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Abstract

Bayesian networks are gaining an increasing popular-
ity as a modeling tool for complex problems involv-
ing reasoning under uncertainty. Since belief updating
in very large Bayesian networks cannot be effectively
addressed by exact methods, approximate inference
schemes may be often the only computationally feasible
alternative. There are two basic classes of approximate
schemes: stochastic sampling and search-based algo-
rithms. We summarize the basic ideas underlying each
of the classes, show how they are inter-related, discuss
briefly their advantages and disadvantages, and show
examples on which each of the classes fail. Finally, we
study properties of a large real network from the point
of view of search-based algorithms.

Introduction

Bayesian networks (Pearl 1988) are increasingly popu-
lar representations of problems involving reasoning un-
der uncertainty. Practical models based on Bayesian
networks often reach the size of hundreds of variables
(e.g., (Pradhan et al. 1994; Conati et al. 1997)). Al-
though a number of exact inference algorithms have
been developed, belief updating in Bayesian networks
is NP-hard (Cooper 1990) and these algorithms may
be impractical in very large and complex models. It is
important to focus on approximate inference schemes,
as these may be the only alternative for making infer-
ence computationally feasible. Unfortunately the gen-
eral problem of approximate inference with evidence
is also NP-hard (Dagum & Luby 1993), even though
there are restricted class of networks in which approx-
imate inference is provably amenable to a polynomial
time solution (Dagum & Chavez 1993; Dagum & Luby
1993).

There are two basic classes of approximate algorithms
for Bayesian networks: stochastic sampling and search-
based algorithms. The performance of both classes of
algorithms depends on the properties of the underly-
ing joint probability distribution represented by the
model. While the performance of sampling algorithms
is largely determined by the sampling distribution, the
performance of search-based algorithms depends on the
quality and quantity of found model instantiations (also

called states or scenarios). Each algorithm has its ad-
vantages and disadvantages, that is, it may work well on
some but poorly on other networks. It is important to
study the properties of real models and subsequently to
be able to tailor or combine algorithms for each model
utilizing its properties.

The remainder of this paper is structured as follows.
We first review briefly various sampling algorithms, dis-
cuss their advantages and disadvantages and show ex-
amples on which each of them fails. We follow with
an introduction to search-based algorithms. Finally,
we study the properties of a large medical model, the
CPCS network (Pradhan et al. 1994) and use these to
compare the sampling and search algorithms.

Stochastic sampling algorithms

In stochastic sampling algorithms (also called Monte
Carlo sampling, stochastic simulation, or random sam-
pling), the probability of an event of interest is esti-
mated using the frequency with which that event occurs
in a set of samples. Differences between various random
sampling algorithms can be reduced to differences in the
sampling distribution, i.e., the probability distribution
from which they draw their samples. If the sampling
distribution does not match the actual joint probabil-
ity distribution, an algorithm may perform poorly.

We will use a simple two-node network presented in
Figure 1 to illustrate the advantages and disadvantages
of each algorithm. Both nodes are binary variables (de-
noted by upper case letters, e.g., A), the two outcomes
will be represented by lower case letters (e.g., a and ~).
We would like to stress here that our discussion aims at
very large networks and the simple network of Figure 1
serves only for the purpose of illustration.

Probabilistic logic sampling

The simplest and the first proposed sampling algo-
rithm is the probabilistic logic sampling (Henrion 1988),
which works as follows. Each node is randomly instan-
tiated to one of its possible states, according to the
probability of this state given the instantiated states of
its parents. This requires every instantiation to be per-
formed in the topological order, i.e., parents are sam-
pied before their children. Nodes with observed states
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A
Pr(a) = 

B
Pr(bla) 

Pr(bl~’) = 

Pr(bla ) = 1 - /3

Pr(bla-) = 1 - 

Figure 1: A simple Bayesian network and its numerical
parameters (prior probability distribution over A and
conditional probability distribution of B given A).

(evidence nodes) are also sampled, but if the outcome 
the sampling process is inconsistent with the observed
state, the entire sample is discarded.

Probabilistic logic sampling produces probability dis-
tributions with very small absolute errors when no evi-
dence has been observed. If there is evidence, and it is
very unlikely, most samples generated will be inconsis-
tent with it and will be discarded. Suppose that node
B (Figure 1) has been observed at an unlikely value 
(both/3 and 7 are very small). Then the percentage
of useful samples consistent with the evidence will be
a/3 + (1 - a) 7, which will be very small. This means
that most samples will be discarded. For example, with
a = 0.5, /3 = 7 -- 0.01, 98% of the generated samples
will be discarded. In a large network with multiple ob-
servations, the prior probability of evidence is usually
very small and, effectively, probabilistic logic sampling
can perform poorly.

Likelihood weighting

Likelihood weighting (Fung & Chang 1990; Shachter 
Peot 1990) enhances the logic sampling in that it never
generates samples for evidence nodes but rather weights
each sample by the likelihood of evidence conditional on
the sample. All samples are, therefore, consistent with
the evidence and none are discarded.

Also, likelihood sampling suffers from another prob-
lem. Suppose that in our example network, with b ob-
served, 0 < q << a << 1 and/3 = 1-7. The likelihood
sampling algorithm will set A to ~ most of time, but will
assign a small weight to every sample. It will set A to a
very rarely, but assign these samples a high weight. Ef-
fectively, the generated samples may not reflect the im-
pact of evidence. For example, if 7 = 0.0001, a = 0.01,
and/3 = 0.9999, 99.99% of all samples will be generated
for a and 0.01% of the samples will be generated for ~.
These proportions may become more extreme in very
large networks and with a tractable number of sam-
ples (at the current speed of computers, usually tens
of thousands of samples for networks consisting of sev-
eral hundred nodes), it may happen that some states
will never be sampled. It is popularly believed that
the likelihood sampling suffers from unlikely evidence.
This belief is inaccurate -- likelihood sampling suffers
mainly from a mismatch between the prior and the pos-
terior probability distribution, as demonstrated in the

above example.

Enhancements to forward sampling

There are several improvements on these two basic
schemes, classified collectively as forward sampling be-
cause their order of sampling coincides with the direc-
tion of arcs in the network. Each node in the network
is sampled after its parents have been sampled.

One of these improvements is stratified simulation
(Bouckaert 1994) that divides the whole sample space
evenly into many small parts, then picks one sample
from each part. In other words, it allows for a sys-
tematic generation of samples without duplicates. The
main problem in applying stratified sampling to large
networks is that at each stage of the algorithm, we need
to maintain the accumulated high and low bounds for
each variable. In a network consisting of hundreds of
variables, the high bound approaches the low bound as
the sampling proceeds, and they will meet at some point
due to the limit of number representation in computer.
After this point variables will be sampled arbitrarily.
Inaccurate computation will prevent the algorithm from
generating desired samples, thus its performance will
deteriorate.

Latin hypercube sampling follows also the idea of
evenly dividing the sample space, but it focuses on the
sample space of each node. It has been found to offer
an improvement on any scheme, although the degree of
improvement depends on the properties of the model
(Cheng & Druzdzel 1999).

Importance sampling (Shachter & Peot 1990) sam-
ples from an "importance distribution" rather than the
original conditional distributions, that adds flexibility
in devising strategies for instantiating a network dur-
ing a simulation trial. It provides a way of choosing
any sampling distribution, and compensating for this
by adjusting the weight of each sample. The main diffi-
culty related to this approach is defining a good impor-
tance sampling distribution. Self-importance sampling,
for example, revises conditional probability table pe-
riodically in order to make the sampling distribution
gradually approach the posterior distribution.

Backward sampling

Backward sampling (Fung & del Favero 1994) allows for
generating samples starting from evidence nodes based
on essentially any reasonable sampling distribution. (It
also, in a way, belongs to the class of importance sam-
pling.) Backward sampling will work better than for-
ward sampling in the example presented in the section
on likelihood sampling. In some cases, however, both
backward sampling and forward sampling will perform
poorly. Suppose that (~ = 7 << 1 and /3 = 1-~.
Forward sampling will tend to set A almost always to
~, while backward sampling will tend to set it almost
always to a. For example, when a = 7 = 0.0001 and
/3 = 0.9999, 99.99% of the forward samples will include

and 99.99% of the backward samples will include a.
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Both schemes may fail to approach the correct posterior
distribution over node A, which is uniform.

Search=based algorithms
Joint probability distributions over practical models
show large asymmetries in the probabilities of their in-
dividual instantiations. (We would like to point out
that all of our examples on which sampling fails in-
volved large asymmetries in probabilities.) A very ap-
pealing consequence of this observation is that a small
fraction of most likely instantiations may cover most of
the probability space. Search-based algorithms search
for the most likely instantiations of a model and com-
pute the posterior probability of an event by weight-
ing the probability of those instantiations that are
compatible with the event against the probability of
those that are not. Henrion (1990) applied a varia-
tion of this idea to an approximate algorithm for be-
lief updating in the probabilistic reformulation of the
Internist-1/QMR knowledge base, in which the inter-
actions between diseases and findings are described
by two-level binary Noisy-OR gates. Later (Henrion
1991) this requirement was relaxed to gates with 
negative product synergy (Druzdzel & Henrion 1993;
Wellman & Henrion 1993) between pairs of diseases
given each of the findings. The algorithm searches
for the top n most likely hypotheses computing their
relative likelihood and putting conservative upper and
lower bounds on their absolute probabilities. Another
search-based algorithm is due to Poole 1993b, who con-
sidered the case of models containing "normal" vari-
ables, defined as representing elements of a system
working under normal conditions and only rarely de-
viating from this normality. This is equivalent to the
assumption that the conditional distributions in the
network are close to zero or close to one and im-
plies large asymmetries in the joint probability distri-
butions. In his work on incremental probabilistic in-
ference, D’Ambrosio (1993) introduced "skewed distri-
butions," which are distributions with the property of
large asymmetries in probabilities.

In our research, we are probing the following ques-
tions: How are search-based algorithms applicable to
general Bayesian networks? Under what circumstances
can the search-based algorithms meet efficiently the ac-
curacy requirement? Is it possible to predict the perfor-
mance of a search algorithm by examining the structure
and/or the distribution of the network? How to design
good heuristics for search?

The two main factors determining the efficiency of the
search-based algorithms are (1) how to find quickly 
set of the most likely instantiations, and (2) how many
such instantiations are needed to achieve the desired
accuracy. The first factor is important and is related
to search strategies. However, the second factor, that
is largely determined by the size of the network and
its probability distribution, can be critical in practical
application of search-based algorithms.

Poole (1993a) gave an average-case analysis of 
search algorithm for networks with extreme probabil-
ities. This analysis, which is independent of search
strategies, is based on the assumption that for each
value of the parents of a variable X, one of the val-
ues of X is infinitesimally close to one and all the other
values (faults) are thus close to zero. This assumption
is quite strong, because it requires faults are infinitesi-
mally close to zero as the size of the network gets very
large.

Even though no practical networks may have ex-
treme, infinitesimal probabilities, they may still have
the property of large asymmetries in probability dis-
tributions. Skewness of a joint probability distribution
can be in fact predicted theoretically from the proper-
ties of the prior and conditional probability distribu-
tions of individual nodes. Druzdzel (1994) has demon-
strated that there are good theoretical reasons for ex-
pecting that most domains will indeed contain bulk
probability mass in a relatively small fraction of sce-
narios. According to his analysis based on the Central
Limit Theorem, p, the probability mass carried by a
randomly selected instantiation follows log-normal dis-
tribution. Let f(lnp) be the density of lnp. A nor-
malized pf(ln p) expresses the expected contribution 
all instantiations with probability p to the total prob-
ability mass in logarithmic scale, which belongs to the
same class as f(lnp) with a shifted mean and the same
variance.

The diagram in Figure 2 shows these theoretically de-
rived and empirically verified relationships for a model
consisting of 10 binary variables with probability distri-
butions Pl -- 0.1 and p2 = 0.9. The distribution of the
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Figure 2: Theoretically derived probability distribution
over probabilities of states of the joint probability dis-
tribution and the distribution of their contribution to
the probability mass for identical conditional probabil-
ity distributions for 10 binary variables with probabili-
ties of outcomes equal to 0.1 and 0.9.

contributions of probabilities of states to the total prob-
ability mass is strongly shifted towards higher proba-
bilities and cut off at point logp = 0. With smaller
variances in probabilities (less skewness), the shift 
smaller. In such cases, most states will have low proba-
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bilities and, hence, no very likely states will be observed.
Given a desired error bound e, this function allows to
determine the probability threshold value P0 for which
all instantiations less likely than/90 contribute collec-
tively less than e to the total probability mass. A refine-
ment of this analysis based on the extreme value the-
ory in (Castillo et al. 1995) may on theoretical grounds
yield a better estimate of the threshold value P0.

The importance of the theoretical analysis is that it
allows for predictions concerning the expected conver-
gence of the algorithms and the error bounds on the
probabilities during the search process, something that
was impossible based purely on the assumption of asym-
metry. We can use P0 to improve search efficiency by
pruning all branches of the search tree that give prob-
ability of an instantiation lower than P0. Also we can
calculate the fraction q of instantiations that are less
likely than P0 from the density function f(lnp). The
number of instantiations needed for covering a given
percentage 1 - e of the total probability mass will be
n (1 - q), where n is the total number of instantiations.
This number provides a good estimate of the feasibility
of the search.

Search and sampling in practice
We studied the properties of a subset of the CPCS
network (Pradhan et al. 1994), a multiply-connected
multi-layer network consisting of 422 multi-valued
nodes and covering a subset of the domain of internal
medicine. Among the 422 nodes, 14 nodes describe dis-
eases, 33 nodes describe history and risk factors, and
the remaining 375 nodes describe various findings re-
lated to the diseases. The CPCS network is among the
largest real networks available to the research commu-
nity at present time. Our analysis is based on a subset
of 179 nodes of the CPCS network, created by Max
Henrion and Malcolm Pradhan. We used this smaller
version in order to be able to compute the exact solu-
tion for the purpose of measuring approximation error
in the sampling and search-based algorithms. We used
both absolute and relative error. Absolute error mea-
sures the difference between the approximated proba-
bility and the true posterior probability. Both mean
squared error and relative entropy or Kullback-Leibler
distance between two probability distributions (Cover
& Thomas 1991), of which we used the first, are con-
sistent with absolute error. Relative error equals to the
absolute error divided by the true posterior probability
and it is more stringent than absolute error.

We performed experiments to test how many instan-
tiations cover how much probability space. We ap-
plied the stratified sampling algorithm to generate dis-
tinct most likely instantiations, and accumulated their
weights (probabilities). The experimental results pre-
sented in Figure 3 show that a prohibitive number of
instantiations would be needed in a moderately sized
practical network for search algorithms to generate rea-
sonably accurate results. For example, 100,000,000 (one
hundred million) most probable instantiations covered
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Number of top most likely instantiations

Figure 3: Coverage of the probability space as a func-
tion of the number of samples in the CPCS network
with 179 nodes.

less than 28°£ of the total probability space. The total
number of possible instantiations of the CPCS network
is almost 1062, which is about 1054 times more than
the number of instantiations found in our experiment.
This indicates that even though a small fraction of the
total number of instantiations may indeed cover most
of the probability mass, it is still intractably huge by
all standards.

Figure 4 shows mean squared error in the network
as a function of the fraction of the probability space
covered. The observed relationship seems to indicate
that accuracy increases very slowly with further search
for the most likely instantiations.

0.3
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0

0 0.1 0.2 .3
Probability space covered

Figure 4: Mean squared error as a function of the prob-
ability space covered by the most likely instantiations.

The main conclusion from our experiment is that a
search-based algorithm cannot work efficiently in such
a network, even though its probability distribution
is fairly skewed. Generation of 100,000,000 samples,
which fall short of coming even close to covering a rea-
sonable fraction of the probability space, takes hours at
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the current speed of computers.

Combining search and sampling

Both search-based schemes and stochastic sampling
schemes aim at most probable samples. The key dif-
ference between them is how to weight the samples.
Search-based schemes simply accumulate probabilities
of all different instantiations that have been found so
far. We call this weighting method "scenario weight-
ing." Stochastic sampling schemes may generate du-
plicated samples. To avoid over-counting duplicated
samples, each sample is discounted by its probability
in the sampling distribution. We call this weighting
method "discounted weighting." Our preliminary em-
pirical study shows that different weighting methods re-
sult in different precision in the approximated posterior
distributions.

We used the stratified sampling algorithm to gener-
ate unique samples from the CPCS network. We ap-
plied "scenario weighting" and "discounted weighting"
separately to approximate the posterior distributions,
and computed the maximum absolute error and maxi-
mum relative error respectively for these two different
weighting methods as shown in Figure 5. The "dis-
counted weighting" gave quite small absolute errors,
and the "scenario weighting" produced small relative
errors.

Since the probability distribution of network instan-
tiations follows roughly a log-normal distribution, the
difference in probability between even highly probable
scenarios can be large. Therefore, "scenario weighting"
can be strongly biased by a few very large scenarios that
only cover a small percentage of the probability space,
and it may produce large absolute errors. The "dis-
counted weighting" smoothes the differences in proba-
bility among scenarios, but it may produce large rela-
tive error for the nodes whose posterior distribution is
skewed. Depending on the requirements of the system,
different weighting schemes can be chosen for different
purposes.

To this point, we know that the quality of the approx-
imation does not only depend on the samples, but also
on the weighting methods. As search-based schemes
and sampling schemes may find different instantiations,
it is interesting to explore how they can help each
other with an appropriate weighting method. Search
algorithms systematically go through the whole sam-
ple space, and can get easily stuck in local maxima. It
may be a good idea to start with samples generated
from sampling algorithms, as these will be usually very
likely, and then search for very likely neighbors.

Discussion

Stochastic sampling and search are two classes of be-
lief updating algorithms for Bayesian networks that are
conceptually quite close together. They both rely on
instantiations of the network and their performance de-
pends strongly on the joint probability distribution over
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Figure 5: Mean squared error (upper diagram) and rel-
ative error (lower diagram) as a function of the num-
ber of the most likely instantiations for the "scenario
weighting" (diamonds) and the "discounted weighting"
(circles), shown in logarithmic scale.

the network’s variables.

A somewhat depressing finding of our empirical stud-
ies is that both sampling and search may not work too
well in very large networks. Even if the probability dis-
tribution in question is very skewed and a small fraction
of all instantiations covers a large area of the probabil-
ity space, this fraction can still consist of billions of
instantiations, a number that is infeasible to search for
and use m any practical algorithm.

Generation of an instantiation in stochastic sampling
algorithms is usually simpler and computationally less
intensive than search for the most likely instantiations.
As sampling will usually identify very likely instanti-
ations, it can aid search-based algorithms. Another
promising direction of our pursuits of approximate be-
lief updating algorithms for Bayesian networks is com-
bining various algorithms in such a way that an appro-
priate algorithm is executed depending on the proper-
ties of the network.
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