
Knowledge representation and management for Engineering Design

Fatma Mili
School of Engineering and Computer Science
Oakland University, Rochester MI48309-4478

mili@oakland.edu

Introduction, Motivation

Engineering design is the process by which product re-
quirements are transformed into product descriptions.
Engineering design is distinguished from design in other
more purely creative domains by the fact that it is a
highly disciplined and highly regulated activity. The
highly regulated nature of engineering is at the same
time a blessing and a burden. It is a blessing be-
cause the discipline and the methodologies safeguard
engineers from wasting time and efforts reinventing
wheels. A good proportion of engineering work consists
of reusing existing solutions and applying predefined al-
gorithms. The high level of regulation is also an intel-
lectual burden on the engineering designers: For those
decisions where the designers have room for choice and
creativity, they must negotiate their decisions in light
of all applicable laws and regulations. Typically, con-
vergence towards compliant designs is a costly, lengthy,
and non monotonic process involving repeated cycles of
testing and patching. Integrated support of Verification
and Validation (V&V) of designs with respect to appli-
cable standards and requirements by Computer Aided
Design (CAD) systems is highly desirable. Such sup-
port would likely have a noticeable impact on product
quality and process performance.

The case for making verification and validation an
integral part of engineering design activities does not
need to be made. The benefits of integrating V&V
with design are commonly agreed upon and are seen
as the flagship of mature engineering domains (Dijk-
stra, 1989). Electrical engineers, for example, generally
use fool-proof design methods and standards, leading to
artifacts that are correct by design. Software engineers,
by contrast, generally still design their products using
error-prone trial and error processes (Mili et al, 1995,
Shaw, 1990). Historically, design support systems have
placed little or no emphasis on V&V support. V&V
activities are either not supported at all or supported
as an after-thought using a library of simulation and
testing routines. An increasing need for V&V support,
added to recent technological advances and trends has

Copyright © 2000, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

been raising the expectation for an integrated support
of verification and validation as a standard feature in
next generation CAD systems.

The need for V&V support by engineering design-
ers is increasing because the level of complexity of the
systems being designed is increasing, and the level of
specialization of the training received by designers is in-
creasing. In a traditional setting, mechanical engineers
are given the responsibility to fully design mechanical
parts. Such mechanical engineers would have the ad-
equate knowledge and skills to complete the design of
the parts, verifying and validating them --mentally or
otherwise-- as they design them. This is no longer a
typical design situation. In a more realistic setting, the
person assigned the design task is not a mechanical en-
gineer, but a technician trained in using a specific CAD
system with possibly on the job experience designing
similar parts. Also, typically, the part being designed is
not a simple self-contained part that can be validated in
isolation, but more likely, a component of a larger com-
plex system. Furthermore, rather than being purely
mechanical, the part is more likely to cross the bound-
aries of multiple engineering domains. The recently
coined term mechatronics reflects this trend of disap-
pearing firm boundaries between mechanical systems
and electronic systems for example. In addition, partly
because the part is a component of a larger system, its
validity involves considerations beyond its functionality
and manufacturability. Other typical considerations in-
clude assemblability, maintainability, reusability, recy-
clability, safety of the process and the product, and so
forth. All of these factors preclude any single individual
from being sufficiently knowledgeable and up to date in
all of these specialized areas to take on the responsi-
bility to design parts valid in all respects. Verification
and validation cannot be made the responsibility of any
single individual. System support is necessary to assure
quality products and efficient processes.

From the technological side, two key resources are
needed to enable an integrated V&V support by CAD
systems. The first resource is the knowledge related to
the correctness and validity of designs. Such knowledge
must be collected, encoded, and managed. Knowledge
collection identifies relevant knowledge. The encoding

154

From: AAAI Technical Report SS-00-03. Compilation copyright © 2000, AAAI (www.aaai.org). All rights reserved. 



of the knowledge is necessary to make it usable by the
CAD systems. Once collected and encoded, the knowl-
edge needs to be managed to establish and preserve
such qualities as currency, accuracy, completeness, and
consistency. In engineering domains, knowledge collec-
tion is the simplest of the three. Universal (textbook)
engineering knowledge is generally available, relatively
well documented, and relatively formalized. In automo-
tive engineering for example, the Society of Automo-
tive Engineers documents thousands of standards and
best practices related to all aspects of automotive en-
gineering. These standards and best practices are pub-
lished in a handbook of more than 4,000 pages updated
yearly. In addition to this universal knowledge, the re-
cent business trend recognizing corporate knowledge as
a critical corporate asset (Huang 1998,O’Leary 1998,
Taylor 1998) has led a number of companies to initiate
knowledge collection and documentation efforts. Many
engineering corporations have followed this trend and
created engineering repositories documenting their in-
house know-how and best practices. These documents,
once completed are invaluable resources begging to be
used. A natural use of these documented standards
and best practices consists of integrating them within
the CAD systems to allow their systematic enforcement
during design. This leads us to the second technolog-
ical resource needed to make the integration of V&V
within design a reality, namely, a design system that
is able to use the knowledge available. A major hur-
dle with current commercial CAD systems is the wide
semantic gap between the objects that they manipu-
late (points, lines and curves), and the concepts and
features that are subject of the standards and regula-
tions (steering wheel, driver’s field of view). This situ-
ation is changing. The current trend in CAD research
and CAD systems is to raise the level of abstraction of
CAD objects and move from purely geometric concepts
to more domain specific concepts and features (e.g. see
(Anantha et al, 1996, Chu and Gadh 1996, Gero and
Maher 1997, Reinschmidt 1994, Umeda and Tomyama
1997, Wong and Sriram 1993)). Some of the commonly
used CAD systems (e.g. Catia, the Dassault systemes
CAD system used notably at Boeing, DalmlerChrysler,
and Lockheed; and Unigraphics, the UGSolutions CAD
system used at General Motors) are undergoing major
changes aiming at making them more flexible, more do-
main customizable, and more "knowledge oriented".

In sum, V&V support requires the collection, encod-
ing, and management of domain knowledge, and the
availability of a design support system able to use the
encoded knowledge. In this position paper, we focus our
attention on the encoding and management aspects of
the knowledge. We present here our position concern-
ing the representation, management, and use of domain
knowledge in the context of engineering design V&V
support.

Position

We articulate our position around three motivators:
knowledge independence, knowledge integrity, and pol-
icy independence.

Representation: Support for knowledge
independence

There are two competing requirements on the repre-
sentation of the domain constraints reflecting its two
categories of users: the domain experts who author
and maintain these constraints, and the design sup-
port system whose task is to monitor and enforce com-
pliance with these constraints. Experts conceive of
the constraints as descriptive statements of valid de-
signs. As authors of these normative constraints, they
should be able to encode them, review them, and up-
date them with ease. This dictates a declarative repre-
sentation. The second user of the design knowledge is
the CAD/CAM’s V&V enforcement component. This
component needs a set of operational triggers specify-
ing the design activities that need to be monitored, the
conditions to be checked, and the preventive and cor-
rective actions to be taken. This calls for an operational
representation.

Rather opting for one single representation and sac-
rificing one activity over another, we take the position
that the two views need to co-exist. Domain knowl-
edge is seen as a set of specifications of design objects
and needs to be stored explicitly as such in a normative
knowledge base. These design objects specifications’
are represented by OO classes associated with sets of
constraints. Enforcement and monitoring knowledge
on the other hand is a set of operational directives de-
rived from the domain knowledge as well as from other
"policy"- and efficiency- motivated considerations. The
normative and the operational repositories must be dis-
tinguished, but coordinated.

In sum, domain experts access and use a normative
knowledge base. The representation used for this base
promotes readability and maintainability. The design
support system uses an operational knowledge base.
The knowledge in this base represents the synthesis of
various domains’ knowledge bases as well as a an ex-
pression of preferences, tradeoffs, and priorities. An
intelligent interface system is needed to synthesize the
operational knowledge from various sources and express
it as a set of efficient directives. This architecture pro-
motes the independence of the domain knowledge from
the processes enforcing it.

Management: Support for knowledge
integrity

Knowledge integrity is the property by which the knowl-
edge stored is a true reflection of the domain it is
meant to represent. Knowledge integrity cannot be for-
mally proved. It can only be painstakingly established
through the careful crafting and review of the knowl-
edgebase. Such care and close examination typically

155



takes place upon creation of the knowledgebase. As
the knowledgebase evolves and grows with the domain,
there is a high risk that the integrity be compromised.
This risk is especially high when the domain is dynamic
--as is the case in engineering, and the number of ex-
pert contributors is high --as is likely to occur with
employee turnover. The degradation of the coherence
and integrity of knowledge bases with time is one of the
major impediments to their widespread use. We take
the position that integrity must be promoted by the
representation chosen, and systematically monitored by
the system.

The knowledge representation promotes knowledge
integrity by minimizing redundancy, and explicitly doc-
umenting dependencies. We define and formalize a set
of class inter-dependencies that occur commonly in de-
sign. We define a set of generic integrity constraints
based on these relationships and similar to the normal
forms defined for relational databases. We define a set
of heuristics that can be used to monitor integrity. De-
tails can be found in (Mili, 2000).

Use: Support for policy independence

The normative knowledgebase specifies the qualities
that a designed product should ideally have. The oper-
ational knowledgebase specifies when to check specific
qualities, and what actions to take if the qualities are
not met. We discuss in turn the timing (when to check)
and the response (what to do).

Qualities can potentially be monitored at every deci-
sion that may impact them. Such extreme approach is
highly informative to the designer but would generally
be perceived as too intrusive. Validation can also be ac-
tivated at predetermined checkpoints in the design or
upon request by the user. The checkpoints can be more
or less spaced depending on the needs. The level and
frequency of intervention of the system can be tuned to
the level of criticality of the constraints and to the level
of expertise of the user.

In a design setting, motivations behind constraints
cover a variety of concerns ranging from feasibility, to
safety, to cost. Also, different constraints are mandated
by different bodies ranging from governmental agencies,
to professional standardization committees, to in-house
best practice committees. Different constraints may
also have different levels of tolerance for violation. The
action taken in response to a constraint violation needs
to be attuned to the criticality of the constraint, its tol-
erance level, and the tradeoffs available between com-
peting constraints. Preferences and priorities are used
to help negotiate tradeoffs. In a low budget situation
for example, cost constraints may be given priority over
comfort constraints. If a luxury item is being designed
on the other hand, cost considerations maybe compro-
mised in favor of styling constraints. This variability
illustrates policy independence: different policies can
be used with the same domain constraints.

Summary, Conclusion

In this paper, we discussed issues relating to the rep-
resentation and management of domain knowledge.
In particular, we have focussed on three properties:
Knowledge independence, knowledge integrity, and pol-
icy independence. Separating normative constraints
from policies and priorities provides for independence
and flexibility. We also highlight the need for system
definition and monitoring of knowledge integrity.

Acknowledgement
Work on this project has been supported by the Daim-
lerChrysler Corporation and by the Michigan Research
Excellence Fund.

References

R. Anantha, G.A. Kramer, and R.H. Crawford. As-
sembly modeling by geometric constraint satisfaction.
Computer-Aided Design, 28(9):707-722, 1996.
Ch-Ch. P. Chu and R. Gadh. Feature-based approach
for set-up minimization of process design from product
design. Computer-Aided Design, 28(5):321-332, 1996.

E.W. Dijkstra. On the cruelty of really teaching com-
puter science. CACM, 32(12):1,398-1,404, Dec. 1989.

J. Gero and M.L. Maher. A framework for research in
design computing. In Proceedings of ECAADE, 1997.

K.-T. Huang. Capitalizing on intellectual assets. IBM
Systems Journal, 37(4):570-583, 1998.

F. Mili. Knowledge Architecture for Engineering De-
sign Support. Oakland University technical report,
2000.
H. Mili, F. Mili, and A. Mili. Reusing software: Issues
and research directions. IEEE TSE, 21(6):528-561,
June 1995.
D. E. O’Leary. Entreprise knowledge management.
IEEE Computer, 31(3):54-61, March 1998.
K.A. Reinschmidt and G.A. Finn. Smarter computer-
aided design. IEEE Expert, pages 50-55, 1994.

M. Shaw. Prospects for an engineering discipline of
software. Software, 7(6):10-26, Oct. 1990.
Gerald H. Taylor. Knowledge companies. In
William E. Halal, editor, The infinite resource, pages
97-110. Jossey-Bass Publishers, 1998.

Y. Umeda and T. Tomiyama. Functional reasoning in
design. IEEE Expert, pages 42-48, March-April 1997.

A. Wong and D. Sriram. Shared: An information
model for cooperative product development. Research
in engineering design, (5):21-39, 1993.

156




