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Abstract
The Next Generation Space Telescope (NGST), planned for
launch in 2007, poses a number of interesting engineering
challenges. This article addresses one such challenge, speci-
fically that of maximizing observatory efficiency through an
appropriate balance between non-real-time construction of
the near-term observing schedule and onboard adaptation to
real-time conditions during actual observation execution.
The appeal of onboard "adaptive scheduling" is particularly
strong for NGST because of its expected placement near the
second Earth/Sun Lagrange point, a comparatively benign
location vis-~t-vis scheduling constraints. This is expected to
make event-driven, in contrast to time-tagged, execution the
norm for most observations. However, experience with
previous missions has demonstrated to science operations
teams that it is very useful for the team to be able to have
substantial control of schedule construction, particularly
when the mission is yet young and the team is first learning
how to effectively use the satellite and science instruments.
In this article, we explore a hybrid scheme designed to
provide the advantages of real-time adaptive response under
most circumstances, while at the same time giving the
operations team the level of control perceived as appropriate
for current mission conditions.

Introduction
The Next Generation Space Telescope (NGST), projected
for launch in 2007, is a key component of NASA’s origins
program (cf. Stockman 1997). Its principal purpose is 
enable studies of the cosmological "dark ages" at times and
distances from just beyond that probed by the Hubble
Space Telescope to near the "recombination" epoch stud-
ied by the Cosmic Background Explorer.

Current expectations are that NGST will be a large
aperture (- 8 m) infrared observatory located near the
second Earth/Sun Lagrange point (L2). The technological
challenges for creating the required hardware systems are
substantial, particularly in areas such as assembly and
figure control of the segmented primary mirror, cryogenic
operations of complex space systems, and construction and
rigidification of large, low weight space systems.
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Placement of the observatory near L2 offers certain very
appealing features with respect to operations. In particular,
it eliminates all of the moderate frequency orbit-related
constraints that plague missions in low Earth orbit, includ-
ing frequent target occultation by the Earth, increased
electronics interference during passage through the South
Atlantic Anomaly, and thermal and power stresses related
to regular passage through the Earth’s shadow. There does
remain a solar avoidance constraint prohibiting observa-
tions of targets too close to the sun, but this occurs with a
yearly, rather than near hourly, time scale. Additional ad-
vantages related to L2 placement, at least with most of the
proposed NGST designs when science attitude constraints
are met, include (1) abundant and continuous solar power,
and (2) continuous viewing of the Earth by the antenna
communications system.

As part of the general engineering effort towards creat-
ing NGST, a number of integrated product teams (IPTs)
have been established to investigate various aspects of the
challenge. One of the mandates of the Operability IPT has
been to investigate strategies whereby general observatory
operations can be made easier and more cost effective.
Leveraging off the low-constraint nature of the L2 environ-
ment, a number of groups have proposed the development
of an onboard adaptive scheduler that, at a minimum,
would apply an event-driven strategy for execution of most
observations (cf. GSFC & TRW NGST pre-phase A study
teams, 1996). We, the authors of this paper, are part of 
team supporting the Operability IPT through studying vari-
ous possible realizations of adaptive scheduling for NGST.

As part of our exploration, one line of investigation
(Welter 1998a, b, c) attempted to define an algorithm ap-
propriate for supporting full onboard near-term scheduling
of science and general "house-keeping" activities. A se-
cond line (Welter and Legg, 1998; hereafter, Ref. 1) began
with the goal of placing most near-term scheduling in a
ground-based system, the principal driver for this track
being the realization that on previous missions science
operations teams (SOTs) have found it desirable and
important to retain fairly direct control of mission planning
and scheduling. This need is particularly clear when the
mission is young and the SOT is first learning how to use
the satellite and science instruments effectively. The team
then needs considerable flexibility in trying to find good
procedures, in both a planning and scheduling sense, for
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using instruments whose functions and operations are only
understood at a design and ground testing level.

While developing the ideas presented in Ref. 1, we real-
ized that they allow for a considerably greater degree of
flexibility in both ground and flight control than we
originally anticipated. In this article, we summarize the
ideas presented in Ref. 1, with some additional ideas devel-
oped in Legg and Welter, 1999. Section I defines certain
adaptive scheduler fundamentals. Section II explores pro-
cedures to be applied to the flight and ground systems to
take into consideration both absolute and relative time con-
straints within a primarily event-driven system. Section III
examines strategies for exploiting time gaps that may arise
during schedule execution as a consequence of the imposed
time constraints. The generality arises from realizing that
such "gaps" can be made arbitrarily large, in principle
extending over the entire schedule. Finally, section IV pro-
poses functionality to support real-time operations within
the context of our hybrid event/time-based scheme. We
call our approach Adjustable Synchronization.

I. Adaptive Scheduler Fundamentals

This section presents certain fundamentals for an onboard
adaptive scheduler (AS) that we will be assuming for the
remainder of the paper. These fundamentals are taken in
part from proposals sketched out by other groups, specifi-
cally the GSFC & TRW NGST pre-phase A study teams,
as well as ideas developed for an AS prototype study by
the larger team of which we are members (cf. Cammarata
et al, 1998, hereafter "the Prototype").

As noted in the introduction, the minimum requirement
for an AS is that it execute basic observatory activities in
an event-driven manner, at least primarily. For a space
observatory such as NGST, these activities will usually be
executed as part of an astronomical observation. An obser-
vation request is the most common basic scheduling unit
(SU); each SU consists of a sequence of activities such 
[slew, acquire guide star(s), observe with science instru-
ment A]. In addition to science, SUs can support engineer-
ing "house-keeping" that may be required periodically,
such as using thrusters to dump excess angular momentum.
The ultimate goal is efficient execution of SUs to maxi-
mize total observatory science output. The house-keeping
SUs can be either explicitly provided by the ground or
created as needed by the onboard system.

In the Prototype, the AS coordinates the execution of
SUs in sequence order as specified in a list provided by the
ground. The AS consists of two pieces. The first piece co-
ordinates validation of individual SUs as a whole and their
component activities individually prior to execution; the
second coordinates actual execution of the activities. At the
SU-level, component activities can be flagged as required,
e.g,, slewing to specific target coordinates or acquiring
guide stars upon arrival. If an SU-required activity is either
found to be invalid during validation (e.g., target direction
too close to the sun) or fails during execution (e.g., failure
to acquire guide star), the entire SU is dropped.

Validation and execution of activities within the
Prototype are performed by intelligent managers within the
subsystems that receive commands from the AS. The
Prototype supports three such subsystems, one each for
attitude control, science instrument control, and data re-
corder control. The intelligent managers report to the AS
on the validity of commands received and on the success or
failure of commands at the completion of execution. The
ability to validate commands prior to execution requires
that each subsystem manager have a model defining the
requirements of each acceptable command type and also
sufficient perception of the subsystem state to perform
evaluation for command validation and execution.

For efficiency, space observatories with multiple science
instruments often allow their parallel use. NGST is ex-
pected to be similarly designed. The Prototype takes this
expectation into consideration, providing a mechanism to
allow parallel activity execution in certain circumstances.
We will be relying upon the existence of some such
mechanism in the discussion in section IV pertaining to
real-time operations.

The Prototype uses management of angular momentum
as an archetype for onboard-controlled house-keeping
activities. Upon receiving notification from the attitude
control system that momentum exceeds a specified level,
the AS initiates a smooth suspension of any science in
progress, commands the attitude control system to dump
momentum, and then instructs the science instrument mod-
ule to resume the suspended science. The significance is
not the specific house-keeping activity selected, but rather
the illustration of the smooth insertion of a necessary
activity on an as-needed basis.

II. Applying Time Constraints

Adjustable Synchronization is intended as an extension of
the ideas explored in the Prototype. It is designed to enable
the onboard AS to (1) execute SUs in the order provided
by the ground if possible, (2) force schedule synchroni-
zation with ground expectations at certain time-critical
events, and (3) respond flexibly as an event-driven system
for enhanced science efficiency to the extent allowed by
the SOT. We envision it as being most applicable in
situations where the following conditions pertain:

1. Timing constraints for at least some important SUs
are fairly tight and/or can produce complex schedul-
ing interaction between SUs. These constraints can
be either absolute time constraints for specific SUs or
relative time constraints for linked sets of SUs.

2. Most, or at least many, SUs need not be tightly con-
strained in time.

3. The ground system can accurately model optimistic,
conservative execution of SUs over the scheduling
time period of interest. "Optimistic" means all SUs
proceeding successfully; "conservative" means exe-
cution times padded for activities with uncertain
duration.
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Condition 1 is critical for the ideas being developed here
and in fact may not be true for the type of cosmological
science of primary concern for the NGST mission. If
condition 1 is not true, it would be more efficient to revert
to a purely event-driven system. The purpose of stating
condition 2 is to recognize that if most SUs were tightly
time constrained, one would do as well to use a fully time-
driven system. Condition 3 basically asserts that it is not a
lack of understanding by system engineers that will lead to
deviations during schedule execution, but rather not fully
predicable events (e.g., the time required for a guide star
acquisition attempt and whether the attempt succeeds).

Let’s assume now that, as a consequence of the first and
third conditions, a ground-based system has been created
for production of short-term (a few days to a week) sched-
ules. At this point, the details of how schedules are
generated are not important - other than that the algorithm
applied be optimistic and conservative. Because the sched-
ule is conservative, most real-time deviations (e.g., due to
occasional failure to acquire guide stars) will be such that
observations end earlier than predicted by the ground
system. A purely event-driven AS would respond by
starting each SU as soon as the previous one ends. This
makes schedule execution more efficient, but can lead to
problems if SUs with time constraints are encountered.

As noted in condition I, there are two types of time
constraints of potential concern: those applied as absolute
constraints on individual SUs, and those applied as relative
constraints forming links between SUs. (Strictly speaking,
such constraints could apply between subactivities within
SUs as well. The ideas presented in this paper could be
generalized to cover that situation, but we will ignore that
possibility in what follows.) We will first consider 
mechanism for handling absolute time requirements, and
thereafter discuss how the procedure can be augmented to
allow for relative time constraints.

Absolute Time Constraints
To account for absolute time constraints, Adjustable Syn-
chronization extends purely event-driven logic as follows.
Let each SU have an additional set of three parameters.
These parameters, created by the ground-based scheduling
system and uplinked with the SU, are the earliest permitted
begin time (tB,), the latest permitted begin time (ts~), 
the latest permitted end time (to. As each SU is evaluated
by the AS for possible execution, which includes verifica-
tion that the current spacecraft state is compatible with the
needs of the SU, the AS also compares current time (t) 
each of tD~ and t82. If t < tB~, the AS delays execution of the
SU until t = ta~; if tB~ < t < tB2, the AS proceeds with the SU;
if t82 < t, the AS rejects the SU. During SU execution, the
AS monitors t to determine if it exceeds tn; if t > tE, the AS
terminates the SU. To produce purely event-driven
behavior in cases where there are no time-critical SUs, the
ground system can have set (tBK, tB~, tO = (0, ~’, ,,o) for 
SUs, with o,, any sufficiently distant future time.

We now consider how to specify (tat, tB~, t~) values in the
case where there are one or more time-critical SUs.

Suppose that somewhere in the middle of the schedule
there is a time-critical SU, C, with a constraint that it must
start within the time window [tcj, t~. As noted previously,
most real-time departures from the schedule will be such as
to make the SUs require less time then predicted. It would
therefore usually be safe to set (hi, tin, to = (0, ,,*, o.) for 
SUs except C, while for C one could set (q~, tB2, o =
(tc, ,~,, oo). The usual result would be that the SUs prior 
C would finish sometime prior to tc~, after which the
spacecraft would suspend science operations until ta.

A "usually acceptable" approach is not adequate for the
general case. There may occasionally be circumstances that
cause unexpected delays in some SUs, e.g., recurrent guide
star losses of lock and associated exposure reinitializations.
To prevent C from being shoved to a future time outside its
acceptable execution window, one must set (tB2)c = tc2. If C
is of no higher priority than any preceding SU, no further
adjustments are needed; if the preceding SUs are delayed
to the point that C can no longer start before tc2, C is sim-
ply dropped. However, if there exists an SU, A, sometime
prior to C that is of lower priority than C, specification of
the (t~, to pair for A must be adjusted as follows:

ts(A) = tc2 - Zk(~+At~÷1) (1)

ta2(A) = tE(h) - (dA+At~A+,) (2)

where the sum in equation (1) pertains to all SUs between
A and C with priority greater than A, d~ is the estimated
duration of SU k, Ate+, is the time to maneuver between
SU k and the next high priority SU (with C as the last
"k+l"), dA is the estimated duration of A, and Ate,A÷~ is the
time to maneuver from A to the next high priority SU. The
term "maneuver" here should be taken as a generalized
concept that includes not only change of attitude, but also
post-slew settling, any required instrument reconfiguration,
and any required house-keeping activities (e.g., momentum
dumping) that ground modeling indicates will probably be
inserted by the spacecraft between the two SUs. If there are
more than two priority levels, the procedure can be applied
in a nested structure, working downward towards SUs of
progressively lower priority.

In the case of multiple time-constrained SUs, the ground
system specifying (ta2, o pairs must work backwards
through the schedule, applying equations (1) and (2) to 
low priority SUs relative to each time constrained SU. Let
CN be the Nth high-priority time-constrained SU in the
schedule. Equations (I) and (2) applied relative N set
upper limits on (tB2, tE) for all earlier low priority SUs, even
intrinsically constrained ones - i.e., if the intrinsic value of
tcz(CN.~) is greater than tB2 imposed on CN.j by CN for any
i < N, then tB:(C~.) based on CN replaces tc2(C~.i) as the last
permitted start time of CN~. This backwards progressing
procedure ultimately finds the smallest upper limit for each
of t~ and tE for each SU.

If nothing further is done than inclusion of the (t~, tB~, to
triplets and associated rules, one would tend to lose the
benefit of schedule compression whenever a time-critical
SU is added to the schedule; the usual result would be the
creation of an unused time gap just before the earliest

130



permitted start time for each time-critical SU. For the time
being let’s just consider those gaps to be opportunities to
be used advantageously by the AS. We will return to this
issue in section III, where a number of schemes for using
these opportunities will be discussed.

Relative Time Constraints

One approach for handling relative time constraints would
be to have the ground system convert all relative time
constraints to absolute constraints after the schedule has
been constructed. The flight system could then operate
exactly as described in the preceding subsection. Although
this approach would probably be the easiest to implement
onboard, it sacrifices flexibility for the sake of simplicity.
We therefore propose the following ideas instead.

Constraints on the timing of an SU Aj that is a member
of a set {A} of linked SUs can arise from links to set mem-
bers from within four distinct time periods: (1) before H,
the last time for which the ground-based scheduler has
knowledge of actual execution history, (2) within [t., tj],
where tj is the start time of Aj (i.e., current time when A. is
being considered by the AS for execution), (3) within

[t v tF], where t F is the final time of the ground-generated
schedule (not known exactly until the schedule has exe-
cuted), and (4) after 

Any link back to an SU that occurred before t. can
legitimately be handled in the ground system by converting
the relative constraint into an absolute constraint. A link
from Aj back to an SU, say At, scheduled in the range [tH, tj]
must be handled at least in part by the onboard AS; the
actual execution time of At , or the failure of At to execute,
can influence the timing of As in a way only determinable
after A~ is complete.

A link from Aj to a later SU, Ak, can constrain Aj only if
(1) A~ is absolutely constrained, (2) there exists an SU, 
between Aj and Ak that is absolutely constrained, thereby
effectively constraining A~, or (3) k i s i tself c onstrained
via a link, either forward or backward, to some other con-
straining SU. Point 3 makes constraint tracing recursive,
but in a way that either allows a linked set to move as a
block, or ultimately anchors to an absolutely constrained
SU. In principle, points 1, 2, and 3 pertain whether or not
A~ is part of the current schedule, i.e., exists before t~. This
point could be important if the ground system works not
merely with the immediate schedule for the near-term
period, but also with an approximate schedule extending
even further in time.

The principles outlined above apply generally, irrespec-
tive of the selected convention for specification of links
between SUs. For simplicity, let’s assume that links may
be specified via the following convention. We will then
indicate how the constraint information can be provided to
the onboard AS for easy use. Each linked SU set {A} has
an associated link set {L}A. Each SU within {A} explicitly
specifies as part of its definition the identities of the
elements of {L}^ for which it is a node, e.g., SU A~ is a
node for L,2, A2 is a node for L,2 and L23, etc. We assume
now that each SU can be linked only to its two immediate

chronological neighbors within {A}. Each link, L~, is
defined by its two nodes (i.e., the predecessor Aj, and the
successor Ak), time parameters AturN and AtuAx specifying
the minimum and maximum separation of the nodes, and a
binary flag, f~, indicating whether A~ can execute if Aj
does not. Finally, we impose a rule that if (1) fuj is set 
TRUE, (2) Aj is linked backwards to an earlier SU (A~), 
(3) Aj fails to execute, then a new link is formed between
Ai and Ak based on the At~N and AtM~x values from L~j and
Ljr (We leave it as an exercise for the reader to select
equations for generation of the new link.)

Let’s now imagine this system applied to schedule con-
struction in the ground system and subsequent execution
by the onboard system. We pick up shortly after time tw
The ground system has received a history log from the
spacecraft indicating which SUs have actually been exe-
cuted through tH and what the state of the spacecraft is at tH.
The ground also has available the specification of the
currently executing schedule and knowledge of the rules
that the onboard AS applies. The first thing that the ground
system does is construct an optimistic, conservative model
of how the remainder of the current schedule will play out
based on execution history through t x and knowledge of
how the AS will respond to any anomalies or SU failures
that occurred before t~. This may imply the elimination of
some SUs by the AS in the range [tH, tr’], where t/is the
revised expected end time for the currently executing
schedule. It also implies that any relative time constraint
linking an SU in the range [ta, tF’] to an SU prior to tH can
be transformed to an absolute constraint.

Using this revised version of the current schedule,
together with the set of SUs that have been submitted for
scheduling, the ground-based scheduler constructs a nomi-
nal schedule for the time period [t/, tF]. This schedule
construction can be based on any convenient scheduling
algorithm; our only requirement is that the new schedule
be internally self-consistent. This latter point implies that
the SUs as placed into the nominal schedule satisfy all
required constraints, including absolute and relative timing
constraints. The details of the ground-based scheduling
system may be quite complex, but fortunately are of no
consequence to the design of the onboard AS; we may
view the ground action for this phase as magic. Alterna-
tively, we could imagine using a version of the short-term
scheduling system currently used for the Hubble Space
Telescope (cf. Samson 1998), appropriately scaled back for
an L2-based mission.

After constructing the nominal schedule, the ground
system assigns (tB,, tB2, 0 t riplets t o each SU, with e qua-
tions (1) and (2) used for E and tB2 as needed. If t here are
either no absolutely constrained SUs or no relative links,
construction of the nominal schedule is complete. Other-
wise, the ground system must refine the tB~ values based on
implicit limitations imposed on the AS’s ability to move
any given time-linked SU, Av to earlier times as a conse-
quence of links from As to later SUs. The simplest example
occurs with a schedule fragment like [... A~, C, Ak ...], with
C absolutely constrained. C preventsAk from moving
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forward, which can prevent Aj from moving forward. Such
future-imposed constraints can be much more complicated,
possibly involving tangled webs of linked sets and anchor
points beyond the last SU in {A}.

Resolving such future-imposed constraints can be done
up-front, i.e., as part of the ground-based process, if one is
willing to apply an approximation that event-driven execu-
tion will only result in SUs moving to earlier time - true
usually, though not always. Using this approximation,
together with assumptions on the nature of permitted links,
one can construct an algorithm for defining how much
each SU will be allowed to move earlier in time during
event-driven execution. Appendix A provides pseudo-code
for one such algorithm based on the link convention speci-
fied earlier in this section. Multiple forward and backward
passes through the SU sequence following Aj may be
required to trace through complex link entanglements.
Furthermore, if one or more SUs after Aj require more time
than allotted for their execution, the procedure may fail to
prevent a relative time constraint violation linking back to
Aj. For such cases, we rely upon the tB2 and t~ values
specified for each SU to prevent low priority SUs from
encroaching upon high priority SUs, although this will
protect Aj’s successor only if the ground-based scheduling
system specified it as having high priority.

The discussion in the preceding paragraph, with its goal
of resolving all web entanglement within the ground sys-
tem, implicitly assumes that no real-time anomaly occurs
before A~ that will render SUs after A~ unexecutable. This
could happen, for example, if a science instrument required
by a later SU fails, or if an SU linked to and required by a
later SU fails. Because of the possible intricacies of link
entanglements, the loss of any SU (say, B) prior to the last
linked SU in the schedule (say, Dk) can lead to a relaxation
of the future-imposed constraint on Aj’s earliest permitted
start time - even if neither B nor Dk is part of {A}. Two
possibilities exist to handle this situation. The simplest
would be to ignore it, in which case at least two schedule
gaps could develop - one immediately before A., and the
other at the time of or sometime after B’s nomina~ location.
The AS could then use the strategies to be discussed in
Section III to fill those gaps.

The second possibility would be to provide the AS with
a list of anomaly types that could imply loss of future SUs.
Upon encountering such an anomaly, the AS could purge
the future schedule of unexecutable SUs and then recom-
pute the (tB,, tB2, ~) triplets for all remaining SUs. 
support these computations, the AS would have to be
provided with the intrinsic (tc,, tc~) time limits for all
absolutely time-constrained SUs as well as the relative
priorities of all of the SUs in the schedule. The computa-
tions are lengthy and not clearly worth imposing on the
onboard system, particularly if a good set of gap-filler
strategies have been provided to the AS. The possible
advantage of having the AS recompute the time triplets is
that it could allow the creation of a smaller number of
larger gaps. Large gaps are typically more efficiently used
by scheduling systems; the AS is likely to do better with

them as well. A decision regarding which approach to take
should be based on how often relative time constraints are
expected to be used.

After the ground system has finished determination of
the time triplets, the schedule (including the triplet and link
specifications) is sent to the spacecraft. It would be the re-
sponsibility of the AS to apply the relative time constraints
on SU links. A reasonable approach would be to have the
AS transform a relative link between two SUs into an
absolute constraint on the trailing node immediately upon
execution completion of the leading node, i.e., if/when Aj
with L~ succeeds, the AS traces Ljk to A~ and applies the
MIN/MAX time parameters as constraints to (t~t, t82)k. Thus
when the time comes to execute Ak, all of its constraints
will already have been made absolute.

III. Filling Schedule Gaps

As was noted earlier, simply overlaying the (ta~, tB2, o t ime
triplets and associated rules on top of an optimistic,
conservative ground-constructed schedule would tend to
result in unused time gaps just before each SU with a tB~-
constraint. In this section we discuss three possible
strategies whereby the AS can take advantage of these time
gaps. The strategies being considered are: (1) augmentation
of the schedule using in-line gap fillers, (2)selection 
fillers from an auxiliary SU pool, and (3) autonomous
onboard creation of SUs for gap filling. This list is not
intended to be complete; some additional possibilities are
suggested in Ref. 1. The purpose, rather, is to illustrate the
general possibility with a few variations.

Schedule augmentation using in-line ~lers

The simplest strategy for gap filling would have the ground
system pad the schedule with additional low priority
"filler" SUs at the points where the gaps are likely to form,
i.e., just before each SU with a tB,-constraint, and perhaps
before members of linked sets that are constrained by
future SUs. The (t~2, t~) time-tags for such filler SUs would
be constructed as previously specified in equations (1) and
(2) for low priority SUs before a time-critical activity. The
fillers would have to be inserted into the schedule as a final
phase of ground processing after relative time constraint
evaluation has been completed, placement there being to
prevent interference with the latter process. The number of
such filler SUs inserted at any point in the schedule could
be based on a statistical estimate for the maximum size of a
gap likely to form at that location, e.g., on a three-sigma
estimate for worst case number of SUs or science time lost
due to typical anomalies. As far as the AS is concerned,
there need be no distinction between SUs that constitute
the nominal schedule and those that are inserted as in-line
fillers; the AS could apply the same rules for both types, at
least during normal execution. An exception would be
required if one chooses to include onboard purging of
future unexecutable SUs followed by (tB~, tB2, tE) recon-
struction, as discussed near the end of section II.
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Selection from an auxiliary SU pool

The second strategy for gap filling would require the
ground system to create and uplink a pool of unsequenced
auxiliary SUs distinct from the nominal schedule. As part
of evaluation for each SU A in the nominal schedule, the
AS would compute the time period AT = (q~.A" t), where 
is current time. If AT exceeds a database-specified
duration, D,,~, the AS would select an appropriate SU from
the auxiliary pool for insertion into the gap. All acceptable
auxiliary SUs would have to meet the constraint
(d~ + At,, + Ate^) < (t~. A- t), where z i s t he expected
duration of the SU to be inserted, At,, is the time to
maneuver from the current attitude and configuration to the
SU to be inserted, and Atb^ is the time to maneuver from
the inserted SU to the attitude and configuration required
for A. The AS must also create a latest permitted end time
for the inserted SU: t~t = tB2.A- At~A, and verify that the
expected duration of the candidate SU is such that it will
end before t~r The SOT may wish to apply additional
constraints, e.g., that any acceptable candidate must have
an attitude within a database-specified angle of the attitude
of the last SU executed from the nominal schedule.

If multiple SUs within the pool are acceptable candi-
dates for local insertion, the AS would require a procedure
for selecting the best. The selection rule may be as simple
as picking the SU with target direction closest to the tele-
scope’s current pointing, or perhaps the SU that would
provide the greatest amount of observing time while still
being able to fit within the gap. Rules such as these would
be appropriate if the typical size of a gap corresponds
approximately to the expected duration of auxiliary SUs. If
the gap could be substantially larger, then it may be desir-
able to introduce an onboard scheduling algorithm capable
of more sophisticated optimization across the entire gap; in
the limit of a very extended gap, one may wish to host a
simplified version of the ground-based near-term scheduler
within the flight system.

If the complexity of the selection process is high, either
because of the number of auxiliary SUs or the length of the
gap to be filled, it may desirable to expedite processing by
applying much of the selection/scheduling process while
execution of the preceding SU is still in progress. This
would require some additional complexity within the AS;
see Ref. 1 for some speculation in this area.

Autonomous SU creation

The third strategy for insertion of filler observations would
be to have the AS generate such fillers as may be needed
based on some internal rules. For example, after computing
AT = (tSj.A- t) and finding AT > DMj,~, the AS could invoke 
template for creation and insertion of an SU at or near the
current pointing, e.g., (AT/D,,N) exposures using science
instrument A and a standard filter. Any such onboard-
generated SUs would be subject to the same constraints
indicated in the preceding discussion for filler SUs drawn
from an auxiliary pool. A possible use for autonomously
created SUs would be for quasi-regular accumulation of

data for science instnmaent calibration. Another possibility
would be to support core NGST mission survey work, e.g.,
early universe supernova frequency statistics, or early uni-
verse galaxy size and morphology statistics (cf. Appendix
C of Stockman, 1997). The proposal to use autonomously
created SUs is essentially the same as an idea suggested by
Hallock and Love, 1998 - the only difference being that
our proposal restricts its use to a gap filling strategy,
whereas theirs suggested it as a strategy employable by an
AS independently of the existence of schedule gaps.

IV. Real-time Operations

A common flight operations team (FOT) concern with
event-driven systems is that it may not be possible to know
in advance when commands intended for immediate execu-
tion can be sent to the spacecraft. It would, of course,
always be possible for the FOT to simply deactivate the
onboard AS whenever real-time commanding is required,
but this seems needlessly disruptive. In this section we
describe three approaches to real-time operations appropri-
ate for various different circumstances; the approaches are:
(1) forced command insertion, (2) interleaved command-
ing, and (3) dedicated time block scheduling. In all cases,
the real-time commanding being done can be in the form of
either individual commands or extended command macro
sequences.

Forced command insertion

First and foremost, the AS must be a servant to the SOT
and FOT, facilitating rather than hindering spacecraft
operations. Under some circumstances, it may be necessary
for the FOT to issue commands that may not be compatible
with current schedule execution. Under such circum-
stances, and depending upon the urgency of the command,
it would be reasonable for the AS to follow one of three
procedures: (1) complete the current SU and then execute
the FOT-issued command, (2) suspend the current SU soon
(e.g., at the end of the current exposure) and then execute
the FOT-issued command, or (3) immediately suspend the
current SU and execute the FOT-issued command. The
action of suspending an SU envisioned in procedures 2 and
3 would allow the AS to more-or-less smoothly resume
execution of the SU after the FOT interaction is complete.
Depending upon the complexity involved with SU suspen-
sion, option 3 may in fact be further divided into two
suboptions, one allowing the AS the time required to
complete the suspension process, and another that simply
forces immediate command execution irrespective of the
implications for the SU in progress, e.g., the possible loss
of all further exposures. Which, if any, of these approaches
are used depends upon the engineering details of the mis-
sion. The important point, as emphasized in the lead
sentence, is that the AS should be designed to support the
FOT’s needs in urgent situations.
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Interleaved commanding

As noted in section I, we assume that the AS is designed to
support parallel execution of activities. For this section, we
further assume that this support is such that SUs with
parallel activities are in the form of non-overlapping blocks
of parallel activity sequences; see Doxsey et al, 1998, for
details on one variation of such an approach. At the time of
command uplink, some particular block of activities will
be being executed.

For interleaved commanding, we envision that each
incoming command macro will be stored in a buffer for
evaluation. The AS then examines each command in the
macro, comparing it against each activity request in the
thread sequences comprising the block currently being
executed. Rules associated with each permitted command
type allow the AS to determine whether a command can be
executed in parallel with any particular high-level activity
that the observatory can be requested to execute.

If every command in the macro is compatible with every
activity in the current SU block of parallel threads, the AS
generates a new thread associated with the block and
launches the macro as that thread. Being a thread of the
current block implies that the macro will be allowed to run
to completion before the current block terminates even if
all other threads are complete, thus preventing any subse-
quent activities from possibly being in conflict with any
macro elements. If any commands within the macro are
incompatible with any of the activity requests within the
block, the AS examines each remaining block within the
current SU until it finds one compatible with the macro. If
the macro commands are not compatible with any block of
the SU, the AS postpones execution of the macro until
after the SU has run to completion.

Dedicated time block scheduling

Dedicated time commanding would actually be rather
simpler than interleaved commanding. The FOT obtains a
block of dedicated spacecraft time for real-time command-
ing by creating a "dummy" SU (DSU) containing the
earliest and latest permitted start times, estimated duration,
priority, and other parameters such as spacecraft attitude or
required science instrument configuration. Notice that this
provides optional autonomous attitude slew and onboard
equipment reconfiguration at the beginning of the dedi-
cated time block if desired. Similarly, commands to return
the spacecraft to a nominal state at the end of the time
block could also be included in the DSU if appropriate.

If the time constraints do not specify a specific time,
other than that the DSU occur during a time when the
ground station can see the spacecraft, the scheduling
system determines an optimal time for the DSU relative to
the other SUs in the schedule. The DSU is scheduled and
executed like any other SU. The spacecraft configures
itself appropriately (e.g., slews to a specified attitude),
activates a timer to measure the reserved time block, and
awaits FOT commands.

The timer triggers two events. Prior to full completion of
the scheduled time period, the AS sends a message to the
FOT stating that DSU expiration is imminent. The FOT
may optionally extend the time limit if desired. Upon expi-
ration of the timer, the AS executes any appropriate clean-
up activities associated with the DSU and proceeds to the
next SU. The FOT can optionally send a "timer expired"
command to trigger early termination of the dedicated time
period and immediate transition to the next SU.

Summary

This paper provides a description of an approach, herein
designated Adjustable Synchronization, whereby the sci-
ence operations team can control the flexibility provided to
an onboard Adaptive Scheduler for responding to real-time
deviations between the ground’s prediction of schedule
execution and that which actually occurs. The approach is
designed as an augmentation of the event-driven logic used
in the NGST AS Prototype described by Cammarata et al,
1998. Section I provides an overview of the basic features
of that Prototype. Section II presents an approach for
incorporating absolute and relative time constraints into a
basically event-driven system. Introduction of time con-
straints leads to the possibility of time gaps prior to time
constrained activities; section III presents some options to
allow an adaptive system to fill those gaps with useful
science or calibration work. Finally, section IV presents
some AS functionality designed to facilitate real-time com-
manding and thereby ameliorate FOT concerns associated
with the basic event-driven process.
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Appendix A - Resolving
Future-Imposed Time Constraints

This appendix provides pseudo-code for an algorithm
specifying how the ground-system can determine to what
degree each forward-linked SU within a linked set is con-
strained by future SUs. It assumes the link model specified
in section I, i.e., whereby each SU in a linked set can have
links only to its immediate neighbors within the set. For
the following pseudo-code, an "intrinsic" absolute time
constraint is one defined as part of the SU, whereas an
"implicit" absolute constraint is one derived from another
SU. Memory of constraints designated as "implicit" is re-
tained only over the duration of the loop over SU A.

Do for each SU (A) in the schedule in forward direction
(except last)

If A has a forward link to a scheduled SU (A+)
Initialize any previously constructed implicit absolute
constraints for A and subsequent SUs to null.
Do until no further constraints are imposed

Do for each SU (B) after A in forward direction
(except last)

If B is absolutely constrained (either intrinsically
or implicitly)

Mark B’s successor (C) as implicitly absolutely
constrained.
Determine the implied earliest permitted start
time for C based on nominal execution of B
with B starting as early as possible. (Note, if 
was already constrained, the earliest permitted
start time for C is the later of its previously
determined earliest start time and that derived
from B.)

Endif
Enddo
Do for each SU (B) after A in reverse direction

If B is absolutely constrained and B has a back-
wards link to an SU (B_) not earlier than 

Mark 13_ as implicitly absolutely constrained.
Determine the earliest permitted start time of B_
based on B’s earliest permitted start time and
the relative constraints between B_ and B.
(Note, if B_ is already constrained, the earliest
permitted start time for ]3_ is the later of its
previously determined earliest start time or that
derived from B. Note further that within this
block, linked set {B} could be {A}, and SU B_
could be A.)

Endif
Enddo

Enddo
Endif

Enddo

135




