
Model-based Programming of Reactive Systems:
The Journey of Deep Space One

Brian C. Williams
MIT and NASA Ames Research Center

A new generation of sensor rich, massively dis-
tributed systems are emerging that offer the poten-
tial for profound economic and environmental impact,
ranging from building energy systems to autonomous
space probes. These "immobile" robots have the rich-
ness that comes from interacting with physical envi-
ronments, together with the complexity of networked
software systems. The goal is to make these sys-
tems efficient, capable and long lived, that is, able to
survive decades of autonomous operation within un-
forgiving environments. This offers an overwhelm-
ing programming challenge. Hand coding functions
for maintaining the system’s internals traditionally re-
quires the programmer to reason through system wide
interactions, along lengthy paths between the sensors,
control processor and control actuators. This reason-
ing requires thinking about the behavior of a hybrid
system, composed of complex real-time software con-
structs, distributed digital hardware and continuous
physical processes. The resulting code typically lacks
modularity, is fraught with error and makes severe
simplifying assumptions. Severe limitations of these
codes are compensated by large operations teams.

Model-directed autonomy meets this challenge
through two ideas. First, we note that programmers
generate the desired function from their common-
sense knowledge of how the software and hardware
modules behave. The idea of model-based program-
ruing is to exploit this modularity by having engineers
program model-directed systems by simply articulat-
ing and plugging together these commonsense mod-
els. The next challenge is the infeasibility of synthe-
sizing a set of codes at compile time that envision all
likely failure situations and responses. Our solution
is to develop real time systems, called model-directed
executives, that respond to novel situations on the or-
der of hundreds of milliseconds, while performing ex-
tensive deduction, diagnosis and planning within the
reactive control loop.

For the last several years my work, and that of
the autonomous systems group at NASA Ames, has
been directed towards developing an experimental au-
tonomous control system, called Remote Agent (RA).
Remote agent will soon be demonstrated as a tech-

nology experiment of the New Millennium spacecraft,
Deep Space One (DS1). DSI, launched recently dur-
ing the fall of 98, will fly by an asteroid and a comet,
using its solar powered ion propulsion engine and
navigating optically by following the stars. To demon-
strate fully autonomy, Remote Agent will guide DSI
through a series of optical navigation maneuvers dur-
ing May of 99, responding and replanning in response
to a series of injected failures and changing mission
goals.

In this talk I will examine the lessons learned from
DSI about model-based programming and model-
directed execution. In the first part I will examine the
representational needs of modeling DS1 as a hybrid
system. From this I will develop the Reactive Model-
based Programming Language (RMPL). RMPL uses
transition systems and co-temporal interactions as
a rallying point for unifying representational con-
cepts from a diverse set of research areas, including
qualitative modeling, model-based diagnosis, hidden
Markov decision processes, synchronous reactive lan-
guages and concurrent constraint programming.

In the second part I will discuss the development
of a series of increasingly more expressive model-
directed executives. Each executive is formulated as
a deductive form of an optimal, model-based con-
troller in which models are specified through a com-
bination of hierarchical, probabilistic transition sys-
tems and propositional logic. This framework allows
us to achieve high levels of autonomy and respon-
siveness, by drawing inspiration from a diverse set
of algorithms taken from model-based diagnosis, hid-
den Markov processes, search, planning and real-time
propositional inference. I will conclude by discussing
the role model-directed autonomy is playing within a
variety of future NASA applications, from Mars Ex-
ploration to the search for Earth-like planets around
other stars.

236

From: AAAI Technical Report SS-99-05. Compilation copyright © 1999, AAAI (www.aaai.org). All rights reserved.

Model-based Programming
of Reactive Systems:

The Journey of Deep Space One

Brian C. Williams
Autonomous Systems, NASA Ames

Massachusetts Institute of Technology

http://www, i c. arc. nasa. gov/ic/proj e cts/mba/index, html

In collaboration with
P. Pandurang Nayak, Vineet Gupta, Jim Kurien

Outline

¯ Remote Agents and Deep Space One
¯ Model-based Autonomy

¯ Livingstone:Model-based Configuration Manager
(with Pandu Nayak).

¯ Unifying Model-based and Reactive Programming
(with Vineet Gupta).

¯ Conclusions

237

Emergence of Long-lived Systems

Rovers Interferometers

Life
Support

In situ
Propellant
Production

Explorers

238

Houston,We have a problem ...
¯ Quintuple fault occurs

(three shorts, tank-line and
pressure jacket burst, panel flies
off).
Ground assembles novel repair.

Swagert & Lovell work on
Apollo 13 emergency rig lithium
hydroxide unit.

Mattingly works in ground
simulator to identify novel
sequence handling severe power
limitations.

Autonomy should embody the innovation exemplified
in Apollo 13 and other missions.

¯ Goal-directed

¯Closed-loop
on Goals

¯ Programmed
with models

¯Highly responsive

¯Heavily deductive

Agent AMES / JPLRemote
www. rax. arc. nasa. gov

Mission Goal Scenario

239

courtesy JPL

Outline

" Remote Agents and Deep Space One

* Model-based Autonomy

* Livingstone:Model-based Configuration Manager
(with Pandu Nayak).

¯ Unifying Model-based and Reactive Programming
(with Vineet Gupta).

¯ Conclusions

240

Challenge: Programmers reason through interactions:

¯ monitoring ¯ reconfiguringhardware
¯ confirming commands ¯ recovering from faults
¯ tracking goals ¯ avoiding failures

¯ detecting anomalies ¯ coordinating control
¯ diagnosing faults policies

Model-based Autonomy
Programmers generate breadth of functions from
commonsense hardware and software models in light
of mission-level goals.

¯Model-based Programming
¯ Program by specifying commonsense, compositional

models.

¯Model-directed Executives
¯ Performs reasoning through system interactions, by

performing significant search & deduction within the
reactive loop. "

How do we model and reason about hybrid
software/hardware systems simply and uniformly?

241

A Unified Modeling Paradigm

Distributed Hardware

Continuous
Processes

RMPL
¯ c

g%~If c next A
Unless e next A

.A,B
¯ Always A

u t~ty’+ncer’a’n’-and Anomalies¯ Choose with probability
¯ Choose with reward

Software

Model-directed Execution is Formulated
as Model-based Stochastic Optimal Control

Controller

Plant
o(0

/1 = argmin C(s ’, y, g ’) s.t. /.t’ ~

242

Reformulating the Autonomy
Coding Challenge

Programmers must reason through system-wide
interactions to generate codes for:

¯ monitoring ¯ reconfiguringhardware
¯ confirming commands ¯ recovering from faults
¯ tracking goals ¯ safing the system
¯ detecting anomalies ¯ avoiding failures
¯ isolating faults ¯ coordinating control

¯ diagnosing causes policies

4 4
Identifying Modes Reconfiguring Modes

Livingstone and Burton
Model-directed Executives

Model Possible

Discretized
Sensed values

Command
q

Model-based, Stochastic, Optimal Controller where:
¯ variables have finite domains
¯ model specified in a propositional temporal logic
¯ implemented as queries to a fast, best-first, inference core

243

Outline

" Remote Agents and Deep Space One

" Model-based Autonomy
¯ Livingstone:Model-based Configuration Manager

(with Pandu Nayak).
¯ Unifying Model-based and Reactive Programming

(with Vineet Gupta).

¯ Conclusions

A Unified Modeling Paradigm

Distributed Hardware

Continuous
Processes

Qualitative
Algebra &
State Diagrams

Software

Uncertainty and Anomalies

244

Modeling: Co-temporal Interactions

Valve Driver Valve

Resettable Open ~ ~x~ StuckOn ¯ [-7 failure open

StuckPermanent
Closed N M closedOff [--] ¯ failure

vdriver=on => Out= In; vlv--open => Sgn(Inflow)= Sgn(Outflow);
vdriver=off=> Out=close; vlv=elosed=> Sgn(Outflow)--O;

Formulae in propositional state logic {x i = vij }

¯ Algebra on Signs : S = {+, 0, -,?}

- [infloW]s = [outflOW]s

¯ Algebra on Relative Values: R = {high, nominal, low,?}

- [inflow]R= [outflow]R

DS 1 RCS failure scenario

z facing thrusters

2£21

Dynamics ,

I I I
x att y art z art
error error error

nominal~nominal

x facing thrusters

ACS mode

Type 2

245

A Unified Modeling Paradigm

Distributed Hardware

Concurrent Automata

Continuous
Processes

Qualitative
Algebra &
State Diagrams

Hidden Markov Models

Uncertainty and Anomalies

Software

Modeling: Constraint-based,
Concurrent, Probabilistic, Automata

Valve Driver

On (~::~~Resettable

Turn on~ ff failure

"~.~ Permanent
Off ~_J ~ failure

vdriver=on => Out= In;
vdriver=off=> Out=close;

Valve
Open ~ Stuck

o,e" l ~ "open
cost 51//
Prob .9 ~.~ ~kal Stuck

Closed ~ ~ closed

vlv=open => Sgn(lnflow)= Sgn(Outflow);
vlv=closed=> Sgn(Outflow)=0;

Compact encoding of a restricted POMDP

246

Livingstone: Model-based Configuration Manager

Model Possible
Command

Discretized
Sensed values

Command

Mode Identification:
Reachable Consistent Next States

Current state

Possibl

Belief State w I t h2obt~rruVs~t’ l’On

Enumerated by decreasing likelihood

247

Characterizing MI
Find feasible current states, given prior state,
commands and current state observations.

Previous Current

Predicted

Si+l

Observed

Sol+1

¯ Probabilities computed as standard belief state update
with conditional independence of transitions.

Mode Reconfiguration:
Reaching Goals in the Next State

~ , ~Current state

oo

Next states that provide
"nominal thrust"

Enumerated by decreasing immediate reward

248

Characterizing MR

Find least cost commands that achieve the current
goal in the next state.

gi
Goal

Current

Tn(Si ~ Suj)

Nominal
Next

Propositional Reduction

MI: Characterizing possible next states

¯ MR: Characterizing possible commands

249

Statistically Optimal
Configuration Management

Statistical Mode Identification

¯ p(vj.] oi) = P(Oi] vj) p(v/) / Bayes Rule
oc p(oi I 5) P(rJ)

¯ p(oil ~) is approximated from the model
- p(oil "9) = if 5 (ai-1) entails oi
- P(Oi I rj.) = if rj. (ai_l) is inconsistent with oi
- P(Oil ~j.) = otherwise

Optimal Mode Reconfiguration
t~i = argmin c(pi ’) s.t. i ’ in Mi

OPSAT:
RISC-like Best-first, Deductive Core

Best-first Agenda Test

Checked
n;

Incorporate ~~

conflicts ~~

Optimal
feasible
solutions

Conflicts
(infeasible
subspaces)

¯ Conflicts and unit propagation highly focus search
¯ (< 10 states visited per test)

¯ Unit propagation dominates, TMS significantly reduces.

250

ITMS incremental unit
propagation close to ideal

300.

250 ̄

200 ̄

Number 150 ¯

100 -

50.

o-

Data from 387 context switches on
DS-1 theory containing 12,693 clauses

0 10 20 30 40 50 60 70 80 90

Percent extra label changes

Ranges from 110% to
660% more label
changes than necessary

100 110 > 110

Outline

" Remote Agents and Deep Space One

" Model-based Autonomy

" Livingstone:Model-based Configuration Manager
(with Pandu Nayak).

¯ Unifying Model-based and Reactive Programming
(with Vineet Gupta).

¯ Conclusions

251

Does a Unified Representation and

Paradigm Exist ... at the Reactive Layer?

Whats Missing from Livingstone’s language?
¯ Goal Decomposition ¯ Strong Typing
¯ Method Selection ¯ Encapsulations
¯ Concurrency ¯ Polymorphism
¯ Preemption ¯ Inheritance ...

A Unified Modeling Paradigm

Distributed Hardware

Concurrent Automata

Continuous
Processes Software

Qualitative
Algebra &
State Diagrams

Hierarchical
Automata

Hidden Markov Models

Uncertainty and Anomalies

252

The Model-based Programming Language

Large-Scale Modeling Requires Good, Familiar
¯ Encapsulation Mechanisms.

class Valve {
public VaiveCmd cmdln;
private ValveFIow inflow, outflow;
private ValveNominalModes mode;
valve 0 {

when (mode=open) {inflow = outflow;

when (cmdIn=close)
next mode=closed;}

when (mode=closed) { inflow =
outflow = 0;
when (cmdIn=open)

next mode=open;} }

Supports:

-Familiar syntax

-encapsulation

-polymorphism

-strong typing

- multiple inheritance..

To model software MPL must support
complex imperative behaviors.

DS1Optical Navigation:
Switch engine off, tum MICAS on

Do:

- Turn to first asteroid, take picture

- Turn to second asteroid, take picture

- Turn to third asteroid, take picture

Watching if thrusters are broken,
then switch to alternate set and repeat.

Compute current position and course correction
Watching if pictures are corrupted,
then repeat sequence.

253

Execution Script
AutoNav:: {
TurnMicasO~)SwitchlPSStandb~’~)
do when IPSsta-ndby & MICASon teen{

{TurnToTarget(1
when Turndone do TakePicture(1)};

/* same for targets 2 and 3 */
{TurnMicasOfl~)
OpticalNavigation0}

} watching PictureError(~
when PictureError donext AutoNav }

Language Design Features

¯ Probability & reward

¯ Constraints

¯Preemption/defaults

Component Model
MICAS :: always choose {
with probability 0.99 {
if MICASon then
unless TurnMicasOff

thennext MICASon,

with probability 0.01 {
next MICASfail,
if MicasTakePic

thennext PictureError
}}

¯Conditional execution

¯ Iteration

¯ Nested Parallel Composition

Reactive MPL Combinators
Support Design Features

¯ constraints ¯ c
¯ conditional execution ¯ If c next A
¯ preemption/defaults ¯ Unless c next A
¯ parallel composition ~ ¯ A,B
¯ iteration ~l/ ¯ Always A
¯ probability ¯ Choose with probability

and reward ¯ Choose with reward

Generalize from TCC/HCC [Gupta, Saraswat]

254

Combinators of synchronous languages
like Esterel can be derived from RMPL:

¯ do A watching c

¯ suspend A on c reactivate on d

¯ A;B

¯ next A

¯ P ::= A[P]

¯ when c do next A

¯ when c do A

¯ If c then A

Encoding RMPL using Hierarchical
Probabilistic Constraint Automata

¯ Generalize from concurrent constraint automata
¯ States may be automata (composite states).
¯ Multiple start and current states for each automata.
¯ Conditions allowed on negative information (not entailed).
¯ Transitions are distributions over next states, with rewards.
¯ Transitions from primitive states only.
¯ Constraints associated with primitive states only.

255

Combinators: Preemption &
Conditional Execution

¯ Introduces non-monotonicity,
but is stratified.

¯ Avoids causal paradoxes
found in languages like
Esterel.

¯ Only combinator using
negative information.

¯ Livingstone used material
implication to encode:

- not c or next A
¯ RBurton uses intuitionistic

interpretation,

Combinators: Iteration &
Parallel Composition

Starts new copy of A at each
time instant.

The ability to mark multiple
states simultaneously enables a
compact encoding.

256

Executing Deterministic HCA

0 = {c,d,e}

Given marking:
¯ Mark start states of all newly marked composite states.
¯ Let theory 0 be the set of constraints of all marked states.
¯ Find enabled transitions of marked states.

- Label d is satisfied if d is entailed by 0
- Label’d is satisfied ifd is not entailed by 0

¯ Take Transition

RBurton: Model-directed Executive

Reactive
MPL x,~

Derived state Goals

Plant Model

Discrete
Sensed values

Commands

257

Probabilistic Execution: Enhanced MI

Standard

Nested MI

Choose

A B C D A CB CA D B D

Encoding of a partially observable Markov Process

Sequence Combinator:
Decision Theoretic Choice

Nested
Choose

RI/~R2R3///~ R4

A B C D

Encoding of a partially observable Markov Decision Process

258

Does a Unified Paradigm Exist
for Model-based Autonomy?

Model-based Programming
oC

¯If c next A
¯Unless c next A
.A,B
¯Always A
¯ Choose with probability
¯ Choose with reward

Model-based Execution

Hierarchical, Probabilistic
Constraint Automata

RISC-like Deductive Kernel

259

