From: AAAI Technical Report SS-99-07. Compilation copyright © 1999, AAAI (www.aaai.org). All rights reserved.

Incremental Data-driven Refinement of Knowledge

Robert A. Morris

Ibrahim El-far

Computer Science Program
Florida Institute of Technology
150 W. University Blvd.
Melbourne, FL 32901
{morris,iel far}Qcs.fit.edu

Abstract

This paper studies reasoning for the purpose of un-
covering hidden assignments of values to a finite set of
variables based on data acquired incrementally over
time. This reasoning task, referred to here as data-
driven refinement, is found in tasks such as diagnosis
and learning. An empirical study is undertaken to
evaluate the utility of knowledge gained from observa-
tions in effectively solving refinement problems.

Introduction

Refinement has been defined as the search that starts
with the set of all potential solutions for a problem,
and repeatedly narrows and splits the set until a solu-
tion for the problem can be extracted (Kambhampati
1998). Incremental data-driven refinement, the focus
here, can be viewed as involving three phases: inter-
preting observations, updating beliefs, and generating
queries. Refinement thus involves a store of beliefs,
which is incrementally updated as the result of a se-
quence of queries. To each query, there is assigned a
“context” which provides the reasoner with additional
information which guides it in future queries; the query
and context together form what is called here an ob-
servation. There is also one or more solutions, initially
hidden from the reasoner, whose discovery terminates
the reasoning process. Informally, by effective refine-
ment is meant the ability to terminate the search for
a solution in a timely manner, with a minimal number
of queries. In this paper, refinement problems have
only one solution. One focus here is on tradeoffs that
arise when a reasoner randomly forgets some of the past
knowledge gained from observations.

In what follows, data-driven refinement is defined,
examples provided, and the dual notions of soundness
and completeness with respect to knowledge updates
defined. Binary refinement is introduced to serve as
the environment for the experimental study, as is a
constraint-based reasoner to solve binary refinement

89

problems. The search space of binary refinement is an-
alyzed. Experiments are described on large refinement
problems which test the role of applying observations
in effective refinement.

Problem Formulation

By a representation is meant a pair R = (V, D), where
V is a finite set of variables and D = {D,, Ds,...,D,}
is a set of domains for each variable in V. Given
R = (V,D) R' = (V',D’) is a sub-representation of
Rif V! CV and D' C D. We write R' = R[(V',D')
to express the sub-representation relationship. Two
representations are said to be digjoint if they have no
variables in common. The union of two (disjoint) rep-
resentations, R = (V,D) U R' = (V', D') is the repre-
sentation R = (VUV',DuUD’).

A language, or formula in a language is based on a
representation R if its atoms consist of variables and
values from R. Given a set of formulas F based on a
representation R = (V, D), the models of F are the set
of assignments of values from D; € D toeach V; € V
that satisfies each sentence in F, i.e., makes all the
sentences true. Thus a model is a subset of Dy x ... X
D,,. The set of models of F will be denoted by Mp.

The general refinement problem

A refinement problem is based on a triple of potentially
distinct, but related representations:

Definition 1 (Refinement Problem) The basis for a
refinement problem is a triple (Q,C,Z) where:

e Q = (Q,Dq) is a representation for expressing
quertes;

e C = (C,Dc¢) is a representation for expressing con-
texts; and

e I = (I,Dy) is a representation for interpreting
observations. We assume the relationship Z =

Q[(I’ Dl)'



Given the basis (Q,C,Z) for a refinement problem, the
following notions are defined:

e a query q is a conjunction of assignments of domain
elements in D¢ to the variables in Q;

e a context ¢ is a set of formulas based on the repre-
sentation C;

e an observation is a pair (g, c), where ¢ is a query and
¢ is a context;

e an interpretation i = Int(g,c) of an observation is
a sentence in Disjunctive normal form (DNF) based
onZ.

e Where f is a sentence in DNF, let |f| denote the
number of terms in f. A complete solution to a re-

finement problem is a query q such that |Int(g,c)| =
1.

This definition of a solution to a data-driven refinement
problem captures the intuitive essence of refinement,
viz., as the process of deriving a single truth about a
domain.

A refinement problem is a 4-tuple (Q,C,Z, s), con-
sisting of a basis and an initially “hidden” solution s.

Solving a data-driven refinement problem involves dis-
covering the solution. It is accomplished through the
incremental accumulation of information by generating
queries and interpreting observations. The reasoner
consults a knowledge base K B to generate queries, and
K B is revised based on observations. KB is assumed
here to be based on a representation Rgp which is
a sub-representation of QU CUZ. T is also a sub-
representation of Rip, i.e., the interpretation of an
observation is based on a representation that the rea-
soner consulting a KB can use.

Examples
An example of refinement is the game of Mastermind.
Example 1 ({-peg, 6-color Mastermind) The stan-

dard game of Mastermind is the refinement problem
(Q’ c’ I, s), Whe!‘e:

[ ] Q = (H = {Hl,Hz,Ha, H4},D = {coll, oo ,cols}),
representing 4 holes and 6 colors. A query language
based on this representation is the set of formulas of
the form:

H, = colj, A Hy = colj, A H3 = colj; A Hy = colj,.

o C = ({CP,CC},D¢c = {1,2,3,4}) is a representa-
tion of contexts. A context is a formula of the form
(CP =iACC = k), i,k € D¢, where this means

90

“There are j correct colors in the correct position,
and k correct colors in the wrong position”. An ob-
servation is a tuple of the form (g, c).

e Informally, the interpretation of an observation
(¢,CP =mACC = k) is “m of the pegs in ¢ are
the right color in the right position, and k of the
pegs in g are the right color but in the wrong posi-
tion”. Formally, each interpretation can be viewed
as a sentence in DNF, where each term is a set of
assignments to variables in H which are consistent
with the context.

A more realistic example of refinement is the prob-
lem of testing in order to resolve ambiguity in diag-
nosis (Struss 1995). A model for diagnosis consists
of a device model CM describing the behavior of the
components of a device, and a set M of diagnostic
modes, where each mode classifies each component in
the system as either working normally, or being in
some abnormal state. At each state of the process,
a diagnostic reasoner is working with a mode M, in
M, a component model CM, and a set OBS of ob-
servations of the system. When a state is reached in
which CM UOBS U M, is inconsistent, the diagnostic
reasoning process commences. The reasoning termi-
nates when M, is replaced by an alternative mode M
which is consistent with OBS and CM. Ambiguity
arises when CM UOBS | My V ...M,, i.e., the cur-
rent knowledge is consistent with a set of alternative
modes. Ambiguity resolution is reasoning for the pur-
pose of deriving a single correct mode, if one exists.
Presumably, to converge on a single mode, further ob-
servations will be taken. The process of generating a
set of observations OBS, which, together with CM,
imply a single component mode, is a data-driven re-
finement problem. :

A model of refinement

By a refinement strategy is meant a method for select-
ing queries, updating beliefs and interpreting observa-
tions for the purpose of discovering a solution. We
specify two properties of updates, soundness and com-
pleteness.

Definition 2 (Sound and
Complete Updates to Knowledge). Let KB be a set
of formulas and O = (g, c) be an observation based on
I. Let Mg p)z and Mo be models of K B restricted to
the variables and domains of Z, and models of O, re-
spectively. An update KB* to KB based on O is said
to be complete if Mg+ C Mg N Mo. The update is
sound if Mg N M(0O) C Mgp+.

Thus, sound updates remove only assignments not in
Mo, and complete updates remove all of them.



Informally, a strategy for refinement will be said
to be effective for a class of refinement problems if it
solves problems in that class in a reasonable time us-
ing a small number of queries. The time it takes to
solve a refinement problem is determined by the num-
ber of queries to solution and the time it takes between
queries to update a knowledge base and select the next
query. A sound and complete strategy is expected to
find a solution with a number of queries that is close
to optimal for the problem. On the other hand, for
refinement problems in which the number of possible
solutions is large, the time spent between queries us-
ing a sound and complete update strategy might be
prohibitive, due to the overhead incurred maintaining
soundness and completeness of the knowledge. A ques-
tion is raised therefore whether sound and complete
strategies are generally necessary for effective refine-
ment. This question is examined empirically later in
this paper by comparing a sound and complete refine-
ment strategy with a set of incomplete strategies. The
class of refinement problem which forms the task, en-
vironment, and protocol for this study is called binary
refinement. First, this variety of problem is defined, as
is a sound and complete strategy for solving it.

Binary refinement

Binary refinement is a reasoning problem in propo-
sitional logic. It can be viewed as the problem of
deriving, from an initial knowledge base comprised
of the formula p; V p2 V...V p,, a unique solution
pi Ap3 A...p}, where p* is either p or —p. Contexts
indicate how many of the literals in a query are cor-
rectly assigned.

Formulation of problem
Definition 8 (Binary refinement).A Binary Refine-
ment Problem is a 4-tuple (Q,C,Z, s) where

e Q= (P={p,.-.,pn},{0,1}). An assignment of
a variable p to 1 or 0 will be designated using the
literal notation, respectively, p and -p. A query is a
conjunction of literals for each member of P.

e C = ({N},{1,2,...,n}), where N is a variable
standing for the number of “correct” literals in a
query. A context is thus simply a number between
1 and n.

¢ Given an observation ob = (g, m), the interpretation
Int(ob) of ob is a DNF proposition with () terms.
Each term is a conjunction of literals (taken from P)
m of which are identical to those found in q.

e 3 is the unique query out of 2" possible queries as-
sociated with the observation (s,n).

91

For example, let g be p; A pa A =p3 A =pg A ps A ~ps.
The observation (g, 2) is interpreted as the disjunction
of (§) = 30 terms each of which has exactly two literals
in common with ¢. For example, one of the terms in
Int(q,2) is p1 A p2 A ps A ps A —ps A ps. Therefores,
an observation (g, m) is interpreted to mean “m of the
literals in q are correct”.

thus, for any instance of binary refinement with n
variables, the termination condition is a query gq as-
sociated with the observation (g,n), i.e., such that
|{Int(g,n)] = 1. Binary refinement thus resembles a
version of Mastermind in which there are only two col-
ors of pegs, and clues specify how many of the assign-
ments are correct and in the right hole.

Observation-based binary refinement

We introduce a sound and complete binary refinement
strategy called observation-based refinement (OBR).
OBR has the following features:

e At the state at which an observation O; has been
assigned, the knowledge base KB; = {O1,...,0;_1}
consists of the previous 7 — 1 observations;

¢ Queries g; are generated by a constraint solver treat-
ing the knowledge base K B; as a set of constraints.

Hence, an initially empty knowledge base KB = @ can
be viewed as a Constraint Satisfaction Problem (CSP)
with no constraints specified for solving the problem of
assigning values from a binary domain to a finite set
of variables.

Let ¢ be a query in a Binary Refinement Problem
and let g[i] be the literal corresponding to the ith
propositional variable in g¢; the condition g[i] = ¢'[i]
is true if these literals are the same in q and ¢'. Let
common(q,q') be the number of assignments in com-
mon between ¢ and ¢/, i.e., the number of times the
condition g[i] = ¢'[i] is true. The following defines a
legal query in OBR:

Definition 4 (Legal query in observation-based bi-
nary refinement) A legal query for an observa-
tion based strategy on a binary refinement problem
(92,C,1,s), where KB = {0O4,...,0;-1} is the cur-
rent set of beliefs is a query ¢; such that

common(g;,q;) =k, YO; € KB, O; = (g;,k).

Thus, a legal query g¢; is any assignment in which the
number of common assignments between ¢; and every
query g, < 4 such that (g;,k) € KB; is k.

An OBR strategy generates only legal queries, using
a backtracking constraint solver. The idea is to con-
struct a query incrementally, testing each extension to



a partial assignment by computing the number of com-
mon assignments with previous queries. For example,
the number of common assignments between the par-
tial query p1 A —p2 and p; A pa2 A —p3 is 1. One back-
track point for the generation of a query is the point
at which common(gi,q;) = k + 1, where g; is a query
being generated and (g;, k) € KB is a previous obser-
vation. Another backtrack point is where a complete
query ¢ has been generated, and there exists a previ-
ous observation O = (¢', c) such that ¢ has fewer than
¢ assignments in common with ¢'.

Theorem 1 OBR is a sound and complete refinement
strategy.

This theorem follows from the following lemmas:

Lemma 1 common(q,q') = k if and only if ¢ €
Int(d', k).

This guarantees that legal queries comprise all and only
the possible solutions:

Lemma 2

Given KB = {(Qhkl);((h’lw):---1(‘1?: kp)}’ G query
q in OBR is legal if and only if

q € Int(q1, k1) N Int(ga, k2) N ... N Int(gy, kyp).

Analysis of search space of OBR

OBR is based on a “literal” representation of knowl-
edge gained from observations, i.e., in which the obser-
vations are simply added verbatim to the knowledge.
This leads to a virtually cost-free mechanism for belief
update and interpretation. On the other hand, there
is significant cost incurred in using this knowledge to
generate queries.

We measure this cost in terms the number of times
an atomic operation, called a compatibility check, is
performed. A compatibility check is simply a test of
the condition g[i] = ¢'[i] between the query ¢ being
constructed and some previous query ¢’ in the knowl-
edge base; i.e., such that (¢',m) € KB. Let n be the
number of variables and j be the size of the current
knowledge base, i.e., the number of previous observa-
tions. This knowledge base can be viewed asa j xn+1
matrix of literals, where a row constitutes a previous
observation, and there is a column for each variable, as
well as a column for the context. Thus, each extension
to a partial solution requires a column’s worth of (i.e.,
j) compatibility checks, and a complete query requires
a matrix worth of compatibility checks.

The search space explored by OBR during binary
refinement to generate a query is a complete binary
tree of depth n. We divide the number of compatibility
checks required for a single query into two parts: the
n x j checks that were needed for the query itself, and

92

the j x f;j checks that were conducted off the path
that comprised the query. The variable f; stands for
the number of nodes examined that are not on the
solution path during the search for the j + 1st query.
The complexity of refinement search can be expressed
as follows:

Theorem 2 The number of compatibility checks re-
quired to solve an n-variable Binary Refinement prob-
lem in p moves using a sound and complete OBR 1is
B2, -1 x (4 ) =nx B2~ ogagy.

A visualization of the search space for a simple 4
variable binary refinement problem is found in Figure
1. Each node of the binary search tree is labeled by a
search vector of context values from the previous obser-
vations, drawn from the knowledge base, represented
in the figure as a matrix. The root is initialized by
the values from the column marked “c” (for context)
in the knowledge base, viz. “s=322". Thus, s[k] is the
value of the context variable of the kth previous obser-
vation. Each arc of the search tree is labeled by 1 or 0
depending on the assignment selected for the variable
pi, where i is the depth of the tree after traversing the
arc.

In this example, the search is systematic, where each
left direction is explored before each right. Assume the
solution to this refinement problem is —p; Ap2 Aps Apy.
When an arc to depth i is traversed, s{k] is decremented
by 1 if the value assigned to the variable p; as the result
of the traversal agrees with the value assigned to p; in
previous observation k. It follows that a legal query is
the sequence of arc labels on a path of length n whose
search vector on the leaf node of the path is a vector
of all zeros.

The search space of the problem can be pruned based
on a number of conditions being true of the search vec-
tor. As discussed earlier, one backtracking point occurs
when a search vector contains “~1” as a value, indi-
cating that the partial query has more than m assign-
ments in common with a previous query ¢ such that
(g,m) € KB. Second, if there exists a search vector
value s;,[k] at depth m which is larger than the re-
maining depth of the tree, i.e., s;m[k] > (n —m), then
no path below it will result in a zero search vector, and
hence the sub-tree rooted at such a node need not be
further explored.

In the example, fqs = 9, i.e., there are nine compat-
ibility checks for nodes not on the legal query path.
Clearly, f; will change as the knowledge base of ob-
servations changes. At the early stages of refinement,
there will be few constraints in the knowledge base,
hence more legal queries consistent with the knowl-
edge; f; should thus be small. Conversely, the last



vbles/board size | avg queries | avg checks | hi/lo query | hi/lo checks failures | avg forgotten
25/9 19.7 4484696 43/8 16582045/14929 0 10.8
25/13 11.8 4086470 17/8 9381376/14929 0 04
25/25 11.5 3954191 14/8 9381376/14929 0 0
30/10 19.3 59 x 10° | 32/9 13.7x 105/1.7x 107 | 0 85
30/11 17.1 6.3 x 10° | 34/9 13.7 x 10°/1.7 x 107 | 0 5.4
30/12 13.3 4.8 x 10° [ 17/9 13.5 x 108/1.7x 107 | 0 0.8
30/15 13.1 4.8 x10° | 15/9 13.5 x 10°/1.7x 107 | 0 0
35/11 72.9 7.8 x10° | 501/15 20 x 10°/28 x 107 1 60.9
35/13 16.6 8.1 x 10° 21/13 30 x 10°/7 x 10" 0 2.9
35/14 15.3 6.7 x 10° | 23/14 36 x 10°/6 x 107 0 0.9
35/18 14.9 8.3 x 10° | 17/14 20 x 10°/16 x 107 0 0
36/11 29.3 13 x 10° 58/16 28.6 x 10°/12x 10" | 0 17.3
36/12 19.3 10.4 x 10° | 25/13 26.8 x 10°/35x 10" [ 0 6.3
36/18 15 10.5 x 10° | 16/13 27 x 10°/29 x 107 0 0
38/13 74.8 16 x 10° 501/18 41 x 10°/31 x 10° 1 61.8
38/15 17.4 18 x 10° 22/14 38 x 10%/36 x 10° 0 1.7
38/16 16.3 19 x 10° 18/14 38 x 10%/36 x 10° 0 0.2

Table 1: Sample of results of experiments comparing different Data-driven Refinement strategies

query generated, i.e., the solution, will, on average,
tend to be against a tightly constrained knowledge
base. This should mean that failure nodes will tend to
be generated at more shallow levels of the tree, which
again will tend to reduce f;. It is expected that the
“middle game” will tend to produce the most search;
deeper levels of the tree will be searched before failure
points are discovered, and backtracking beyond one
level will be required.

The controllable aspects of the cost of refinement
are the number p of queries to solution, and f;. If p
is kept small, it will be a negligible contributor to the
cost, especially as n gets large. Alternatively, another
way of reducing the cost is to keep f; small. Sound
and complete strategies will tend to focus on keeping p
small, possibly at the expense of a larger value for f;.
At the opposite extreme, a random guesser will reduce
fj to 0 (every node examined will be part of the path
to the query), but p will be unbounded.

An approach for controlling f; might be to place a
bound in the constrained-ness of the problem exam-
ined during search by considering only a fixed num-
ber of previous observations, and “forgetting” the rest.
The motivation for this idea is the already noted fact
that the fewer the constraints, the more queries that
are consistent with the knowledge, and the higher the
probability of reaching one with little or no backtrack-
ing. Of course, bounding the number of constraints
means a lesser probability of generating a solution on
a given trial, hence it is expected that p will grow. No-

93

tice that this approach amounts to relaxing the com-
pleteness requirement, since forgetting previous obser-
vations means that a reasoner might fail to reject a set
of non-solutions based on previous observations. The
question to be examined empirically in the remainder
of this paper is whether there exists a “degree of forget-
fulness” that can be effectively applied for refinement.

Experiments and Discussion

In the tests here, limited checking was imposed by
a bounded board size. After the board was filled, a
row was randomly selected for deletion. A system-
atic search was performed for each query based on the
method outlined above. To avoid cycles of the same
queries in the bounded case, the first assignment for
each variable (1 or 0) was chosen randomly. Tests
were conducted on varying game sizes (between 25
and 40 variables) and different board sizes, typically
in the range between 1/2 to 1/3 of the number of vari-
ables. For each game size and board size, 10 games
were played on randomly generated solutions!. Table
1 contains a representative sample of the results of the
experiments. Each row contains the game and board
size (number of variables/number of rows), the average

!The small number of samples was imposed for practical
reasons, dealing with the inordinate amount of time it took
to play each game. The reader would be justified in some
degree of skepticism with the results, until a larger sample
size is taken; on the other hand, the results obtained were
repeated for virtually all configurations.



S

g=1011

(<]

queries

1111
1110
1101

NN W

Figure 1: Search space for Observation-based Binary Refinement

number of queries to solution, the average number of
compatibility checks (an abstract measure of the time
to solve the problem), the highest and lowest numbers
of queries and checks, the number of “failures” (games
which exceeded the limit of 500 guesses), and the av-
erage number of times a query was deleted from the
board.

Here is a brief summary of the patterns that emerged
from the data. On relatively small problem sizes (un-
der 25 variables), it was not clear that any amount
of forgetting makes a significant difference in the out-
come. This is confirmed in the table, where restrict-
ing the board size only results in inferior performance,
both in average queries and average checks. It was
only for games of more than 25 variables that patterns
emerged that could be interpreted as favoring some de-
gree of forgetting. The samples in the table for sizes 30,
35, 36 and 38 are typical for larger games. Although for
game size 30 there was no absolute improvement by re-
stricting the board size, there seemed to be a relative
improvement in the number of checking by reducing
the board size from 11 to 10. For sizes 35, 36 and 38,
the significance of forgetting is more dramatic, where
a gain in time does not incur, on average, a significant
gain in the number of queries to solution, although the
range between high and low queries is larger. However,
we have not seen, nor do we expect to see with simple
random forgetting, an order of magnitude improvement
in time, in any results obtained thus far.

We conclude from these preliminary data that for
large search spaces a small, controlled amount of ran-
dom forgetting of past knowledge may improve perfor-
mance of a refinement reasoner, where performance is

94

expressed in terms of time to solution. Future exper-
iments will focus on the effects, if any, of more intel-
ligent ways of forgetting knowledge. For example, we
are experimenting with criteria for deleting knowledge
based on the “information content” of observations,
where this is measured in terms of the size of int(g, ¢),
i.e., the number of terms in the DNF formula that in-
terprets the observation.

Refinement is the subject of a recent study (Kamb-
hampati 1998), which demonstrates that it is applied
in a wide range of reasoning tasks, including planning
and constraint reasoning. The work here bears a re-
semblance to the use of dynamic CSPs to reasoning
with changing knowledge about the world (Dechter &
Dechter 1988). The work on organizing relational data
into a form that is effective for reasoning (Dechter &
Pearl 1988) is also related. In future research, we will
consider such organization as an alternative to forget-
ting in improving the effectiveness of refinement search.

References

Kambhampati, S. On the relations between intelli-
gent backtracking and failure-driven explanation-based
learning in constraint satisfaction and planning. Arti-
ficial Intelligence, 105(1998), 161-208.

Struss, P. Testing Physical Systems. In Proceedings of
AAAI-94, Seattle, WA , 251-256, 1994.

Dechter, R. and Dechter, A. Belief Maintenance in Dy-
namic Constraint Networks. In Proceedings of AAAI-
88, St. Paul, MN, 37-42, 1988.

Dechter, R. and Pearl, J. Structure Identification in
Relational Data. Artificial Intelligence, 58(1992), 237-
270.





