From: AAAI Technical Report SS-99-05. Compilation copyright © 1999, AAAI (www.aaai.org). All rights reserved.

Execution Monitoring of High-Level Programs.

Mikhail Soutchanski
Department of Computer Science
University of Toronto
http://www.cs.toronto.edu/"mes/index.html

1 A statement of interest.

My interest to interconnections between the hybrid systems
and Al stems from 1) the well known perspective [3] that
both planning and control address a similar problem: choos-
ing actions to influence a process, based on some model of
that process, and (2) from my research project on execution
monitoring of high-level programs (programs specify plans to
achieve certain goals as explained below). In my research,
I look to an expressive and well studied knowledge repre-
sentation framework for modeling processes called the sit-
uation calculus. The situation calculus is a predicate logic
language for representing and reasoning about actions and
properties of dynamically changing worlds. It is employed
to model continuous processes and physical systems [8; 9;
4], to diagnose what happened to the system [7] and to provide
the foundations for a logic programming language Golog [9;
51. The version of the situation calculus that I use has been
described in [9; 5], and elsewhere. I will not go over the lan-
guage here except to note the basic components. All changes
to the world are the result of named actions. According to the
important idea of [10; 8], continuous processes influencing
one or more parameters can be considered to have a regular
behavior that does not change until an action is executed. A
sequence of actions (history) is represented by a term called
a situation. The constant Sy is used to denote the initial sit-
uation, namely the empty history. Non-empty histories are
constructed using a distinguished binary function symbol do;
do(a(z), s) denotes the successor situation to s resulting from
performing the action denoted by term «(z). There is a spe-
cial predicate Poss(a(z), s) used to state that action o(z) is
executable in situation s. Relations whose truth values vary
from situation to situation are called relational fluents. Simi-
larly, functions whose values vary from situation to situation
are called functional fluents. In terms of the control theory
(decision theory), fluents are state variables influenced by a
sequence of control actions (sequence of decisions, respec-
tively) performed so far.

To axiomatize the primitive actions and fluents of a domain
of application, one must provide the following axioms:

1. Axioms describing the initial situation — what is true
initially, before any actions have occurred. This is any
finite set of sentences that mention only the situation term
So, or that are situation independent.

178

2. Action precondition axioms, one for each primitive ac-
tion. They characterize Poss(A(Z),s): the conditions
under which it is possible to execute action A(Z) in sit-
uation s. In addition to these, one must provide suitable
unique names axioms for actions.

Successor state axioms, one for each fluent F', stat-
ing under what conditions the value of F(Z, do(a, s))
is determined as function of what holds in a previ-
ous situation s. These characterize effects of actions
and also provide a solution to the frame problem [9;
51

The set D of domain specific situation calculus axioms is
employed to derive plans as explained below. Planning is
known to be computationally intractable in general and is im-
practical for deriving complex behaviors involving hundreds,
and possibly thousands of actions in applications character-
ized by hundreds of different fluents. For this reason, the
University of Toronto Cognitive Robotics Group is pursuing
a computer science perspective: reduce the reliance on plan-
ning for eliciting interesting behaviors, and instead provide the
control system with programs written in a suitable high-level
language, in our case, Golog or ConGolog. As presented in [6;
5] and extended in [1], Golog is a logic-programming lan-
guage whose primitive actions are those of a background do-
main theory D. Golog includes the following constructs:
¢? — test the truth value of a situation calculus formula ¢,
(61;62) — sequence of two programs, (§; | d) — nondeter-
ministic choice between programs, 7v.§ = nondeterministic
choice of argument to a program 4, as well as other constructs
such as loops, conditionals and recursive procedures (see [1:
5] for details). A programmer may use any of these constructs
to write a Golog program that constrains the search for a desir-
able plan (of course, if a Golog program is deterministic, then
no search is required). It is the task of a Golog interpreter to
figure out how to obtain a desirable plan (sequence of actions)
as a side effect of executing a Golog program. In my research
Irely on the single-step interpreter [1] that selects on each step
of interpretation either a next primitive action for execution
or a next test for evaluation. This interpreter is defined by
means of two relations: Trans and Final; see [1] for details.
Given a program § and a situation s, Trans(d, s, §’,s') tells
us which is a possible next step in the computation, returning
the resulting situation s’ and the program ¢’ that remains to
be executed. Final(4, s) tells us whether § can be considered

final, that is whether the computation is completed (no pro-
gram remains to be executed). I will not give here any axioms
that provide operational transitional semantics for Golog con-
structs in terms of Trans and Final, because they are available
in [1], but I note that these axioms characterize what one
would normally expect. In the case of a primitive action a,
Trans(a, s, nil, do(a, s)) is true iff Poss(a, s) is true, where
nil is the empty program (for any situation s Final(nil, s));
in the case of a test, Trans(¢?, s, nil, s) is true iff the situa-
tion calculus formula ¢ is true in s. The relation Do(J, s, s')
defined by means of Trans* (the reflexive transitive closure of
Trans) and Final specifies an interpreter of Golog programs
as: Do(d,s,s') = 38'.Trans*(8,s,d',s') AFinal(8',s'). In
other words, Do(d, s, s) holds iff it is possible to repeatedly
single-step the program §, obtaining a program ¢’ and a situa-
tion s’ such that §’ can legally terminate in s’. A sequence of
actions that leads from s to s’ is a desired plan.

Thus, the interpreter derives a plan as a side-effect of execut-
ing a Golog program and whenever it selects a next primitive
action A for execution it determines from a corresponding
precondition axiom whether Poss(A, S) is true or not in the
current situation S, and whenever it selects a test ¢, the evalua-
tion of this test is also determined by axioms of the background
domain theory D. It is important to note that the logical (men-
tal) representation of the world D does not contain information
whether unpredictable changes actually occurred in the real
world. The real world evolves according to its own incom-
pletely known continuous (or discrete) laws and usually ac-
tions constituting a plan are not solely responsible for changes
in the real world. Hence, the interpreter may not guarantee
that truth values of relational fluents or values of functional
fluents computed from D correspond to their values in the real
world. For this reason, after selecting a primitive action for
execution or evaluating a test condition, a high-level control
module has to compare a mental world model with reality.
If it does not notice any relevant discrepancies, then it exe-
cutes the action in reality (or evaluates the test, respectively).
Otherwise, the high-level control module (called the monitor)
attempts to recover from unexpected discrepancies and then
proceeds with the remaining part of the program or fails. The
processes of interpreting and execution monitoring continues
until the program reaches the final configuration or fails. It is
convenient to consider all discrepancies as the result of sen-
sory actions, exogenous with respect to our control system,
and assume that the monitor observes all such actions. For
example, to make sure that a next primitive action A (selected
tentatively for execution) is possible in a current situation,
the monitor has to sense values of fluents mentioned in the
precondition axiom for A. In [2], the processes of interpret-
ing and execution monitoring are characterized formally by a
new predicate symbol TransEM (;, 51,42, s2), describing
a one-step transition consisting of a single T'rans step of pro-
gram interpretation, followed by a process, called M onitor,
of execution monitoring. The formal definition of Monitor
is parametric with respect to the two additional predicates
Relevant and Recover. An interpreter coupled with the ex-
ecution monitor is defined by the relation DoEM (4, s, s')
similarly to the relation Do(d, s, s’) above (with Trans* re-
placed by the reflexive transitive closure of TransEM). The

179

most challenging part of this research endeavor is to find the
declarative definitions of Relevant and Recover appropriate
for a wide range of application domains. One possible class of
monitors is considered in [2]: a discrepancy between mental
model and the real world is deemed relevant if a remaining
part of the Golog program cannot be successfully completed
in the situation resulting after sensing; as a recovery technique
it is suggested to generate a (possibly short) plan such that it
may counter-balance a perceived discrepancy, then insert this
plan as a prefix to the remaining part of program and continue
the overall control process. Another recovery technique that
I explore is to remove an unnecessary segment of a remain-
ing part of the Golog program (this has to be done when an
external process achieved already a result that the segment
was designed to achieve). I'm also looking for definitions
of Relevant and Recover appropriate to temporal, spatial
domains and other cases. In the case of temporal Golog pro-
grams, if discrepancies are caused only by delays in time
(the current time is greater than the scheduled time), then it
seems appropiate to reschedule the remaing program (if pos-
sible). It remains to see whether suitably general definitions
of Relevant and Recover can be formulated in other cases.
References

[1]1 G.De Giacomo, Y. Lespérance, and H.J. Levesque. Reasoning
about concurrent executions, prioritized interrupts, and exoge-
nous actions in the situation calculus. In Proc. of the 15th
IJCAI-97, volume 2, pages 1221-1226, Nagoya, Japan, 1997.

[2] G. De Giacomo, R. Reiter, and M.E. Soutchanski. Execu-
tion monitoring of high-level robot programs. In Principles
of Knowledge Representation and Reasoning: Proc. of the 6th
International Conference (KR’98), pages 453-464, Italy, 1998.

[3] TL. Dean and M.P. Wellman. Planning and control. Morgan
Kaufmann, San Mateo, Calif., 1991.

[4] T.Kelley. Modeling complex systems in the situation calculus:
A case study using the dagstuhl steam boiler problem. In Prin-
ciples of Knowledge Representation and Reasoning: Proc. of
the Sth International Conference (KR’96), Cambridge, Mas-
sachusetts, 1996.

[5] HJ. Levesque, F. Pirri, and R. Reiter. Foundations
for the situation calculus. Linképing Electronic Arti-
cles in Computer and Information Science. Available at:
http:/fwww.ep.liu.se/ea/cis/1998/018/, vol. 3, N 18, 1998,

[6] H.J. Levesque,R. Reiter, Y. Lespérance, E Lin, and R. Scherl.
Golog : A logic programming language for dynamic domains.
J. of Logic Programming, 31, N 1-3:59-83, 1997.

[71 S. Mcliraith. Explanatory diagnosis: Conjecturing actions to
explain obsevations. In Principles of Knowledge Representa-
tion and Reasoning: Proc. of the 6th International Conference
(KR’98), pages 167-177, Italy, 1998.

[8] 7. Pinto. Temporal Reasoning in the Situation Calculus, Ph.D.
Thesis. Dept. of Computer Science, Univ. of Toronto, 1994.

[9]1 R. Reiter. KNOWLEDGE IN ACTION: Logical Founda-
tions for Describing and Implementing Dynamical Systems.
A draft of the first eight chapters of a book. Available at
http://www.cs.toronto.edu/" cogrobo/, 1998.

[10] E. Sandewall. Combining logic and differential equations for
describing real-world systems. In Principles of Knowledge
Representation and Reasoning: Proc. of the 1st International
Conference (KR'96), Toronto, Ontario, 1989,

