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Abstract

Discussions of agent autonomy levels largely ignore the
function of norms in the agents’ decision making pro-
cess. Allowing artificial agents to use norms makes
smooth interaction in the social space less problem-
atic. Agent autonomy will also increase if one grants
agents normative support, making accurate and con-
sistent models of other agents feasible. This will result
in better behavior predictions and simulations of not
only physical but also social systems.

Introduction

The description of degrees of artificial agent autonomy
is problematic from a conceptual point of view. In the
field of multi-agent systems (MAS), several authors,
e.g., (Conte & Castelfranchi 1995), (Carley & Newell
1994), (Werner 1996) and (Dennett 1981) have devel-
oped more or less overlapping hierarchies of autonomy
based on the types of processes for decision making that
the agents use. This problem will be dealt with in Sec-
tion 2 below. Our focus will be on control, distributed
between human and artificial agents belonging to the
same MAS. We will refer to a MAS populated by hu-
mans as well as artificial agents, in which the agents
model all other agents that they are aware of, as a so-
cial space.

One aspect of agent autonomy is largely ignored in
the current literature, viz. the level of norms. Designing
agents that respect social norms is not only helpful in
achieving rational agent behavior, but also enhances the
possibility of using accurate models. We will discuss the
function and learning of norms and also the results of a
simulation study of the learning of norms in Section 3.

Norms can also be used by external counseling de-
vices such as pronouncers (Boman, Davidsson, & Ver-
hagen ). A pronouncer is an entity providing norma-
tive advice to agents. It is external and usually not
wrapped into an agent itself. By contrast, internal pro-
cedures are usually called decision modules. The use of
pronouncers by idle or disoriented agents reduces the
need for human intervention. It also makes the social
space less dependent on any outside control, such as an
earth-based mission control center (Dorais et al. 1998).
Pronouncers are discussed in Section 4.
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The need for, and implementation of, adjustable au-
tonomy for governing overriding through human com-
mands is well-documented in the agent literature. One
domain in which a MAS with relatively autonomous
agents must expect frequent human intervention is in-
telligent buildings (Boman, Davidsson, & Verhagen ).
Agent intervention in human activity is less studied but
occurs e.g. in surveillance, alarm, and tutoring systems
(Rickel & Johnson to appear). Requirements on the
simplicity of the agents involved in such systems have
so far kept designers from implementing sets of norms.
We indicate below why this is likely to change in future
designs, and present our conclusions in Section 5.

Levels of Autonomy

In (Lange & Lin 1996), adjustable autonomy was first
defined as integrated system management (in the space
exploration domain) being “able to be overridden by
the operators at any chosen level of shared or traded
automatic control”. In (Erickson 1997), adjustable op-
erations are defined more narrowly as “operations which
are usually autonomous, but provide shared and/or
traded control whenever the crew chooses. Crew-
centered adjustable autonomy is defined as giving the
crew user of the system control over and improved sit-
uational awareness insight into the current, past (in-
sight only), and possible future operations of the system
whenever the user chooses.” In a more recent report
(Dorais et al. 1998), the level of autonomy is defined in
this narrow manner, viz. as being dependent on:

o the complexity of the commands
o the number of autonomously controlled subsystems

o the circumstances that will allow for override of man-
ual control

o the duration of autonomous operation

The autonomy models developed in MAS research are
summarized and extended in (Verhagen & Smit 1997).
In short, decision making in MAS is made at four sep-
arate connected levels:

o the level of actions

o the level of plans



o the level of norms

These two definitions of levels of autonomy are quiet
different. The basic difference lies in their view on au-
tonomy:

o levels of autonomy as abstraction levels, or the con-
trol the agent has over its behavior and decision mak-
ing process

o level of autonomy as level of independence of coalition

The work on adjustable autonomy is concerned with
the second type of autonomy whereas MAS research is
primarily concerned with the first. Reconciling these
two is non-trivial. The complexity of the commands
(from humans to agents) can be measured in terms of
the transfer of control (or delegation) that the commu-
nication yields in terms of the levels of actions, plans,
goals, and norms. Autonomy in the social space in-
creases with the number of subsystems under agent con-
trol. This is akin to the action repertoire of the agent.
Decision making at the level of norms (or in more sim-
ple cases applying norms) is to decide on overriding
manual control or for that matter any outside control.
The introduction of time as a separate autonomy level
is an important addition, although it in fact is merely
making explicit the role time plays in the MAS view
on autonomy. The levels of decision making are closely
linked to time. Both the time span of execution and
time span used for self-reflection increase with the lev-
els mentioned.

Simulation of Learning of Norms

In human societies, norms have a dual role in that they
both serve as filters for unwanted actions, plans, or
goals and as help in predicting the behavior of other
members of society. Implemented norms for artificial
agents can be used for predicting the behavior of hu-
mans in the social space, and thus helps agents main-
tain a good domain model. It will also enable the agents
to become reactive: they can recognize other agents as
agents instead of just objects. The use of norms in
artificial agents is a fairly recent development in MAS
research (c.f. e.g., (Shoham & Tennenholtz 1992), (Ver-
hagen & Smit 1997), (Boman 1999)).

The learning of norms can be divided in two types,
viz. the emergence of norms (Ullman-Margalit 1977)
and the acceptance of norms (Conte, Castelfranchi, &
Dignum 1998). These two types of learning express
learning at different levels. The emergence of norms
is learning at the level of the social system while the
acceptance of norms is learning at the level of the in-
dividual agent. In (Conte, Castelfranchi, & Dignum
1998) reasons for the acceptance of norms are discussed.
We are not primarily interested in why agents accept
norms since we presuppose that membership of a coali-
tion implies the agents accept the norms of the coali-
ation. Instead we are interested in how acceptance of
norms changes the decision making behaviour of the
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of the coalition (norm-spreading) and by the adaption
of the agents’ own norms (norm-internalization).

We have conducted simulation studies of the spread-
ing and internalizing of norms as a function of auton-
omy towards the coalition (at the level of actions).
Agents forming a coalition roam around in a two-
dimensional world where two resources are randomly
distributed. Agents have two decision trees, one con-
taining the subjective evaluation of all alternatives (i.e.,
a self-model) and one containing the subjective view on
the coalition’s evaluation of all alternatives (i.e., a coali-
tion model). An agent chooses one of the alternatives
and tells the other agents about its choice. Feedback of
these agents is used to update the coalition model. The
self-model is updated based on the feedback from the
environment (i.e., if the chosen alternative is realized or
not). Deciding which alternative to choose entails bal-
ancing the self-model and coalition model. If the agent
is completely autonomous with respect to the coalition,
it only evaluates its self-model. If an agent has no au-
tonomy with respect to the coalition, it uses its coalition
model. To be able to use the coalition model to predict
the behavior of other agents, each agent should have
the same coalition model (i.e., share the norms of the
coalition). We thus measured the spreading of norms
1n the coalition.

The spreading of norms is measured as the differences
in the coalition utility bases over the agents (i.e., the
mean value of the standard deviation per alternative of
the coalition utility of that alternative of each agent).
We can imagine two situations in which agents totally
comply with the group norms. The agents may have no
autonomy, or the agents may have adapted to the coali-
tion model to the extent that their self-model equals the
coalition model. For this purpose we measured the in-
ternalizing of norms as the difference between an agent’s
own utility base and the coalition utility base it has. A
hypothesis was formulated:

Hypothesis: the higher the degree of autonomy,
the lower the predictability of behavior will be.

The simulations showed that an increase of the
agents’ autonomy resulted in a decreased norm-
spreading. The norm-internalizing factor did not have
such a straightforward relationship as we had hypoth-
esized. We suspect that this is due to the second-
order type of learning involved in the internalizing of
norms. Further simulation studies (Verhagen & Boman
in preparation) will be conducted to clarify this.

Pronouncers

When an intelligent agent has to decide on what ac-
tion to take, it might ask for advice. The base case
is the agent asking itself what to do next. The even
more difficult case is when the precarious agent asks
someone (or something) else. This case can in turn
be analysed by considering two sub-cases. Firstly, the
agent may ask other agents in its MAS. This situation



sumes a fully functioning communication architecture
for co-operating agents. Second, the agent may con-
sult an entity outside 4the MAS that might not be an
agent at all. This entity may come in different guises,
e.g., a human, a blackboard, or an oracle. Such entities
have too many variations to allow for them to be stud-
ied in precise terms: a blackboard, for instance, does
not entail the same agent architecture or model to all
researchers that claim to use them. The entity might
at times be inaccessible to the querying agent, and the
entity data indeed accessible to the querying agent is
usually incomprehensible to the agent. The standard
way to overcome this is to use a wrapper (Genesereth
& Ketchpel 1994), but the size and complexity of the
wrapper code for an entity of the kind we study is un-
acceptable in domains with noticeable time constraints
(Younes 1998).

The agent in need of advice may instead feed a pro-
nouncer with a description of a decision situation, in-
cluding its subjective assessments of relevant utilities
and probabilities. How the pronouncer accesses these
assessments is not important for our discussion. The
pronouncer also has access to a norm base containing
all norms. Each agent coalition has its set of norms, a
subset of the norm base, and an agent can belong to
many coalitions. Regardless of the coalition structure,
the agents turn to the same pronouncer for advice. It
is the involvement of norms that makes a pronouncer
more than just a decision rule aimed at maximizing an
agent’s expected utility. The norm base can be used to
disqualify agent actions, plans, or goals if they fail to
adhere to the norm set applying to the agent. It can
also be used for calculating punishments and rewards,
if agent feedback is used.

Naturally, one can imagine a simple MAS in which
each agent has the same responsibility towards a group.
Then it would suffice to store norms globally, as part of
the pronouncer. The realistic and most general case,
however, is where each agent has unique obligations
towards each and every one of the other agents. For
instance, a MAS might consist of 200 agents in which a
particular agent has obligations towards the entire pop-
ulation (including itself), but also towards two overlap-
ping strict subsets of, say, 20 and 25 agents that consti-
tute coalitions. These coalitions might be dynamically
construed, something which will affect the nature of
obligations heavily over time. The control of coalition
membership for human agents is different from that for
artificial agents, as are the reasons for choosing to join
a coalition. In the intelligent building MAS described
in (Boman et al. 1998), for instance, a so-called per-
sonal comfort agent might be instructed by its human
owner to join a coalition of agents representing peo-
ple working on the same floor, or to join a coalition
of agents that have the same temperature and light-
ing preferences for the conference room. A particular
personal comfort agent may then join other coalitions
on different grounds, e.g., to get a better bargaining
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conference room. The human agent owning the agent
will not be informed of this rational step taken by the
agent. In fact, the human agent typically feels strongly
that he or she should be kept out of such negotiations,
and is willing to grant his or her personal comfort agent
enough autonomy for it to remain almost invisible.
Since socially intelligent behavior is the goal of one
part of the adjustment of autonomy in (Dorais et al.
1998), viz. a request for advice from an artificial agent
to a human agent, the use of pronouncers may reduce
the need of human interference. The same goes for pos-
sible requests for advice from any type of agent to any
other type of agent. Pronouncers may also be used to
replace the need for input from human agents in inter-
active planning. In both cases, the artificial agents will
be more autonomous with respect to the human agents.
The use of pronouncers in a simulated robotic soccer
team has been implemented (Younes 1998) and will be
further developed for the 1999 RoboCup world cham-
pionships, in both a simulated and a physical legged-
robot team. Robotic soccer is a real-time environment
with incomplete information at the level of the agent,
mabking it an ideal testbed. An important indicator con-
cerning adjustable autonomy is time constraints. The
amount of time available is pivotal to whether or not
a pronouncer call can be made. In (Younes 1998), it
is demonstrated that pronouncer calls can be benefi-
ciary even under the dynamic real-time constraints of

RoboCup.

Conclusions

Allowing artificial agents to use norms as constraints on
actions, and also for enriching their domain models with
respect to the groups they act within, is necessary for
smooth interaction with humans and with other artifi-
cial agents belonging to the same social space. Equip-
ping agents with normative decision making features,
together with the ability to make pronouncer calls,
makes the agents more autonomous. The agents may
then have more accurate and consistent models of each
other, thus enabling better behavior predictions and
simulations of not only physical but also social systems.
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