
Truncated and Anytime Depth-First Branch and Bound:
A Case Study on the Asymmetric Traveling Salesman Problem*

Weixiong Zhang

Information Sciences Institute and Computer Science Department

University of Southern California

4676 Admiralty Way, Marina del Rey, CA 90292

Emaih zhang@isi.edu

Abstract

One of the most applied search algorithms for
finding optimal solutions in practice is depth-
first branch and bound (DFBnB), and the most
popular method for approximate solutions is
local search. Besides the fact that DFBnB is
typically applied to obtain optimal solutions,
it can also be used to find approximate solu-
tions, and can also run as an anytime algo-
rithm. In this paper, we study DFBnB used
as approximation and anytime algorithms. We
compare DFBnB against a local search algo-
rithm, which is the best approximation algo-
rithm we found, on the asymmetric Traveling
Salesman Problem (ATSP), an important NP-
complete problem. Our experimental results on
the ATSP, up to 1,000 cities, show that DFBnB
significantly outperforms the local search algo-
rithm on various ATSP structures, finding bet-
ter solutions much earlier than the local search;
and the quality of approximate ATSP tours
from a truncated DFBnB is typically several
times better than that from the local search.
Our study demonstrates that DFBnB is high-
performance anytime and approximation algo-
rithms for solving large problems.

1 Introduction

Depth-first branch and bound (DFBnB) [4; 14] and lo-
cal search [16; 11; 9; 10] are the two most applied search
algorithms for solving combinatorial optimization prob-
lems, such as planning and scheduling, in artificial in-
telligence and operations research. DFBnB is typically
the algorithm for finding optimal solutions in practice,
due to its linear-space requirement. Local search, on
the other hand, is a method for high-quality approxi-
mate solutions, as it has been shown to be effective and
efficient on many combinatorial optimization problems,
such as the symmetric Traveling Salesman Problem [16;
10] and constraint satisfiability[22].

*This research was supported in part by NSF Grant IRI-
9619554.

Besides the fact that DFBnB is an efficient algorithm
for finding optimal solutions, it is also in fact an anytime
algorithm. An anytime algorithm [6] can provide a solu-
tion at any time during its execution, and is able to im-
prove the quality of the current best solution with more
computation. In contrast to the importance of anytime
problem solving and the effort of developing new any-
time algorithms [1; 2; 3], DFBnB has not been studied
as an approximation algorithm or an anytime algorithm.

Furthermore, although it has been suggested that DF-
BnB can be tailored to algorithms for finding approxi-
mate solutions [8], it is not clear, however, if such an
approximation method is a choice of algorithm for a par-
ticular application. In order to select an approximation
algorithm based on DFBnB, one needs to show that it is
superior to local search, as local search is usually the best
anytime and approximation algorithm for many combi-
natorial optimization problems.

Motivated by the above observations, we study DF-
BnB as anytime and approximation algorithms. To this
end, we compare DFBnB against local search on the
asymmetric Traveling Salesman Problem (ATSP) [15].
The local search algorithm of [11] is used in this study,
which is the best approximation algorithm we found in
the literature. We choose the ATSP due to the follow-
ing reasons. First, the problem is an important one
in the NP-complete class [21] and has many practical
applications. Many difficult combinatorial optimization
problems, such as vehicle routing, workshop scheduling
and computer wiring, can be formulated and solved as
the ATSP [15]. Secondly, a very accurate heuristic cost
function, the assignment problem [21], is available for
the ATSP, which is able to significantly increase the effi-
ciency of a state-space search algorithm. Thirdly, despite
its importance, little work has been done on the ATSP,
which is inproportional to that on the symmetric TSP
(see [10] for an excellent survey). It will be very helpful
if information regarding which algorithm should be used
for a particular type of ATSP problems is available to
guide algorithm selection in practice.

The paper is organized as follows. In Section 2, we de-
scribe the ATSP, DFBnB, and local search. In Section 3,
we experimentally compare DFBnB with the local search
algorithm on various ATSP problem structures. In Sec-

148

From: AAAI Technical Report SS-99-07. Compilation copyright © 1999, AAAI (www.aaai.org). All rights reserved.

tion 4, we discuss the factors that lead to the strong
performance of DFBnB. We conclude in Section 5.

2 The Problem and Algorithms

2.1 The problem

Given n cities, {1, 2, 3,..., n}, and a matrix (ei,j) that
defines costs between pairs of cities, the Traveling Sales-
man Problem (TSP) is to find a minimum-cost tour that
visits each city exactly once and returns to the starting
city. When the cost matrix is asymmetric, i.e., the cost
from city i to city j is not necessarily equal to the cost
from j to i, the problem is the asymmetric TSP (ATSP).

2.2 DFBnB and truncated DFBnB
The assignment problem (AP) [21] is the most accurate
cost function for the ATSP, and is solvable in O(n3)
time [21]. It is to assign to each city i another city j,
with cid as the cost of this assignment, such that the
total cost of all assignments is minimized. The AP is
a relaxation of the ATSP, since the assignments need
not form a complete tour, allowing collections of disjoint
subtours. Therefore, the solution cost of the AP pro-
vides a lower bound on the cost of the ATSP, which is
an assignment of each city to its successor on the tour.
If the AP solution happens to be a complete tour, it is
also the solution to the ATSP.

Branch and bound (BnB) [4; 14] solves an ATSP as
state-space search. It takes the original problem as the
root problem and repeats the following two steps. First,
solve the AP for the current problem. If the AP solu-
tion is not a complete tour, decompose the problem into
subproblems by subtour elimination. Specifically, select
a subtour from the AP solution, and generate subprob-
lems by excluding some edges from the assignments, so
as to eliminate the subtour. Next, select as the current
problem a new subproblem that has been generated but
not yet expanded. This process continues until there are
no unexpanded problems, or all unexpanded problems
have costs greater than or equal to the cost of the best
complete tour found so far. There are many heuristics of
subtour elimination for decomposing a problem [4]. In
our experimental study, we use the scheme proposed by
Carpaneto and Toth [5], which generates no duplicate
subproblems to make the total number of subproblems
generated as small as possible, and the resulting search
space is a tree with no duplicate node.

Depth-first branch and bound (DFBnB) is a special
BnB that explores nodes or subproblems in a depth-first
order. DFBnB uses a global upper bound c~ on the cost
of an optimal goal. Starting at the root node, DFBnB
always selects a most recently generated node to exam-
ine next. Whenever a new leaf node, a node on which
the AP solution is a complete ATSP tour, is reached and
the cost of the node, the cost of the corresponding AP,
is less than the current upper bound c~, a is revised to
the cost of this new leaf. Whenever a node is selected for
expansion whose cost is greater than or equal to a, it is
pruned, because node costs are non-decreasing along a

path from the root, and all descendents of a node must
have costs at least as great as that of their ancestors.
In order to find an optimal goal node quickly, the newly
generated child nodes should be searched in an increasing
order of their costs. This is called node ordering. Node
ordering is cheap to perform and usually provides signif-
icant improvement to search efficiency. Throughout this
paper, when we refer to DFBnB, we mean DFBnB with
node ordering.

DFBnB can be used as an anytime algorithm, as it en-
counters many leaf nodes during the search, which may
improve the best solution found so far over the time.
Furthermore, DFBnB can be stopped at any time dur-
ing its execution. This is an extension to the M-Cut
strategy suggested in [8], which terminates the execu-
tion of BnB when a fixed total computation has been
consumed. We call DFBnB with an early termination
truncated DFBnB. Among all possible stopping points,
of particular interest is the one where the first leaf node
is reached. This special truncated DFBnB is a greedy
search in a search space, which always chooses to explore
next the minimum-cost child node among all children of
a node until it reaches a leaf node. Without confusion,
we call DFBnB with this special stopping criteria trun-
cated DFBnB in the rest of this paper.

2.3 Local search

Local search is based on a fundamental concept called
neighborhood structure. If two TSP tours differ by)~
edges, and one can be changed into the other by swap-
ping the corresponding different edges, we say that one is
a A-change neighbor of the other. A neighborhood struc-
ture is established by defining the legitimate changes.
Within a neighborhood, a tour is a local optimum if its
cost is not greater than the costs of its neighboring tours.
Given a neighborhood structure, local search algorithm
moves from one tour to another by a sequence of legit-
imate changes that reduce the tour cost, until a local
optimum is reached.

The local search algorithm for the ATSP [11] fol-
lows that for the symmetric TSP [16], and uses primary
changes described as follows. For any two complete tours
7r and 7r~, let X E ~r and Y E 7r~ be disjoint sets of
arcs such that rr / = (Tr- X)+Y, where the arcs
X are deleted arcs, and that in Y are added arcs. If
IXI = IYI = ,~, then 7r~ is a A-change of 7r. For example,
Figure l(a) shows a tour 7r (in solid curves and dotted
links), and a 3-change 7r~ of r (in solid curves and solid
links), where X = {xl, x2, x3} and Y = {Yl, Y2, Y3}. For
any two tours ~r and 7r~, we can define a directed graph
G(Tr, 7r~) as follows. The nodes of G(Tr, 7r~) correspond to
deleted arcs in X. Ifxi = (k,l) E X, xj = (p,q)
and (k, q) E Y, then there is a directed arc (xi, xj) in
G(rr, ~d). In general, G(Tr, ~) isa collection of disjoint
cycles. 7r~ is called a primary change of 7r if G(Tr, 7rI) con-
sists of a single directed cycle. For example, for 7r and
7r~ in Figure l(a), e(Tr, ~) is a single cycle, as shown
in Figure l(b), and thus I isa pri mary 3-change of 7r.
It can be shown that there is no primary A-change for

149

(a) (b)

Figure 1: Primary 3-change.

x3

xl 2

(a) (b) (c)

Figure 2: Sequential search of primary changes.

any even number A for the ATSP [11]. Therefore, the
simplest legitimate change is a 3-change.

To reduce computation, searching for primary changes
is restricted by the following sequential process. To grad-
ually construct a primary change of a tour 7r, we first
remove an arc Xl of 7r, resulting in a directed path (Fig-
ure 2(a)). We then add a new arc yl, which automati-
cally determines an arc x~ that needs to be deleted and
creates a cycle C1 (Figure 2(b)). We can immediately
break the cycle C1 by adding a new arc y2 as shown in
Figure 2(c). This essentially ends up with a directed
path, as we started with in Figure 2(a). In general,
we call two subsequent pairs of deleted and added arcs,
< xi,yi > and < xi+l,yi+l > for i = 1,3,5,-.., a pair of
steps, if yi+l subsequently breaks the cycle produced by
Yi. The sequential process proceeds in pairs of steps, or
searches for a primary change by a sequence of cycle cre-
ations, each immediately followed by a breaking of the
cycle. Obviously, a path can be closed by linking its two
end cities, resulting in a complete tour, e.g. Figure 2(c).

Another useful change is the quad change, as shown in
Figure 3. It is not primary, but seems to substantially
enrich the neighborhood structure [11].

The local search algorithm of [11] uses all the primary
changes, obtained sequentially, plus quad changes, and
proceeds as follows in seeking a local optimum. Start-
ing with a tour, it first searches for improving primary
2k + 1 changes, making k as large as possible. To re-

x4

xl~x3

x2

Figure 3: Quad change.

duce computation, the algorithm requires that it has a
favorable change at every pair of steps. In other words,
in searching for a better 2k + 1 primary change, the al-
gorithm has already retained a 2k - 1 primary change
that improves the starting tour. The algorithm also pre-
sorts the intercity distances to facilitate the search of
favorite primary changes [11]. The algorithm repeatedly
searches for primary changes, until none exists. It then
repeatedly improves the tour by quad changes, until no
improving quad changes are available. It then starts to
search for primary changes again, and the process re-
peats. If the tour cannot be improved by either primary
changes or quad changes, it is a local optimum. The
process can be repeated on different initial tours, until
the total computation is used up.

3 Experimental Study and Results

3.1 Problem structures

In our experimental study, we considered the ATSP
of various sizes, ranging from a few dozens to 1,000
cities, and various ATSP structures. We used the fol-
lowing different cost matrix (cij) structures. (a)
dom matrices with cij from {0, 1,2,...,r}, where r =
216- 1. We use a large intercity cost range r be-
cause there exists an average-case complexity transition
for BnB. Specifically, the ATSP is relatively easy to
solve when r is small, with respect to the number of
cities n; while relatively difficult when r is large [23;
24]. The problem instances thus generated are difficult
as r >> n. (b) Matrices with the triangle inequality,
ci,j < ci,k + ck,j, for all i, j, k 6 (cl,j). We first gener-
ated random matrices as in (a), and then used a closure
algorithm to enforce the triangle inequality. (c) Matri-
ces satisfying the constraint ci,j < i × j. To generate
(ci,j), we chose ci,j independently and uniformly from
{0, 1,..., i × j}. This problem structure is known to be
difficult for the methods using the AP cost function [19].
(d) Matrices from some actual problems encountered
industry [18]. (e) Constructed ATSPs that are difficult
for the local search algorithm [20].

3.2 Tour construction heuristics

Local search requires an initial tour to start. Several
polynomial-time tour construction heuristics can be used
to find a complete tour. These include Nearest Neigh-
bor [7; 9], Nearest Insertion [7; 9], Greedy algorithm [7;
9], and Karp’s patching algorithm [12]. Due to space
limitation, the interested reader is referred to these ref-
erences for the details of these methods.

To find the best tour construction heuristic for the lo-
cal search algorithm, we experimentally compared these
tour construction heuristics using the first three cost ma-
trices discussed in Section 3.1, with the number of cities
n ranging from 100 to 1,000, in 100 city increments.
Due to space limitation, we only show the results on the
ATSP with random cost matrices in Table 1. The results
with other cost matrices have similar characteristics. In
Table 1, error is the relative error of tour costs compared

150

patch 8.488 6.830 5.662 4.768" 4.559 4.159 3.895 3.752 3.518 3.401
error greedy 165.798 205.193 227.963 244.651 257.838 268.843 278.615 287.454 293.217 312.450
(%) n-n 187.932 230.233 253.579 268.842 285.616 293.249 304.759 311.974 318.762 332.502

n-i 260.588 399.134 505.199 594.314 673.109 742.327 809.458 871.207 927.579 987.34’2
patch 0.009 0.051 0.134 0.278 0.485 0.769 1.139 1.595 2.125 2.437

time greedy 0.029 0.182 0.514 1.083 1.918 3.050 4.463 6.156 8.120
I,,

9.872
(sec.) n-n 0.000 0.0Ol 0.003 0.006 0.009 0.014 0.019 0.026 0.033 0.051

n-i 0.004 0.022 0.058 0.118 0.206 0.323 0.466 0.637 0.817 1.178

Table 1: Performance of tour construction heuristics on ATSP with random cost matrices.

to the AP lower bounds, and time is the CPU time on a
Sun Ultra Sparc 2 workstation. All results are averages
of 1,000 trials each. Table 1 shows that nearest neighbor
(labeled as n-n in the table) runs in the minimum aver-
age time, followed by nearest insertion (labeled as n-i),
patching and Greedy algorithms. Patching has the best
tour quality, followed by Greedy, nearest neighbor, and
nearest insertion. One important observation is that the
average tour costs from the patching algorithm decrease
when the problem size increases, while the average tour
costs from the other three algorithms increase. Further-
more, the quality of the tours from patching algorithm is
at least an order of magnitude smaller than those from
the other methods on all problem structures that we con-
sidered. The superiority of patching algorithm is in part
due to the accuracy of the AP lower-bound function, as
discussed in Section 4.

The best tour construction algorithm, Karp’s patch-
ing, was selected to generate an initial tour for the local
search in our comparison of DFBnB and local search.

3.3 Truncated DFBnB versus local search

We compared truncated DFBnB with the local search for
finding approximate solutions. Table 2 summarizes the
results on the ATSP with the first three cost matrices,
i.e., random matrices, matrices with triangle inequality,
and matrices with cij < i × j. Table 2 shows the tour
qualities and CPU times of both algorithms, averaged
over 100 instances. The tour quality is expressed as the
error of tour costs relative to the AP lower bounds, and
CPU time is on a Sun Ultra Sparc 2 workstation. The
relative error of truncated DFBnB is less than 1.8% for
100-city, and decreases to less than 0.21% for 1,000-city
instances on all three types of cost matrices. Across all
problem structures and sizes we examined, the average
tour quality of truncated DFBnB is better than that of
local search, and the average execution time of truncated
DFBnB is less than the average time of local search.
Table 2 also shows the percentage of instances on which
truncated DFBnB finds better tours than local search, as
well as the percentage of instances on which local search
is better than truncated DFBnB (labeled as better).
shows that on a majority of problem instances, truncated
DFBnB outperforms local search.

We also compared truncated DFBnB with the local
search on two particular problems from industry [18], a

23-city and a 43-city ATSPs. These two problems have
AP costs 85 and 43, but optimal ATSP costs 259 and
5620, respectively. On the 23-city problem, truncated
DFBnB finds an optimal tour of cost 259, while the local
search stops at a non-optimal tour of cost 262. DFBnB
using AP cost function is not efficient on the 43-city
problem. To this problem, although the fast algorithm
in [19] finds an approximate tour of cost 5625 almost
immediately, it cannot optimally solve this problem [18].
For this problem, our implementation of DFBnB with
Carpaneto and Toth’s decomposition rules does not find
an optimal tour after generating 30 million subproblems,
and BnB using best-first strategy runs out of memory on
all machines available to us. For this particular ATSP,
truncated DFBnB finds a tour of cost 5623 in 1 second of
CPU time by expanding 54 subproblems and generating
173 subproblems. This result is slightly better than the
tour of cost 5625 found in [19] and a tour of cost 5627
from the local search, also with 1 second of CPU time.

Both DFBnB and local search algorithms were also
tested on constructed ATSPs that are difficult for the
local search algorithm [20]. For an ATSP with n = 6k
cities, there is an optimal tour with cost 0, and (k - 1)!
local optimums that have arbitrarily large costs. Not
surprisingly, the local search algorithm stops at a local
minimum which is not a global optimal, while truncated
DFBnB finds the optimal tour by expanding only the
original problem and generating four subproblems.

3.4 Anytime DFBnB versus local search

To better understand how DFBnB and the local search
algorithm perform on the ATSP, we compare the quality
of tours that they find over the time of their execution,
i.e., we consider the anytime performance of these algo-
rithms. It turns out that DFBnB has better anytime per-
formance than the local search. Figure 4 shows the result
on the 300-city ATSP with random cost matrices, aver-
aged over 100 instances. The horizontal axis of Figure 4
is the CPU time, in a logarithmic scale, and the vertical
axis is the average error of tour costs relative to the op-
timal tour costs. Both algorithms start with a complete
tour generated by Karp’s patching algorithm. Since local
search typically finishes earlier than DFBnB, which finds
an optimal tour at the end, we restart the local search
on initial tours generated by the other tour construc-
tion heuristics, Greedy algorithm, nearest neighbor and

151

number o[cities [[I00 I 200 I 300 [400 [500 [600 [700 [800 1 900 I 1000 1
error local search 6.’326 5.198 4.396 3.842 3.616 3.489 2.997 2.958 2.703 2.792

1.719 0.947 0.632 i 0.531 0.372 0.274 0.261 0.244 0.197 0.208
random time local search 0.031 0.145 0.398 0.798 i.385 2.203 3.253 4.399 5.843 7,993
matrices (sec.) TDFBnB 0.021 0.113 0.329 0.674 1.239 1.825 2.794 3.887 5.710 7.236

better local search 3 0 0 1 0 0 0 0 0 0
T Db~nB 95 98 100 99 100 100 100 100 100 100

error local search 0.990 0.666 0.471 0.324 0.341 0.286 0.237 0.255 0.236 0.255
matrices T DFBnB 0.589 0.355 0.205 0.150 0.131 0.117 0.087 0.103 0.082 0.082

with local search 0.033 0.158 0.437 0.889 1.489 2.529 3.534 4.871 6.479 7.982
triangle sec.) T DFBnB 0.023 0.116 0.311 0.645 1.086 1.817 2.448 3.928 5.277 7.093

inequality ~etter local search 9 3 4 6 3 5 3 3 2 1
T DFBnB 65 62 61 54 61 61 54 66 61 7O

error local search 3.220 2.285 2.073 2.138 1.636 1.543 1.493 1.288 1.264 1.250
matrices (%) T DFBnB 1.660 0.836 0.622 0.467 0.372 0.257 0.253 0.215 0.202 0.194

with time local search 0.052 0.273 0.800 1.738 3.115 5.213 7.711 10.435 13.788 18.109
constraints (secOT DFBnB 0.035 0:201 0.601 1.133 2.023 3.254 4.945 6.905 8.807 11.241
c,,j < i x j better local seai’ch 13 3 3 1 3 2 0 0 2 1

(%) T DFBnB 79 96 95 97 97 97 100 99 98 99

Table 2: Truncated DFBnB vs. local search.

~, 5.0
4.5

tJ 4.0

< 3.5

.~ 3.0
_~ 2.5
~ 2.0
~ 1.5

~ o.5
~ 0.0

i i i

~~-I--~a~h

300-city random

~asymmetrlc "I’SP

depth-first \
branch and bound ~

0 I0 I00 1000 I0000

CPU time (second)

Figure 4: DFBnB vs. local search on 300-city ATSP.

nearest insertion, until the local search uses at least the
same amount of time as used by DFBnB. However, the
local search generally fails to improve the best tour found
using these additional initial tours, since these tour con-
struction heuristics are not very effective, as we have
seen in Section 3.2.

Figure 4 shows that DFBnB significantly outperforms
the local search on the ATSP with random cost matrices.
Similar results have also been observed on other problem
sizes and structures. DFBnB typically finds better tours
earlier than the local search. This is partially because
the AP can be computed in O(n2) time on an interior
node of the search tree [17], rather than in O(n3) time
on the root node. Based on our experiments, the AP on
an interior node can be computed in roughly one tenth,
one twentieth, and one seventeenth of the CPU time re-
quired for the AP of the initial ATSP with random cost
matrices, matrices with triangle inequality, and matrices
with cid < i × j, respectively. This also helps to un-
derstand why truncated DFBnB can quickly reach a leaf
node, as discussed in the previous section. Thanks to

the superior performance of truncated DFBnB, DFBnB
can obtain a high-quality tour very early in its execu-
tion, which can further help to restrict the search to the
areas where better solutions can be found.

The poor performance of the local search algorithm for
the ATSP indicates that its neighborhood structure may
be very restricted, comparing to that for the symmetric
TSP of [16]. For the ATSP, there is no primary changes
with an even number of edges. Furthermore, As dis-
cussed in Section 2.3, the local search searches increas-
ingly better primary changes, which may substantially
curtail the effectiveness of the algorithm. As pointed
out in [11], however, using increasingly better primary
changes is necessary to reduce the computation cost. In
addition, to find favorable pairs of steps, edges need to
be sorted, which prevents the local search to quickly im-
prove the initial tour, as shown in Figure 4.

4 Discussions
The superior performance of DFBnB and truncated DF-
BnB on the ATSP is primarily due to two factors. The
first one is the lower-bound cost function based on the
assignment problem (AP). As observed in previous re-
search [4] and in our own experiments, this cost function
gives a superb estimation on the actual cost of the cor-
responding ATSP tour. In our experiments on the ran-
dom ATSP with the elements of cost matrices indepen-
dently and uniformly chosen from {0, 1, 2,..., 216- 1),
the cost of the AP is 99.090% of the ATSP cost on aver-
age for 100-city instances, 99.816% for 500-city instances,
and 99.916% for 1000-city instances. A good lower-
bound cost function can usually give rise to a strong
branch-and-bound algorithm. This has also been ob-
served on number partitioning using branch and bound
with Karmarkar-Karp heuristics [13].

The second factor that leads to the superb perfor-

152

mance of DFBnB is that the search space under BnB
subtour elimination with the decomposition rules of [5]
is a tree without duplicate nodes. A search tree without
duplicates is typically very compacted, giving rise to a
small total number of nodes in the space. In addition,
a tree structure can also significantly speed up DFBnB,
since no duplicate or cycle detection, which consumes a
substantial amount of computation, is required.

5 Conclusions

Depth-first branch and bound (DFBnB) is not only
a general technique for optimally solving difficult NP-
complete combinatorial optimization problems, but can
also be adapted to efficient anytime and approximation
algorithms. In this paper, we studied DFBnB and trun-
cated DFBnB, a DFBnB with an early termination, on
the asymmetric Traveling Salesman Problem (ATSP)
various structures and sizes. Specifically, we experimen-
tally compared DFBnB and truncated DFBnB against
the local search algorithm of [11], which is the best ap-
proximation algorithm for the ATSP so far. Our ex-
perimental results showed that DFBnB outperforms the
local search algorithm, finding better ATSP tours sig-
nificantly earlier than the local search. The results also
showed that truncated DFBnB is superior to the local
search algorithm for finding approximate ATSP tours.

The contribution of this work is twofold. First, to
the specific problem of the ATSP, it provides a thorough
comparison of DFBnB and local search, showing that
DFBnB and truncated DFBnB are the choices of algo-
rithms for solving the ATSP in practice. Secondly, be-
yond the specific problem of the ATSP, this work shows
that DFBnB, a systematic approach, is also well suited
for anytime problem solving and approximate computa-
tion. To our knowledge, this is the only work so far which
studies the anytime performance of DFBnB, and is also
the only work that demonstrated that DFBnB can com-
pete with and outperform a local search algorithm in the
categories of anytime and approximation algorithms.

Acknowledgment

Thanks to David Johnson and Richard Korf for many
discussions related to this work, and to Donald Miller
for providing two real-world problem instances used in
this paper.

References
[1] AAAI Spring Syrup. on Limited Rationality, Stanford,

CA, 1989. AAAI.

[2] AAAI Fall Symposium on Rational Agency, Cambridge,
MA, 1995. AAAI.

[3] IJCAI-95 Workshop on Anytime Algorithms and Delib-
eration Scheduling, Montreal, Canada, 1995.

[4] E. Balas and P. Toth. Branch and bound methods. In
The Traveling Salesman Problem, pages 361-401. John
Wiley & Sons, 1985.

[5] G. Carpaneto and P. Toth. Some new branching and
bounding criteria for the asymmetric TSP. Management
Science, 26:736-743, 1980.

[6] T. Dean and M. Buddy. An analysis of time-dependent
planning. In Proc. AAAI-88, pages 49-54, St. Paul, MN,
Aug. 1988.

[7] A. Frieze, G. Galbiati, and F. Maffioli. On the worst-
case performance of some algorithms for the asymmetric
TSP. Network, 12:23-39, 1982.

[8] T. Ibaraki, S. Muro, T. Murakami, and T. Hasegawa.
Using branch-and-bound algorithms to obtain subop-
timal solutions. Zeitchrift fiir Operations Research,
27:177-202, 1983.

[9] D. S. Johnson. Local optimization and the TSP. In
Proc. 17th Intern. Colloquium on Automata, Languages
and Programming, pages 446-461, 1990.

[10] D. S. Johnson and L. A. McGeoch. The traveling sales-
man problem: a case study. In E. Aarts and J. K.
Lenstra, editors, Local Search in Combinatorial Opti-
mization, pages 215-310. John Wiley & Sons, West Sus-
sex, England, 1997.

[11] P. C. Kanellakis and C. H. Papadimitriou. Local search
for the asymmetric traveling salesman problem. Opera-
tions Research, 28:1086-1099, 1980.

[12] R. M. Karp. A patching algorithm for the nonsymmetric
traveling-salesman problem. SIAM Journal on Comput-
ing, 8:561-573, 1979.

[13] R. E. Korf. A complete anytime algorithm for number
partitioning. Artificial Intelligence, 105:133-155, 1998.

[14] V. Kumar. Search branch-and-bound. In Encyclope-
dia of Artificial Intelligence, pages 1468-1472. Wiley-
Interscience, 2 edition, 1992.

[15] E. L. Lawler, J. K. Lenstra, A. H. G Rinnooy Kan, and
D. B. Shmoys. The Traveling Salesman Problem. John
Wiley & Sons, Essex, 1985.

[16] S. Lin and B. W. Kernighan. An effective heuristic al-
gorithm for the traveling salesman problem. Operations
Research, 21:498-516, 1973.

[17] S. Martello and P. Toth. Linear assignment problems.
Annals of Discrete Math., 31:259-282, 1987.

[18] D. L. Miller. personal communications, 1992.

[19] D. L. Miller and J. F. Pekny. Exact solution of large
asymmetric TSP. Science, 251:754-761, 1991.

[20] C. H. Papadimitriou and K. Steiglitz. Some examples
of difficult traveling salesman problems. Operations Re-
search, 26:434-443, 1978.

[21] C. H. Papadimitriou and K. Steiglitz. Combinatorial Op-
timization: Algorithms and Complexity. Prentice-Hall,
Englewood Cliffs, N J, 1982.

[22] B. Selman, H. Levesque, and D. Mitchell. A new method
for solving hard satisfiability problems. In Proc. AAAI-
92, pages 440-446, San Jose, CA, 1992.

[23] W. Zhang and R. E. Korf. Performance of linear-space
search algorithms. Artificial Intelligence, 79:241-292,
1995.

[24] W. Zhang and R. E. Korf. A study of complexity tran-
sitions on the asymmetric Traveling Salesman Problem.
Artificial Intelligence, 81:223-239, 1996.

153

