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Abstract

This paper presents an algorithm for verifying control
laws using phase-space geometric modeling of dynam-
ical systems. The algorithm evolves a hierarchically-
refined bound of system nonlinear dynamics and can
address practical concerns such as sensor, actuator, and
modeling uncertainties in a systematic manner. The al-
gorithm has been applied to verifying a control law for
a magnetic levitation system, and the computational
results are compared against the performance of the
actual physical system.
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Introduction

Control verification ensures correct behaviors for con-
trolled physical systems. Important applications range
from safety-critical systems such as aircraft controllers,
where improper behavior can result in loss of life, to
cost-critical systems such as factory controllers, where
a faulty controller can result in costly inefficiency. Un-
fortunately, obtaining a closed-form analytic solution
to the verification problem is often impractical. The
nonlinear nature of many man-made systems requires
that approximations be made to apply most verifica-
tion techniques. Uncertainties such as modeling and
sensing error make it difficult to express the range of
possible behaviors of the system in a tractable form.
Thus, verifying a controlled system frequently requires
that linear approximations be made, and that consid-
erations for factors such as modeling error and sensing
error be omitted.

This paper describes a computational verification al-
gorithm that relies on evolving phase-space geometric
models of system dynamics. The contributions of this
paper are threefold: (1) It introduces a novel hierarchi-
cal refinement of bounds on system dynamics to avoid
unnecessary over-approximation of nonlinear behavior;
(2) The phase-space representation it uses can model
nonlinearity and uncertainty in a systematic, intuitive
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manner; (3) The algorithm has been applied to verify a
nonlinear maglev control system prototyped in our lab-
oratory. Although the phase space of the example used
in the paper is two dimensional, the algorithm is appli-
cable to higher-order control systems as well as those
whose dynamics does not admit a closed-form analytic
description but whose states can be fully observed via
experimental means.

Our algorithm evolves from earlier work in phase-
space control synthesis (Bradley & Zhao 1993; Zhao,
Loh, & May 1997).

Computational methods for automated
phase-space analysis

Researchers in qualitative reasoning, hybrid systems,
and control engineering have developed a number of
algorithms and computer programs that automatically
perform phase-space analysis of a dynamical system:

e Sacks developed the PLR program for analyzing dy-
namical systems using inequality reasoning of phase
space trajectories in two dimensions (Sacks 1991).
The algorithm constructs piecewise linear approxi-
mations to nonlinear terms in a 2nd-order differential
equation, examines how trajectories intersect these
piecewise linear approximation boundaries in phase
space, and partitions the space into monotonic re-
gions. A transition graph is then constructed to en-
code how the system moves from region to region
and hence captures the more global dynamics of the
system. For instance, the oscillatory behavior of a
van del Pol oscillator is graphically represented as a
cycle of transitions among four phase-space regions.
Yip’s KAM program analyzes the orbit structure of
phase space by embedding the orbits in a neighbor-
hood graph and uses techniques of computer vision to
recognize the types of orbits (Yip 1991). For instance,
the branching structure in a minimum-spanning tree
embedding states of a Hamiltonian system is used
to determine if the orbit is a separatrix or a quasi-
periodic orbit. The KAM program has achieved an
impressive level of performance in solving an open
problem in fluid dynamics: it performed an extensive
search in the parameter space for the dynamics of a



wave tank problem and identified the critical param-
eter values for the onset of chaotic motion (Tsai, Yue,
& Yip 1990).

Using techniques of computational geometry and
graph theory, Zhao developed the MAPS algorithm
for constructing phase-space geometric models for
equivalence classes of trajectories (flow pipes) that
can be efficiently manipulated and searched for con-
trol reference trajectories (Zhao 1995). A phase
space is first tessellated with a Delaunay neighbor-
hood graph. The cells in the graph are then aggre-
gated to form flow pipes for homotopy equivalence
classes of trajectories. A reachability graph for the
dynamics under different control signals is built by
intersecting the flow pipes. Other practical consid-
erations such as measurement errors or parametric
uncertainties can be conveniently represented by ge-
ometric volumes in phase spaces. The MAPS al-
gorithm applies to two or higher-dimensional phase
spaces of nonlinear systems. The work of Nishida et
al. has proven that mappings of flows in phase space
can be accurately constructed using a fine grain rep-
resentation of flow patterns (Nishida & et al. 1991).
The PSX2NL algorithm analyzes topological flow
patterns of a two-dimensional system and encodes
flow mappings between well-defined surfaces in phase
space in a symbolic structure called flow grammar.
Recently, Greenstreet and Mitchell developed a sim-
ilar polyhedral representation for efficiently project-
ing phase-space dynamics in two dimensions (Green-
street & Mitchell 1998).

A number of approaches adopted a grid-based repre-
sentation for phase space behaviors. Hsu pioneered
the idea of cell-to-cell mapping and introduced a ba-
sic algorithm for constructing such a map computa-
tionally (Hsu 1987). Bradley developed one of the
first programs that automatically builds a cell map
for a phase space (Bradley 1995). The cell parti-
tion is adaptive in that the resolution depends on the
complexity of the behaviors in a local region. The
cell map is used to recursively find control trajecto-
ries that satisfy a set of performance criteria and has
been applied to chaotic dynamical systems. Dang
and Maler recently used the grid-based representa-
tion for phase-space regions of a hybrid system during
verification (Dang & Maler 1998).

Several recently developed verification methods rely
on symbolic techniques such as model checking in
temporal or modal logic. The work of Alur et
al. (Alur et al. 1993) uses phase-space polyhedral
approximation to bound dynamics; so does the dif-
ferential inclusion of Puri et al. (Puri, Borkar, &
Varaiya 1996). Others do not yet explicitly exploit
phase spaces but their models have clear phase-space
interpretations. For instance, Kuipers and Astrom
expressed behaviors of a heterogeneous controller,
qualitatively modelled as a transition graph derived
from the so-called qualitative differential equation,
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as propositions in temporal logic and uses logical in-
ference to verify properties of the system (Kuipers
& Astrom 1994). The expressiveness of these ana-
lytic languages is often restricted in order to make the
computation tractable (e.g. propositional vs. predi-
cate logic). It remains as an open research problem
to explore how phase-space geometric models can be
exploited to significantly constrain the search space
in symbolic verification.

In summary, the phase-space model of dynamical be-
haviors serves as a convenient vehicle for behavioral pro-
gramming of physical systems: desired behaviors can be
computationally explored, selected, mixed, and modi-
fied according to the goals and constraints (Branicky
1995).

Phase-Space Verification Algorithm

The phase-space verification algorithm is used to verify
proper regions of operation that have the desired limit
behaviors for stabilization control systems (i.e. con-
trol systems that are designed to stabilize the plant in
a goal region). Other properties such as overshoot or
convergence rate can also be verified with only minor
changes to the algorithm. The algorithm is applicable
to discrete-time control systems with a fixed sampling
frequency. The underlying dynamics of the plant may
be continuous, discrete, or hybrid. It is assumed that
the system is designed to operate within a bounded re-
gion of the phase space. Let the system dynamics be
described by: & = F(z,u), where z is the system state,
and u is the control input. Since the system is discretely
sampled, the dynamics of the controlled system can be
written as Zn41 = f(z,), where z; denotes the system
state at time ¢; and f(z;) = [ F(z;,0(z;)) after one
time period (o(z;) is the controller output at ;).
The algorithm proceeds as follows:

1. Partition the phase-space region of interest into a fi-
nite set of cells C.

2. Determine the initial controllable region Rons.
3. For each cell ¢in C — Rgopt,

(a) Find a polytope p, bounding the image of ¢ under

(b) Compute the “escape polytope” e, = p, — c.

(c) If e is contained within R,n¢, and f generates no
cycles within ¢, mark ¢ as verified, and set Reon: =
Rcont Ue.

4. If any new cells were added to Re,p¢ in step 3, repeat
step 3.

5. If the region of interest has been verified, or if a
pre-specified number of steps has been taken, quit.
Otherwise, form a new set C' by subdividing the un-
marked cells in C. Set C = C’, and go to step 3.

The partitioning of the phase space in step 1 is arbi-
trary; however, regular partitions are often used, and
certain types of control suggest preferred partitions.



For example, control based on cell maps suggests an
initial partition identical to the one used to generate
the cell maps (Hsu 1987).

Determination of the initial controllable region re-
quires a bit more effort. There are two basic ap-
proaches. If the controller has already been verified
for a certain region R; (e.g. using analytic techniques),
and the verification algorithm is being used to extend
that region, R.on: is set to R;, and all cells that are
fully contained within R; are marked. This approach
is taken, for example, when a local controller (e.g. one
based on linear techniques) is being augmented by a
global controller.

If no “pre-verified” region is available, R¢on: cannot
just be set to the goal region, because it is possible that
for the given controller, the plant can start out in the
goal region, but later exit it and never return. Thus, in
this approach, a set R.on: of “core cells” must be found.
The “core cells” have the following two properties:

1. Every ¢ € R.on: is in the goal region.

2. For every ¢ € Ront, the image of ¢ under f is con-
tained in Reont.

A maximal set of core cells (for a given phase space par-
tition) can be generated by selecting all cells contained
in the goal region, and then iteratively eliminating cells
whose image bound lies outside the set of selected cells.

Finding a polytope p, bounding f(c) can be achieved
in many ways. One of the simplest and most efficient
ways to find a suitable p, is to compute the minimum
and maximum values for each component of F' over the
cell ¢ and form a bounding box for f(c) using these
values. In hybrid systems terms (see e.g. (Branicky
1995)), each cell can be thought of as a discrete state,
and the bounding polytope is determined by approxi-
mating system dynamics with a rectangular differential
inclusion.

In step 3, we are checking for two properties:

1.Vz € c: f*(z) ¢ c for some n € N. That is, all
trajectories of the system starting within ¢ eventually
exit c.

2.V €e,n €N fo(z) € cA foo1(z) € ¢ = folz) €
Rcont. That is, when a trajectory exits ¢, it reaches
a cell that has already been marked as verified.

Checking the second property is straightforward. To
check the first property we intersect f(c) with ¢ to form
a polytope p|,. This process is repeated with p, until the
intersection is empty, or a pre-specified number of itera-
tions, ¢, is exceeded. Thus, we replace the first property
with a stronger condition—that all trajectories leave ¢
within ¢ time steps.

Assuming that a regular, rectangular initial parti-
tion is used, and that subdivision is done uniformly,
the space requirement of the algorithm is O((24)°n)
where d is the dimension of the phase space, s is the
level of subdivision, and n is the number of cells in the
initial partition. Thus, the memory requirements de-
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pend linearly on the size of the initial partition, and
exponentially on the level of subdivision.

Step 1 typically has time complexity linear in n, al-
though a complex partition may require more time.
Step 2 requires at most O(n?) time if a core set is be-
ing determined. Each iteration of step 3 takes O(n)
time (for the comparison with R.,,; in 3c), so the en-
tire algorithm requires O(((2%)*n)%). As with the space
complexity, the time complexity has an exponential de-
pendence on the level of subdivision, and a polynomial
dependence on the size of the initial partition. With
a regular partition, the comparison in step 3c depends
only on the cells intersected by the image bound, which
is typically far less than n. Similarly, the order of selec-
tion in step 3 can have a large impact on the efficiency
of the algorithm. In practice, the verification of a cell
far from the initial controllable region depends on the
verification of cells nearer the region. An intelligent
ordering, that starts from the cells nearest the control-
lable region and works outward, often results in more
cells being verified for each iteration of step 3, thus re-
ducing the number of times step 3 must be iterated to
a number far less than n.

Proof of Soundness

In this section, it is shown that if the system starts in
a cell that has been marked as verified, the system will
eventually progress to a state within the goal region.

Proof: Number the cells of the phase space partition
in the order that they are marked, with all initially ver-
ified cells (or core cells) numbered zero. Consider cell
number ¢, with ¢ > 0. Since the cells are numbered
by order of marking, all trajectories starting in cell {
eventually flow into a lower numbered cell (since cell 4
will be marked only if its image bound lies in cells that
have already been marked). Thus, by induction, all tra-
jectories starting in a cell with a positive number will
eventually flow into a cell numbered zero. By assump-
tion (or by the definition of core cell), no trajectories
starting from a zero numbered cell will leave the set of
zero numbered cells, so all trajectories will eventually
progress to a state within the goal region.

Note that this only guarantees that marked cells ex-
hibit proper behavior—there is no guarantee that all
cells that exhibit proper behavior will be marked (i.e.
the algorithm is sound but not necessarily complete).

Enhancements and Optimizations

In the above description, several practical issues, such
as measurement error, controller output error, and
modeling error are not mentioned. However, because of
the geometric nature of the computation, such consider-
ations can be incorporated in a straightforward fashion.
Measurement error can be accounted for by expand-
ing the cell when the bounding polytope is determined.
Controller output error and model error can be dealt
with (assuming the error is bounded) by expanding the
image bounding polytope corresponding to the poten-
tial range of the function f describing the dynamics.



Continuous time systems can be verified by selecting
a time period, and examining the evolution of the sys-
tem over this time period (i.e. treating the system as
a discretely-sampled system, and using the base verifi-
cation algorithm). If necessary, this time period can be
iteratively reduced to provide a less conservative bound
on system behavior (as is done with the phase-space
partition in the base algorithm).

Certain other properties of a system can be verified
with minor modifications to the base algorithm. For ex-
ample, suppose it is necessary to verify not only that the
system reaches the goal region, but also that the percent
overshoot is limited. In this case, when a cell is being
checked, its image bound must fall within marked cells
and each of these intersected cells must be annotated as
having trajectories with a tolerable maximum distance
to the goal region. The newly marked cell is then anno-
tated with its maximum distance as well (computed as
the maximum of the annotated values of the intersected
cells and the distance of the cell itself).

In the base algorithm, only the behavior after one
sampling period is considered. This is because the
bounding polytope of the image of a cell increases in size
exponentially with time, thus making the bound less ac-
curate the longer the time period considered. However,
when the system dynamics are “slow” in comparison
to the partition granularity and the sampling period, a
cell’s image bound will often overlap with a neighbor,
resulting in a dependence from the cell to its neigh-
bor (Since the neighbor must be verified before the cell
in consideration can be; see figure 1). If the system
has “spiraling” trajectories (figure 2), a cycle of depen-
dence (figure 3) between a set of unverified cells can
occur. In this case, the partition must be subdivided
several times to properly verify the system. This subdi-
vision is costly—both memory usage and computation
time scale exponentially with the level of subdivision
in the worst case. In these cases, the algorithm can be
optimized by continuing to iterate the function f when
doing so is beneficial. If the escape polytope e, does not
lie entirely within verified cells, the polytope is clipped
against those unverified cells it intersects, and the re-
sulting polytopes are recursively checked. This process
continues until either the cell is verified (i.e. the itera-
tion produces an image bound that is contained within
the verified region), or no further “progress” is made.
The current implementation considers “progress” to be
made as long as the unverified area (volume) occupied
by the bounding polytope is decreasing in size (see fig-
ure 4). Other criteria may also be useful.

Algorithmically, this optimization replaces steps 3a -
¢ with a call to the following function on cell ¢:

bool CheckRegion(region r)

1. Find a polytope p, bounding the image of 7 under f.
2. Compute the “escape polytope” e, = p, — 7.
3. Set Tunverified = €p — Reont.

4. If runverifiea = ¢ return true.
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Figure 1: Slow dynamics with respect to the partition
granularity and the sampling period results in depen-
dence on an adjacent cell.
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Figure 2: “Spiraling” trajectories in phase space.

Figure 3: Cyclic dependence between cells created by
spiral trajectories above.

Figure 4: Sequence of images with decreasing unverified
area. The shaded area represents the previous verified
region. The transparent boxes represent a sequence of
image bounds (b is the image bound of a, ¢ is the image
bound of b — Reont, et cetera).
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Figure 5: Diagram of magnetic levitation system.

Figure 6: Photo of the actual magnetic levitation
testbed prototyped at Ohio State University.

5. Otherwise, if volume(runverified) < volume(r), re-
turn CheckRegion(Tynyerified), else return false.

Results and Analysis

The verification procedure has been tested on the con-
troller for a magnetic levitation system (figures 5 and
6). This system is a useful testbed since it is inherently
unstable and nonlinear (due to the inverse square law
of magnetic attraction).

The initial verifiable region is obtained using a lo-
cal controller, generated using a linearized model of the
original nonlinear system. This linear controller is aug-
mented by a nonlinear, phase space based global con-
troller (as in (Loh 1997; Zhao, Loh, & May 1997)). The
equilibrium point was set to 11.6 millimeters from the
bottom of the solenoid to the center of mass of the steel
ball. The coordinate system is chosen such that the dis-
placement vector points downwards from the solenoid
to the steel ball. The local controller was used when
the ball was within one millimeter of the equilibrium
point with a velocity having absolute value less than
0.05 meters per second. Outside this region, the global
controller was invoked.

The optimized algorithm was used to generate a pre-
dicted region of stability for the system — no consider-
ations were made for uncertainties due to the difficultly
in measuring these on the simple hardware used. The
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theoretical region of stability produced by the verifica-
tion algorithm is shown in figure 7.

The performance of the control law on the real physi-
cal system was also measured. This allows for the com-
parison of the predicted region of stability with the re-
gion of stability measured on the actual physical sys-
tem. However, due to hardware limitations, only a lim-
ited portion of the phase space can be explored. In
particular, the stability region of the actual system is
measured by introducing short disturbances in the form
of an increased or decreased input current to the sys-
tem. This causes the ball to achieve a positive velocity
and drop below the desired equilibrium point (reduced
input current), or to achieve a negative velocity and rise
above the equilibrium point. The region of stability can
be measured by observing the system behavior after the
disturbance.

Unfortunately, this method of collecting experimen-
tal data on the actual system has the drawback that
certain regions of the phase space cannot be explored.
In particular, regions above the equilibrium point with
positive velocity, and regions below the equilibrium
point with negative velocity cannot be reached. An-
other difficulty that occurs is that when an increased
input current is applied, the steel ball will often bounce
off the solenoid into a region of phase space near the
equilibrium point. Thus, for these experiments, only a
decreased current type of disturbance is used. Finally,
this method enables only coarse grain control of the
regions of phase space explored, so often the data ob-
tained will contain “holes” for areas where insufficient
samples were obtained.

The measurable region of stability for the actual sys-
tem is shown in figure 8. These results were obtained
by applying a variety of disturbances, and recording
the trajectories of the system when it recovered cor-
rectly from the disturbance. Outliers were removed by
filtering out data points with few nearby samples.

The measurable region obtained is quite a bit smaller
than the predicted region of stability; however, the pri-
mary reason for this is the limited area of phase space
the hardware enables one to explore, as discussed above.
Notice that the top of the measured region corresponds
closely with the boundary of the theoretical controllable
region. This suggests that a larger disturbance would
cause the system to enter an uncontrollable region, and
fail to return to the equilibrium point. Thus, for the
limited region of phase space explored, the theoretical
and actual results are similar.

Related Work

The HyTech system (Alur, Henzinger, & Ho 1996) uses
convex polyhedra to represent regions of a hybrid sys-
tem and shares the concept of verification through ex-
ploration of the pre-images of the desired goal states.
HyTech allows the expression of properties to be verified
as explicit mathematical formulas. For many proper-
ties, representation as a simple formula is more flexible
than the implicit representation of properties through
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Figure 7: Region of the magnetic levitation system’s
phase space that is marked as verified by the verification
algorithm.
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Figure 8: Measurable region of stability for the actual
magnetic levitation system. An asterisk is plotted at
the center of each cell that is marked as verified.
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cell annotation. HyTech is designed to easily represent
hybrid systems, which must be represented by an aug-
mented phase space in our approach. However, the ge-
ometric approach used here allows for a more straight-
forward representation of real-world uncertainties. Fur-
thermore, our algorithm is guaranteed to terminate,
and allows for a systematic refinement of approxima-
tion of dynamics.

Recently, several researchers suggested verification
techniques based on projecting phase-space regions.
In (Greenstreet & Mitchell 1998), the authors described
a method for computing projection polyhedra obtained
from integrating initial regions. While an efficient and
exact algorithm exists for two-dimensional linear sys-
tems with convex spaces, a general higher-dimensional
polyhedra have to be reconstructed from a series of
two-dimensional subspace projections. Because the pa-
per did not provide implementation details and com-
putational results for the higher-dimensional case, it is
difficult to evaluate the effectiveness of the algorithm.
The approaches in (Puri, Borkar, & Varaiya 1996;
Dang & Maler 1998) share a grid-based representation
of phase space with the algorithm developed in this pa-
per. In comparison, our algorithm introduces a hier-
archically refined bound of system dynamics to avoid
unnecessary over-approximation.

Conclusions

An algorithm for verification of control laws using
phase-space geometric modeling was presented. This
algorithm is applicable to a wide range of control sys-
tems that are continuous, discrete, or hybrid, and can
be used with a variety of forms of control laws. Once
a bound for measurement, controller output, and mod-
eling uncertainty is obtained, considerations for these
types of uncertainties can easily be incorporated into
the verification algorithm. The algorithm was applied
to a nonlinear controller for a magnetic levitation sys-
tem, and the resulting region of stability was compared
to that of the actual physical system.

Future avenues of research include exploring the ap-
plicability of the algorithm to other real systems, and
investigating optimal initial partitions for different con-
trol laws. Furthermore, more accurate and flexible tech-
niques for measuring the region of stability of the phys-
ical maglev system need to be developed so that the
results of the verification algorithm can more readily
be compared to those of the actual system.
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