermore, if a deterministic temporal projection
domain with local ramifications is described only by plan
and trivial interaction descriptions (7), then its translation
produces a multi-agent system based on the Simulator and
Tropistic agent architectures S_T = {As , Ar }. The sense
function in Ar captures all trivial interaction conditions, the
tropistic-behaviour implements all trivial interaction
descriptions, and the command invokes all (pre-)planned
actions, producing timed response. For such trivial domains
(described only by plans and trivial interactions)
immediately obtain the following

Corollary 3. Given a trivial deterministic domain with
trivial local ramifications D described by a consistent
action theory, there exists an assignment relation P c_ G x
D for a set of agent class names G, such that the translation
Tr2: D ~ Vs_r produces a dynamic system (based on {As,
Ar }) where all atomic formulae are valid.

Conclusions
The obtained results can be generalised by translating

broader classes of action domains into more complex agent
architectures. Ideally, any extended translation Trk: D ~ VA
must satisfy the important soundness property: state
transitions produced by a dynamic multi-agent system VA
are sound with respect to reasoning warranted by an action
theory Tk. For instance, action theories capturing goal-
oriented behaviour axiomatised in (Sandewall 1997) may

be used to validate process-oriented agent architectures.
The intention is to consider a generic class of systematic

models <T, Tr, V>, where each instance of an action theory
T provides a validation criterion for a dynamic system V,
and the translation Tr is sound. Such systematic models
would support uniform specifications of synthetic agents
and facilitate a rigorous comparative analysis of different
architectures and their ranges of applicability with respect
to provably correct logics.

References
1. Baral, C., and Son, T. 1996. Relating Theories of Actions

and Reactive Robot Control. In Proceedings of the AAAI
1996 Workshop on Theories of Action and Planning:
Bridging the Gap. Portland.

2. Brooks, R.A. 1991. Intelligence Without Reason. In
Proceedings of the 12’h International Joint Conference on
Artificial Intelligence, 569-595. Morgan Kaufmann.

3. Genesereth, M.R., and Nilsson, N.J. 1987. Logical
Foundations of Artificial Intelligence. Morgan Kaufmann.

4. Gustaffson, J., and Doherty, P. 1996. Embracing Occlusion
in Specifying the Indirect Effects of Actions. In Proceedings
of the 5’h International Conference on Principles of
Knowledge Representation and Reasoning. Cambridge.

5. Kaelbling, L. P. and Rosenschein, S. J. 1990. Action and
planning in embedded agents. In Maes, P. (ed) Designing
Autonomous Agents: Theory and Practice from Biology to
Engineering and Back, 35 - 48, Mass.: MIT/Elsevier.

6. McCain, N., and Turner, H. 1995. A Causal Theory of
Ramifications and Qualifications. In Proceedings of the 14’h

International Joint Conference on Artificial Intelligence,
1978-1984. Montreal.

7. Parsons, S., Sierra, C., and Jennings, N. 1998. Multi-context
Argumentative Agents. In Proceedings of the Fourth
International Symposium on Logical Formalizations of
Commonsense Reasoning.

8. Prokopenko, M., Jauregui, V. 1997. Reasoning about Actions
in Virtual Reality. In Proceedings of the IJCAI-97 Workshop
on Nonmonotonic Reasoning, Action and Change, 159-171.

9. Prokopenko, M., Kowalczyk R., Lee M., Wong, W.-Y. 1998.
Designing and Modelling Situated Agents
Systematically: Cyberoos’98. In Proceedings of the
PRICAI-98 Workshop on RoboCup. Singapore.

10. Sandewall, E. 1994. Features and Fluents. The
Representation of Knowledge about Dynamical Systems.
Volume L Oxford University Press.

11. Sandewall, E. 1996. Towards the Validation of High-level
Action Descriptions from their Low-level Definitions.
Linl~ping electronic articles in Computer and Information
science, Vol. 1 (1996):

12. Sandewall, E. 1997. Logic-based Modelling of Goal-
Directed Behaviour. Linkb’ping electronic articles in
Computer and Information science, Vol. 2 (1997): 19.

13. Steels, L. t990. Exploiting Analogical Representations. In
Maes, P. (ed) Designing Autonomous Agents: Theory and
Practice from Biology to Engineering and Back, 71 - 88,
Mass.: MIT/Elsevier.

163

