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Abstract

We present a procedure for synthesizing controllers
for safety specifications for hybrid systems. The pro-
cedure depends on the construction of the set of states
of a continuous dynamical system that can be driven
to a subset of the state space, avoiding another subset
of the state space (the Reach-Avoid set). We present
a characterization of the Reach-Avoid set in terms of
the solution of a pair of coupled Hamilton-Jacobi par-
tial differential equations. We also discuss a compu-
tational algorithm for solving such partial differential
equations, and present an example derived from air-
craft conflict resolution.

Introduction

The synthesis of controllers that meet safety specifica-
tions for discrete, continuous and hybrid systems has
attracted considerable attention (see (Thomas 1995;
Ba~ar & Olsder 1995; Maler, Pnueli, & Sifakis 1995;
Wong-Toi 1997) for an overview). Our work has been
based on casting the problem as a two player, zero
sum game, between a controller, that tries to ensure
that the safety specification is satisfied and a distur-
bance (modeling the nondeterminism of the system),
that tries to violate the safety specification (Lygeros,
Tomlin, & Sastry 1999). In (Tomlin, Lygeros, & Sas-
try 1998) we proposed a procedure for systematically
carrying out the controller synthesis for general hybrid
systems. The procedure relies on the solution of par-
tial differential equations (PDEs) (Lygeros, Tomlin, 
Sastry 1998), known as the Hamilton-Jacobi equations.
Here, we bring the synthesis procedure one step closer
to implementation, by proposing a numerical scheme
for solving these partial differential equations.

In this paper, we first briefly review the modeling
formalism and the controller synthesis problem intro-
duced in (Lygeros, Tomlin, & Sastry 1999). We then
review the algorithm proposed in (Tomlin, Lygeros,
Sastry 1998) for solving the controller synthesis prob-
lem. The algorithm requires the computation of the set
of states of a continuous dynamical system that can be
driven to a given subset of the state space, avoiding an-
other subset of the state space (the Reach-Avoid set).

We present a procedure for characterizing the Reach-
Avoid set, in terms of the solution to a pair of coupled
Hamilton-Jacobi PDEs (Tomlin 1998). The advantage
of this characterization (over the single PDE charac-
terization of (Lygeros, Tomlin, & Sastry 1998), for ex-
ample) is that it can deal with situations in which the
closures of the Reach and Avoid sets overlap, without
resorting to approximation. For the class of systems
we consider, the situation is complicated by the fact
that the initial data may be non-smooth, shocks (dis-
continuities in the solution to the PDE as time evolves)
may develop along the solution, the right hand side of
the PDE may be non-smooth due to the bang-bang
nature of the optimal controls and disturbances, and
the right hand side of the PDE may be discontinuous
due to saturation effects introduced to guarantee the
monotonicity of the Reach-Avoid set. While an analyt-
ical solution to the Hamilton Jacobi PDEs is likely to
be impossible to obtain for most realistic examples, nu-
merical solutions are possible. We present a procedure
for numerically computing the Reach-Avoid set, based
on the level set method of (Osher & Sethian 1988). The
advantage of this method is that it can systematically
deal with all the technical problems highlighted above,
based on the viscosity solution concept for the PDEs.
Finally, we demonstrate the application of this ap-
proach to an example from aircraft collision avoidance.
The material in this paper is discussed in more de-
tail in (Tomlin 1998; Tomlin, Lygeros, & Sastry 1999a;
1999b).

Model
For a finite collection V of variables, let V denote the
set of valuations of these variables, i.e. the set of all
possible assignments of the variables in V. For ex-
ample, if x is a state variable taking values in ~ we
write X = {x} with X = ~. By abuse of notation,
we use lower case letters to denote both a variable and
its valuation; the interpretation should be clear from
the context. We call a variable discrete if its set of val-
uations is countable and continuous if it is a subset of
Euclidean space. We assume the discrete topology for
countable sets and the Euclidean metric topology for
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subsets of Euclidean space. For a topological space X
and a set K C_ X we denote by Kc the complement, by
K the closure, by K° the interior, and by 0K = K\K°

the boundary of K in the topology of X. Given a set
of valuations W C V and a subset of the variables
V’ C V we denote by W]v, C V’ the restriction of W
to V’.

Hybrid Automata
Definition 1 A hybrid automaton, H, is a collec-
tion (X, V, I, f, E, ¢), with:

¯ State and input variables: X and V are disjoint
collections of state and input variables. We assume
that X = XD U Xc and V = VD U Vc, where Xc
and Vc contain continuous, and XD and VD discrete
variables. We refer to the valuations x E X and v E
V as the state and the input of the hybrid automaton.

¯ Initial states: I C X is a set of initial valuations
of the state variables.

- Continuous evolution: f : X × V --+ TXC is
a vector field (TXC is called the tangent space of
XC).

¯ Discrete transitions: E C X x V × X is a set of
discrete transitions.

¯ Admissible inputs: ¢ : X --+ 2V gives the set of
admissible inputs at a given state x E X.

To fix notation we let XC C_ IR’~ and VC C IRm. To
ensure that the continuous evolution is well-posed we
assume that f is Lipschitz continuous in z and contin-
uous in v.

Definition 2 A hybrid time trajectory, r, is a fi-
nite or infinite sequence of intervals r = {Ii} of the
real line, starting with Io and satisfying:

¯ Ii is closed unless r is a finite sequence and Ii is the
last interval, in which case it is left closed but can be
right open.

¯ Let Ii = [ri, r’]. Then for all i, ri <_ r" and for i > O,
ri ---- r[_1.

We denote by 7- the set of all hybrid time trajectories.
For t 6 ~ and r 6 7- we use t E r as a shorthand for
"there exists a j such that t E [rj, rj] e r".

Definition 3 An execution of a hybrid automaton
H is a collection (r,x,v) with r E T, x : r --+ X, and
v : r --+ V which satisfies."

¯ hfitial Condition: x(ro) E 
¯ Discrete Evolution: (x(r/_l), v(r[_,), x(ri)) 

for all i.
¯ Continuous Evolution: for all i with vi < v[,

x is continuous and v is piecewise continuous in
[ri, r[] and for all t E [vi, r[), (x(t), v(t), x(t)) 
Moreover, for all t E [ri, r[] where v is continuous

(x(t)lx~) = f(x(t), v(t)).dt
¯ Input Constraints: for all t E r, v(t) ¢(x(t)).

We use X to denote an execution of H and 7-/to denote
the set of all executions of H. We use x° = x(r0) 
denote the initial state of an execution.

A property, P, of a hybrid automaton H is a map:

P: 7/--+ {True, False} (1)

We say an execution X E 7/ satisfies property P if
P(X) = True; we say a hybrid automaton satisfies a
property P if P(X) = True for all X E 7/. Given a set
F C X we define a safety property, denoted by OF,
by:

f True ifVtEr, x(t) 
DF(x) \ False otherwise

Controller Synthesis

Assume that we are given a hybrid automaton H,
which we refer to as the plant, and we are asked to
control it using its input variables so that its execu-
tions satisfy certain properties. For the purposes of
control the input variables of the plant are partitioned
into two classes: controls and disturbances. We write
V = U 12 D where U and D are respectively control
and disturbance variables. The interpretation is that
the controls can be influenced using a controller, in
an attempt to guide the system, whereas the distur-
bances are determined by the environment and may
potentially disrupt the controller’s plans.

An instance of the controller synthesis problem con-
sists of a pair, (H,P), of a plant hybrid automaton
and a property of that automaton. In this paper we
restrict our attention to controller synthesis problems
where P = [:IF. A static state feedback controller for
H is a map:

g :x --+ 2U (2)
Given a plant automaton H and a controller g for H
one can define the set of closed loop executions as:

7/g = {(r, x, (u, d)) E 7/IVt E r u(t) E g(x(t))} (3)

It is easy to see that this is precisely the set of execu-
tions of another hybrid automaton, Hg. We say that
controller g solves the synthesis problem (H, rlF) if e
satisfies DF.

A subset I/V C X is controlled invariant if the con-
troller synthesis problem (H, OW) can be solved when
I = W. It can be shown (Lygeros, Tomlin, & Sastry
1999) that the controller synthesis problem (H, DF)
can be solved if and only if there exists a unique max-
imal controlled invariant subset of F. In the next sec-
tions we highlight a procedure (introduced in (Tomlin,
Lygeros, &: Sastry 1998)) for computing this subset.

Controller Synthesis for Hybrid
Systems

Construction of Controlled Invariant Sets
For the synthesis problem (H, DF) we seek to construct
the largest set of states for which the control u can
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tions from 7- to
state trajectory

d).

guarantee that the property rnF is satisfied, despite
the action of the disturbance d. We first introduce
some notation. For any v = (u, d) define the set:

Inv(v) = {x E Xlv G ¢(x) and (x,v,x) E E) 

For a state x E X and input v = (u,d) consider the
sets:

E Xl(x,v,x’) E E} if v E ¢(x)Next(x, v) = ~x’
if v ~ ¢(x)

(5)
Inv(v) is the set of states from which continuous evo-
lution is possible under input v, while Next(x, v) is the
set of states that can be reached from state x under in-
put v through a discrete transition. Abusing notation
slightly, for any set K C X and input v = (u,d) 
define the successor of K under v as the set:

Next(Iq v) = U Next(x, v)
xEK

For any set K _C X we define the controllable pre-
decessor of K, Preu(K), and the uncontrollable prede-
cessor of K, Pred(K), by:

= {x e Xl3u E U Vd ̄  D x ¢ In,(v)
and Next(K, (u, d)) C__ K} 

Pred(K)= {x¯XlVu¯U3d¯DNext(K,(u,d))
nli~ ¢ ~}uK~

Pre,,(K) contains all states in K for which u can force
a transition back into K. Pred(K), on the other hand,
contains all states outside K, as well as all states from
which a transition outside of K is possible whatever u
does. The controllable and uncontrollable predecessors
will be used in the discrete part of the algorithm for
determining controlled invariant subsets. For the con-
tinuous part we introduce the Reach-Avoid operator:
Definition 4 (Reach-Avoid) For two disjoint sets
B C_ X and G C_ X, define the Reach-Avoid operator
as:

Reach(B,G) = {x° ¯ X I Vu ̄ /,l] 3d ¯ 7) and t > 0
such that x(t) ¯ B and x(s) ~ G for s ¯ [0, t~

(S)
Here U] denotes the set of all U-valued feedback strate-
gies, 7) denotes the set of piecewise continuous func-

D and x(.) the (unique) continuous
starting at x(O) = ° under i nput

The set Reach(B, G) contains the states from which,
for all u(.), there exists a d(.), such that the state 
jectory can be driven to B while avoiding an "escape"
set G.

Consider the following algorithm.

Let W° = F, W-t = O,i = 0.
While Wi e Wi-l do

W’-I = Wi \ Reach(Pred(Wi), Pre,,(Wi)))
i=i-1

end

In the first step of this algorithm, we remove from F
all states for which there is a disturbance d(.) which
through continuous evolution can bring the system ei-
ther outside F, or to states from which a transition
outside F is possible, without first touching the set of
states from which a transition keeping the system in-
side F can be forced. Since at each step Wi-1 C Wi,

the set Wi decreases monotonically as i decreases. If
the algorithm terminates, we denote the fixed point by
W*. In this case, W* can be shown to be the largest
controlled invariant subset contained in F.

For two disjoint sets B C XC and G C_ XC, let 1B :
XC --+ IR and la : X --+ IR be differentiable functions

such that B ~ {x ¯ XcilB(x ) ~_ 0} and G =a {x ¯
Xclla(x ) <_ 0}~. Consider the following system of
coupled Hamilton-Jacobi equations:

{
H~(x, oJ,(~,t))

OJB(x,t) _ for {x ¯o~( I JB(x, t) > 0}
Ot min{0, H~(x, OJB(x’t)’~l

(10)
Ox /J

for {x ¯ X I JB(x,t) <_ 0}

and

OJc(x,t)
..,, oJ~(.,t),
nat x, Ox )

_ for {x ¯ x I Ja(x,t) > 0}
min{0, H~(x, oJG(~,t)~

Ox /J
for {x ¯ X ] Ja(x,t) <_ 0}

where JB(x, O) = lB(x) and Ja(x, 0) = la(x), 

f0JB
H~(x,~) 

k

Hh(x, 0J ) = 
(

0 for {x ̄  x I Ja(x,t) ~ 0}
rnaxEu mind~D OOJ-~x f(x , u, d)

otherwise

0 for {x ¯ X I JB(x,t) _ 0}
minEu maxdcD °o-~ f(x , u, d)

otherwise

(11)

(12)

(13)

Equation (10) describes the evolution of the set 
under the Hamiltonian H~. This is the solution to
the "max~ mind" game for reachability in purely con-
tinuous systems (see for example (Tomlin, Lygeros, 
Sastry 1998)), with the modification that H~ = 0 
{x ¯ XC I Ja(x,t) <_ 0}. This ensures that the evolu-
tion of JB(x,t) is frozen once this set is reached. Sim-
ilarly, equation (11) describes the evolution of the set
G under the Hamiltonian H~. Here a "minu maxd"
is used, since it is assumed that the control tries to
push the system into G, to escape from B. H~ = 0 in
{x ¯ XC ] J,(x,t) 0}to ensure that the evolution
of Ja(x,t) is frozen once this set is reached. Note that
in both games, the disturbance is given the advantage
by assuming that the control plays first. In the fol-
lowing sequence of Lemmas (see (Tomlin 1998) for 
complete set of proofs) we show that the resulting set
{x ¯ XC [ JB(x,t) < 0} contains neither G nor states

1More generally, B and G may be expressed as the max-
imum of a set of differentiable functions.
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JB (x, t~ < ~ ...... /-/ .........................................1/
Ja (x, t) < 

Figure 1: The computation of Reach(B, G) in a single
discrete state q.

for which there is a control which drives the system
into G; and the set (x E C IJG(x,t) < 0}contains
neither B nor states for which there is a disturbance
which drives the system into B. We then prove that
{x E XC I JB(x,t) < 0} is the set Reach( B, G). Fig-
ure 1 illustrates an example.

Assume that differentiable functions JB and JG sat-
isfying the above partial differential equations exist.
For all t _< 0, let

B(t) ~- {x E XC ] JB(x,t) <_ 0} (14)

G(t) ~ {x ̄  c IJG(x,t) _< (15)
Note that B = B(0) and G = G(0).

Lemma 1 For all t2 _< tl _< 0, B(tl) C_ B(t2) 
a(tl) c a(t2).
Lemma 2 If B°(0) A G°(0) = 0 then for all t < O,
B°(t) n a°(t) = 
Lemma 3 For all t < O, B(t)NG(t) = OB(t)AOG(t).
Moreover, for all t’ ~_ t, B(t) N G(t) C aB(t’) OG(t’).

Theorem 1 (Characterization of Reach-Avoid)
Assume that JB(x,t) (JG(x,t) respectively) satisfies
the Hamilton-Jacobi equation (10) ((11) respectively),
and that it converges uniformly in x as t -+ -oo to a
function J~(x) (JS(x) respectively). 

Reach(B,a) = {x ¯ XC I J~(x) < 0} (16)

Using the function J~ obtained once the algorithm
has converged, a controller which renders W* invariant
can be constructed as:
g(x) = {
{~ ̄  ¢(x)lv I Vd ̄ ¢(x)lD Next(x, (~, d)) 

if x ¯ (W*)°

{u ̄  ¢(x)lu I °J--h!22 _ (17)¯ ¢(x)lo( f(x,(u,d)) > 0A
x ¯ Inv(u, d)) V (Next(x, (u, d)) W*A
x ¢ tnv(u, d))} if x ow*
¢(x)lu if x ¯ (W*)~}

Here A stands for the logical AND and V for the logical
OR.

In general, one cannot expect to solve for W* using
a finite computation. The class of hybrid systems for
which algorithms like the one presented here are guar-
anteed to terminate is known to be restricted (Hen-
zinger et al. 1995). Techniques have been proposed
to resolve this problem, making use of approximation
schemes to obtain estimates of the solution (some are
discussed in the next section). In practice, we are
helped by the fact that we are usually interested in
finite time computations, rather than computing for
t -+ -oo or until a fixed point is reached. Another
problem is the requirement that the controller resulting
from our algorithm be non-Zeno (does not enforce the
safety requirement by preventing time from diverging).
The algorithm proposed here has no way of prevent-
ing such behavior. A practical method of resolving the
Zeno problem is adding a requirement that the amount
of time the system remains in each discrete state is
bounded below by a positive number (representing, for
example, the clock period of a digital computer).

Computation using Level Set Methods
One of the key challenges in hybrid systems research is
the efficient numerical computation of the backwards
reachable set. Hamilton-Jacobi equations are difficult
to solve numerically, due to the occurrence of shocks
or discontinuities that occur in the solution as time
evolves. We are currently exploring some approxima-
tion techniques to derive an efficient numerical solu-
tion: here we present one of these techniques. The level
set methods of Osher and Sethian (Osher ~ Sethian
1988) are a set of computation schemes for propa-
gating interfaces in which the speed of propagation is
governed by a partial differential equation. These nu-
merical techniques compute the viscosity solution to
the partial differential equation, which is the solution
ensuring that shocks are preserved. In order for the
numerical scheme to closely approximate the gradient
0J*(~,t) especially at points of discontinuity, an ap-

0x ’
propriate approximation to the spatial derivative must
be used. Consider an example in two dimensions, with
X discretized into a grid with spacing Axl and Ax2.
The forward difference operator D+~i at x = (Xl, x2)
is defined as (for xl, similarly for x2):

J*((xt + Axl,x2),t)- J*(x,t) (18)
D+~ J* (x, t) 

Axl

The backward difference operator D-~ is defined as
(for xl, similarly for x2):

J*(x,t) - J*((Xl - Axl, x2),t) (19)
D-~J*(x’t) Axl

Similarly, the central difference operator D°~ is de-
fined as (for xl, similarly for x2):

D°~ J* (x, t) D+~x J~(x, t) + -~ J*(x, t) (20)
2
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0 andAt each grid point in x, the partial derivatives

may be approximated to first order using either
Ox2
the forward, backward, or central difference operators.
The correct choice of operator depends on the direction
of f(x, u*, d*) (in out’ case it depends on -f(x, u*, d*)
since we compute backwards in time). If -f(x, u*, d*)
flows from left to right (from smaller to larger values
of Xl), then then D-~1 should be used to approximate
oJ(x,t), and if -f(x, u* d*) flows from bottom to top

Oxl 1

(from smaller to larger values of x2), then then -x2
0 (and vice versa).should be used to approximate

Such an approximation is called an upwind scheme,
since it uses information upwind of the direction that
information propagates.

The algorithm for the two dimensional example
proceeds as follows. Choose a domain of interest
in XC and discretize the domain with a grid of
spacing Axl, Ax2. Let xij represent the grid point
(iAxl,jAx2) and let J(xij, t) represent the numerical
approximation of J(xij, t). Set t = 0 and compute the
initial condition ](xij, O) = l(xij). While for some xij,

J(xij, t) ¢ J(zij, t At) perform the following steps:

1. Compute u*(xij, D°X’](xij,t), D°=2](xij,t)) and

d*(xij, D°*iJ(xij, t), D°=~J(xij, 

2. Calculate f(xij, u*, d*)

3. If (-f(xij, u*, d*)) flows from greater to lesser values
0ofxa, let o@~ = D+Xl, otherwise let ~ = D-~.

4. If (-f(xlj, u*, d*)) flows from greater to lesser values
o = D-x~.of x2, let~° = D+~, otherwise let

5. Compute J(xij,t - At):
For xij such that J(xij, t) > 

3( ij, t- zxt) t) +At t)
OX

f(xij, u*, d*)

(21)
For xij such that ](xij, t) <_ 

t) + d*)
OJ(xq,t) ,J(xij,t-At) = if 0~ ](xij,u ,d*) < 

](Xij, t) otherwise
(22)

Two-Aircraft Conflict Resolution
Consider two aircraft flying in a collision course on the
same horizontal plane (Figure 2). To avoid the colli-
sion the aircraft go through a coordinated avoidance
maneuver: when they come within a certain distance
of each other, they both start to turn to the right, fol-
lowing a trajectory which is a sequence of arcs of cir-
cles of fixed radii, and straight lines (trimmed flight
segments). We assume that aircraft 1 initiates the
avoidance maneuver and that the aircraft communi-
cate and switch modes simultaneously. We also as-
sume that the angles of the avoid maneuver are fixed,

--.....
.___ ...........  ?o0U

J’ \
.~ .~" "~,=kln

Mode4 .
new way point ".

Figure 2: Two aircraft in seven modes of operation:
in modes 1, 3, 5, and 7 the aircraft follow a straight
course and in modes 2, 4, and 6 the aircraft follow
arcs of circles. The initial relative heading is preserved
throughout.

so that the straight path of mode 3 is at a -45° angle
to the straight path of mode 1, and that of mode 5 is
at a 450 to that of mode 1. Also, the length of each
arc is fixed at a pre-specified value, and the lengths
of the segments in modes 3 and 5 are equal to each
other, but unspecified. Given some uncertainty in the
actions of the aircraft, we would like to generate the
relative distance between aircraft at which the aircraft
may switch safely from mode 1 to mode 2, and the
minimum lengths of the segments in modes 3 and 5, to
ensure that a 5 nautical mile separation is maintained.

The two aircraft system can be modeled by a hy-
brid automaton with seven discrete states (XD =
{straightl, arcl, straight2, arc2, straight3, arc3,
straight4}) and four continuous states, the relative
position, (x~,y~), and heading, ¢~, of the two air-
craft, and a clock variable, z, to keep track of how
long the aircraft have stayed in each mode. Over-
all, XC = ]R2 x [0, 2~r] x IR. A discrete control in-
put c~ E UD = {0, 1} can be used to initiate the ma-
neuver. There is also a continuous control input, the
airspeed of aircraft 1, Vl E UC = Iv1, ~i-] and a con-
tinuous disturbance input, the airspeed of aircraft 2,
v2 C D = [v2, ~-~]. The speed of aircraft 2 is treated as
a disturbance because we assume that aircraft 1 can
estimate it only approximately. The unsafe set G is
given by:

G=XD x{(x~,y~,¢~,z) CXclx~+y ~ _5~} (23)

To simplify the calculation we assume that the speed
of both aircraft remains constant during the circu-
lar parts of the maneuver, but can take on any al-
lowable value in the straight parts. In other words,
¢(x) = D x{( 1)1,1)2)} if xlx D E {arcl, arc 2, arc 3}
and ¢(x) = D xUCx Dot herwise. Our goal is to
compute the relative distance at which the maneuver
must start, the length of the straight legs straight2
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transition to mode 2 forced

to mode 2 enabled

Figure 3: (W*)c = (W-7)~ in straight1.

and straight3, as well as the airspeed v~ along those
legs, to ensure safety. The details of the example are
presented in (Tomlin 1998): Figure 3 displays the fixed
point W* = W-7 for the initial mode straight1. The
controller that switches between the modes is also il-
lustrated in Figure 3. The time spent in the straight
legs of the maneuver T, may be chosen to maximize
W*.

Concluding Remarks

A common concern for all approximations for the com-
putation of the set of reachable states is that, for safety
properties, one typically would like a conservative over-
approximation. This is not easy to satisfy with the
level set method, however. One needs to keep accurate
bounds on the numerical errors and grow the final es-
timate of the reach set appropriately. An additional
issue one needs to consider in the context of controller
synthesis is the controlled invariance of this conserva-
tive approximation. This issue has not to our knowl-
edge been addressed by any of the methods proposed
in the literature (since they are primarily concerned
with verification). One would like to ensure that the
numerical estimate of the reach set (for the case of the
level set method, this could be some interpolation be-
tween the collection of discrete points produced by the
algorithm) is controlled invariant. If this is indeed the
case, one would also like to obtain a controller that
renders the approximation invariant.
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