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Abstract

Triangle meshes are a popular representation of surfaces
in computer graphics. Our aim is to detect feature on
such surfaces. Feature regions distinguish themselves
by high curvature. We are using discrete curvature anal-
ysis on triangle meshes to obtain curvature values in ev-
ery vertex of a mesh. These values are then thresholded
resulting in a so called binary feature vector. By adapt-
ing morphological operators to triangle meshes, noise
and artifacts can be removed from the feature. We in-
troduce an operator that determines the skeleton of the
feature region. This skeleton can then be converted into
a graph representing the desired feature. Therefore a
description of the surface’s geometrical characteristics
is constructed.

Introduction
There are several different representations for surfaces used
in computer graphics, ranging e.g. from parametric surfaces
defined as functions over a parameter domain to surfaces de-
scribed by constructive solid geometry that allows combina-
tion of simple geometric primitives. As usual in computer
science, different representations are favored for different
purposes.

Even so, there is a very simple but effective representa-
tion for many kinds of surfaces: triangle meshes. On the
one hand they are capable of describing surfaces of arbitrary
shape and topology. On the other hand they use the most ba-
sic graphic primitive for describing a surface, hence graphics
hardware usually deals with sets of triangles.

In recent years triangle meshes have grown to become
popular, as for example techniques have been developed to
use such meshes directly for geometric modeling in a com-
fortable way rather than the usual parametric free-form sur-
faces, e.g. NURBS (Kobbelt et. al. 1998). Besides, a trian-
gulated surface may be obtained from a laser range scan-
ner sampling a real world object. The huge sets of data
which arise as a result can now be reduced without losing too
much accuracy of the surface representation (Kobbelt, Cam-
pagna, and Seidel 1998). For this reason, triangle meshes
are the most appropriate representation when dealing with
real world objects.
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This paper focuses on extracting a structured description
of an object represented by a triangulated surface from its
geometry. Thus, we enrich an unstructured geometric rep-
resentation with semantics of the object being investigated.
The result may then be used as input to other algorithms.

Therefore we propose a technique to find feature lines on
a triangle mesh. In feature regions the local geometry of the
mesh is heavily bent. Feature lines approximately pass along
the ridge of maximum inflection. Mathematically such local
characteristics of geometry can be measured by the curva-
ture of the surface. This kind of information is important
for a variety of applications as e.g rating surface quality or
classification of surfaces, patch layouting for reverse engi-
neering, or avoidance of aliasing during remeshing by re-
sampling the surface.

Applying some binary threshold operation on the obtained
curvature values leaves us with a feature vector whose com-
ponents represent the binary values assigned to the vertices.
We then adapt morphological operators from digital image
analysis in order to reduce noise and irritating artifacts on
the feature vector, and we construct operators to extract a
“feature skeleton”. This skeleton can then be transformed
into a graph afterwards. Its edges represent polygons on the
mesh lying near the region of interest, i.e. the feature to be
extracted. The polygons are connected by the nodes of this
graph.

Thus, we transform an unstructured surface representa-
tion into a more structured description of surface character-
istics defined by geometry. This description may be used as
input to further algorithms.

Discrete curvature analysis
We use geometric curvature to extract features of a surface.
As curvature is invariant to rotations or translations of an
object, one can expect similar results from (not too) different
views of the object or at least some overlap of features. E.g.
registration of different views or scans can take advantage of
this fact. Curvature also allows to classify different regions
of an object. So geometric primitives that have been used to
construct the object may be recovered.

Curvature cannot be evaluated directly for triangle
meshes, because it is mathematically defined for smooth sur-
faces only. A triangle mesh is a piecewise linear surface,
so it is not clear how to calculate any derivatives on such a

From: AAAI Technical Report SS-00-04. Compilation copyright © 2000, AAAI (www.aaai.org). All rights reserved. 



mesh.
Our approach locally estimates the first and second fun-

damental form of the surfaceF (u; v) in every vertex of its
triangulation. Deriving surface curvatures like principle cur-
vatures from the fundamental forms is straightforward. An
introduction to the basic concepts of differential geometry
can be found e.g. in (Farin 1996; do Carmo 1976).

First, we construct a nearly isometric (kFuk � 1, kFvk �
1 andFuFv � 0) parameterization for a vertex and its neigh-
bors by using an exponential map. Given this parameteriza-
tion the surface can then be locally approximated by a sec-
ond order Taylor polynomial. This is done by (least squares)
solving a linear system, yielding the Taylor coefficientsFu,
Fv, Fuu, Fuv, Fvv as solution. These derivatives enable us
to estimate further differential parameters e.g. normal vec-
tors, Gaussian, mean or maximal curvature at the vertexV of
the triangulation as needed. Figure 1 (left) shows the maxi-
mal curvature on a technical model represented by a triangle
mesh. Dark regions denote high curvature. For color coding
the values are interpolated into the triangles.

Extraction of feature regions
With discrete curvature analysis we are able to estimate cur-
vature values for every inner vertex of the mesh. After some
prefiltering and a thresholding operation yielding a binary
feature vector, morphological operators are used to produce
a skeleton that lies close to the region of interest resp. the
feature lines.

Filtering and thresholding
If the input data are point samples from a real object, we
have to deal with high frequency noise. This effect is in-
tensified by the use of second order derivatives. Operating
directly on the values obtained from curvature approxima-
tion might give dissatisfying results. Therefore some filter-
ing should be applied to the curvature data before.

A simple median filter that considers a vertex and its
neighbors gives good results. For some applications, e.g.
constructing a curvature histogram for thresholding or visu-
alization, outliers on the input data may entail undesirable
effects. A simple yet effective solution is to clamp the 5%
highest and lowest values.

Our morphological operators will deal with binary values
only. Therefore some classification scheme must be applied
to the vertices. LetXi be a certain curvature value (e.g.
maximal curvature) of a vertexVi of a triangle mesh with
N verticesVi; : : : ; VN .. Now Xi shall be transformed to
Fi 2 f0; 1g (1 � i � N), with Fi denoting the “feature” to
be assigned to that vertex. We use a thresholding operation
to determine the feature vectorF := (Fi)i:

1 � i � N : Fi =

�
1 Xi 2 [a; b]

0 else
(1)

The thresholding parametersa; b 2 R are obtained in an
application specific way. We cannot present an automatic
thresholding scheme. In general no assumptions can be
made like e.g. different intensities of an object and its back-
ground as often made in digital image processing. Though,

if there is some knowledge about the surface being pro-
cessed, automatic and/or multiple thresholding might be ap-
plicable. Figure 1 (middle) shows the result of thresholding.
It also depends on the application whether the boundary of
a mesh shall be included. In the following sections we will
refer toF as thefeature vector andfi jFi = 1g asfeature.
Such verticesVi are said to be “marked”.

Morphological Operators
Mathematical morphology has been being used in digital im-
age analysis for quite a long time. Morphological operators
are particularly interesting and often preferred to convolu-
tion operators because of their simplicity and the fact, that
they can be efficiently implemented in hardware (Haralick,
Sternberg, and Zhuang 1987).

We adapt morphological operators to operate on a binary
feature vectorF corresponding to a triangle mesh to extract
feature lines from the previously thresholded curvature val-
ues. First some notations:

For convenience we introduce an alternative notation for
the feature vectorF 2 f0; 1gN . Let this vector be assigned
the set

F := fj 2 f1; : : : ; Ng jFj = 1g (2)

withF := f1; : : : ; NgnF . The two notations are equivalent
sincei 2 F , Fi = 1.

In addition we introduce the neighborhood relationnhd,
assigning each vertexVi the set of its 1-neighborhood (in-
cludingVi). For conveniencenhd maps vertexindices only.
It is defined as

nhdfig = fig [ fj j 9edge(Vi; Vj)g (3)

The radius of a neighborhood can be recursively enlarged by
defining an-neighborhoodnhdn as

nhdfi1; : : : ; ikg :=
S
1���k nhdfi�g

nhd1fig := nhdfig
nhdn+1fig := nhd(nhdnfig) (n > 1)

(4)

Dilation and Erosion. The classical definitions of dilation
and erosion are based on addition in a (n-dimensional) Eu-
clidean vector spaceEn. E.g. the dilation operator generates
from two given setsA;B � En the unionA � B = fc 2
En j c = a + b; a 2 A; b 2 Bg. HereA is the image or
pattern to be dilated, andB denotes the so called structure
element. (Haralick, Sternberg, and Zhuang 1987)

Such definitions for a vector spaceEn cannot be directly
used on general triangle meshes. Since the topology of the
mesh is unknown, there is no reasonable definition for an
addition. Therefore we redefine morphological operators for
triangle meshes, even though in a limited way.

Definition 1 (dilation) Let F � f1; : : : ; Ng. The dilation
of F by nhdn is defined as

dilaten(F) := fj j 9i 2 F : j 2 nhdnfigg

Then-neighborhoodnhdn is used as structure element for
every vertex. Thus it adapts in a way to the local topol-
ogy. One can utilize neighborhoods with different radii as



Figure 1: Left: Maximal curvature on a technical model, dark regions denote high curvature. Prefiltering by a median filter has
been applied. Middle: After thresholding. Right: After an opening and a closing operation. The mesh boundary was added to
the feature. Visual artifacts arise from color interpolation over large triangles.

structure element, but it is not possible to use only “certain
neighbors” from the same neighborhood. This would not be
definite for every local topology and every vertex. For that
reason our operators resemble the classical ones defined in
Euclidean vector space restricted to a disk-like structure el-
ementf(x; y) j � n � x; y � ng. As one single structure
elementnhdn will be employed we use a quasi unary nota-
tion. In classical morphology the structure element would
be the second operand of a binary operator�.

The dilation operator adds vertices to the feature,
#dilaten(F) � #F . F is grown in a way preserving its
“shape” on the mesh. The dilation operator can therefore be
effectively used to fill “holes” of unmarked vertices inside
and at the boundary of the feature.

Now, another operation is needed to reverse the effect of
dilation so that the original shape is recovered. Therefore we
have to shrinkF . Apart from that, this shrinking or erosion
operator cuts off undesired branches.

Definition 2 (erosion) Let F � f1; : : : ; Ng. The erosion
of F by nhdn is defined as

eroden(F) := fj j nhdnfjg � Fg

Dilation and erosion can be applied with an-neighborhood
as structure element. For implementation it might be help-
ful to note that the effect of using a larger structure element
can also be achieved by iteratively applying the respective
operator. Hencedilaten = dilate1 Æ � � � Æ dilate1 (n times).
The same is true for erosion. Thus we can indeed use an
unary notation with the structure element described by a
multiply applied operator. This is also useful for implemen-
tation because walking around a vertex and enumerating its
neighbors can be efficiently done, if appropriate data struc-
tures are used for the underlying triangle mesh (Campagna,
Kobbelt, and Seidel 1999). This is the operation needed to
construct a 1-neighborhoodnhd.

Opening and closing. The dilation and erosion operators
have been introduced to construct more powerful morpho-
logical operators that suppress noise on the feature.

Dilation and erosion indeed remove artifacts that may be
left even after prefiltering, but they do not preserve the size
of the feature. By consecutively shrinking and then grow-
ing F , branches will be cut and the original shape will be
preserved. The resulting operator is called opening.

Definition 3 (opening) The openingoperator is defined as

openn := dilaten Æ eroden

The term opening refers to the property of the operator to
open regions, where the feature just touches itself, further-
more small regions of marked vertices (“islands”) are just
removed as peninsular regions (branches).

By swapping the order of the application we obtain the
closing operator. ThereforeF is first grown and shrinked
afterwards, filling holes in the inner region of the feature,
and filling bays along the boundary.

Definition 4 (closing) The closingoperator is defined as

closen := eroden Æ dilaten

Opening and closing can effectively be used to reduce noise
and artifacts on the featureF . Both operators are idempotent
by their nature, that is multiple application of the same oper-
ator yields the same result as one single application. Figure 1
(right) shows the result of a closing operation.

Skeletonization and pruning. Our aim is to extract fea-
ture lines with every line segment corresponding to a tri-
angle edge of the mesh. Although artifacts have been re-
moved from the feature the marked region is in general still
too coarse to be accepted as such a feature line.

We are therefore looking for the skeleton ofF . Mathe-
matically, the skeleton of a setS 2 R

n is defined as follows.
For everyx 2 S let D(x) be the largest disk centered atx
with D(x) � S. Thenx is in the skeleton ofS if there is no
other diskD0 � S that also containsD(x). As a result, the
skeleton is the set of centers of the largest disks contained in
a setS.

In our case the skeleton shall not be thicker than one ver-
tex. Further on it must follow the topology of the original
feature region. Therefore we iteratively “scratch off” several
layers of the feature region, similar to the former shrinking
process. In digital image analysis the terms skeletonizing,
medial axis transformation or just thinning are commonly
used for this process (Gonzales and Wood 1993). The dif-
ference to the erosion operator is, that there are parts of the
feature that must not vanish. Defining a criterion, whether a
vertex may be removed or not, is essential for skeletonizing.

Definition 5 (complex vertex, complexity)
Let F 2 f1; 0gN be the feature vector. Let (ui

�
)�=ni�1
�=0



denote the sequence of indices of the ni neighbors of vertex
Vi ordered clockwise.
Now let ci :=

P
�=ni�1

�=0
jFui� � Fui

�+1 mod ni

j.

A vertex Vi is defined to be complex, iff Fi = 1 and ci � 4.
The number ci is said to be the complexityof Vi.

In order to determine if a vertexVi is complex, one circulates
through its neighborsVui� (0 � � < ni) while counting the
numberci of transitions from marked to unmarked vertices
and vice versa. Thus, complex vertices are either part of the
feature line (edge) with width 1 (ci = 4) or they belong to a
node, where several of such lines meet (ci > 4). For prac-
tical applications, it might be useful to define all boundary
vertices as complex.

Definition 6 (center, disk) Let F � f1; : : : ; Ng denote a
feature region and i 2 F one of its vertices Vi. Then i is
defined as center, if nhdfig � F .
The set Oi := fj j i is center^ j 2 nhdfig n figg is de-
fined as the disk around the center i.

Notice that asi 2 nhdfig, only verticesVi with i 2 F can
be centers. If all neighbors of such a marked vertex are also
marked, then this vertex is called a center and its neighbors
form the surrounding disk. Note that vertices on disks may
also be centers themselves.

We now use the last two definitions to construct a skele-
tonize operator, which is a kind of erosion that respects cer-
tain unremovable vertices. Whether a vertex may vanish or
not is expressed in terms of complex vertices, centers, and
disks.

Definition 7 (skeletonize operator) Let C � F be the set
of all complex vertices in a feature F . 
 � F denotes
the union of all disks, and � � F denotes the union of
corresponding centers. The skeletonize operatoris defined
as

skeletonize(F ) := F n (
\ C [�)

Figure 2 shows the effect of skeletonizing (middle) for the
technical model.

With every iteration of the skeletonize operator the out-
most layer is scratched off from the feature region, except
for complex vertices. In the inner region, all vertices are cen-
ters, and therefore are not removed. The process becomes
interesting at “thin parts” ofF . They must not be erased or
cut off because this would result in a different topology for
the obtained feature. Fortunately, such thin regions ofF are
defined to be complex and so are not removed.

The skeletonize operator is iterated until the feature
does not change anymore. It is obvious, thatF 0 :=
skeletonize(F ) � F . F 0 will be left unchanged if� = ;, or
if � contains only such centers, whose disk vertices are all
complex. Furthermore, disks may be erased fromF , there-
fore the former centers ofF might not be centers anymore
in F 0. It hast to be pointed out that it is not possible to create
new centers or disks by the skeletonize operator. (Note: the
number of complex vertices usually does increase, though.)
Thus, there are no cycles while iteratingskeletonize, un-
til the resulting feature set does not change anymore. The
skeletonize algorithm then terminates after a finite number

of iterations ofskeletonize, resulting in the skeleton ofF .
Figure 2 (middle) shows a part of the extracted skeleton.

The resulting skeleton contains only complex vertices ex-
cept for the ends of branches not connected to any node of
complex vertices. Small branches are usually treated as un-
desired artifacts and therefore have to be pruned. Depend-
ing on the application, all branches are removed, or just
branches up to a certain length.

A pruning operator is provided to iteratively shorten un-
wanted branches by one vertex each for every iteration. It is
defined as
Definition 8 (pruning operator) Let S � F be a skeleton,
and let C � F denote its complex vertices. Then the pruning
operatoris defined as

prune(S) = S n C

Figure 2 (right) shows a part of the skeleton of the technical
model used in figure 1 after pruning.

Postprocessing
The extracted featureF has been reduced to a skeletonF 0.
Assuming that pruning was applied, it therefore consists of
“edges” of vertices with complexity4 and nodes of vertices
with complexity> 4 (Def. 5). A natural extension to the
extraction of the feature by skeletonizing is to convert the
set representation ofF 0 to a graph.

For this purpose, node-vertices have to be grouped to
nodes and edge-vertices to edges. In order to construct the
graph, first the nodes are detected by iteratively grouping
neighboring node-vertices. After that, edges can be identi-
fied by walking from node to node through the original tri-
angle mesh. This will eventually leave rings, that are “closed
edges” which never touch any node. These rings have to be
processed extra.

Eventually, one is interested in patches of inner vertices
(of F 0) bounded by some edges in addition. These patches
can be found by iteratively using a seed fill algorithm, filling
and identifying every patch.

For now, the constructed edges are polygons that entirely
consist of triangle edges from the mesh. Some fairing can be
applied to these polygons, resulting in a smoother curve. If
needed, such a piecewise linear curve can be approximated
by e.g. a B-Spline curve.

Applications
There are several applications for the proposed feature ex-
traction technique. Our initial aim was reverse engineering
of triangulated surfaces. For CAD/CAM applications Spline
surfaces have emerged to a de facto standard for surface rep-
resentation during the last decades. So there is a demand
for tools, which convert triangle meshes to such free-form
surfaces. As there is no inherent parameterization for trian-
gle meshes, the surface usually has to be partitioned into a
couple of patches. For every patch a Spline surface is ap-
proximated, taking into account continuity between patches.
Finding a suitable patch layout is a demanding task.

There are automatic approaches like (Eck and Hoppe
1996), but they do not really respect natural patch bound-
aries suggested by curvature. On the contrary the user is left



Figure 2: Left: After closing, magnified from figure 1. Middle: Skeleton. Right: After Pruning.

alone with manual “boundary painting” (Krishnamurthy and
Levoy 1996). Utilizing feature extraction helps the user to
get reasonable patch layouts. But there is still some manual
work left.

Usually not all desired patch boundaries can be found in
one step. On the one hand, there is need for multiple thresh-
olding and combining the results. On the other hand, the
user may interactively complete resp. connect or cut resp.
disconnect feature regions. This way, the user can effec-
tively construct a reasonable patch layout.

With the calculated discrete curvature being visualized,
one can rate the quality of a triangulated surface. The ex-
traction of feature lines can then be used to detect defects of
the surface. Especially, if some knowledge about the surface
is provided, e.g. if measured data from a real world manu-
factured object is compared to a reference model, automatic
detection may be applicable.

The proposed feature extraction may also be used to clas-
sify surfaces sampled by a laser range scanner. But not only
recognition of resp. the distinction between a number of dif-
ferent objects is an interesting application. In order to pro-
duce a digital 3D model of a real world object, usually sev-
eral views of the object have to be registrated and merged.
The extracted feature can help to detect overlapping regions
between views and to match the different coordinate systems
per view.

Conclusion
We presented a technique to extract feature lines from trian-
gulated surfaces. Therefore, curvature values obtained from
discrete curvature analysis were thresholded resulting in a
binary feature vector. We adapted morphological operators
from digital image analysis to triangle meshes so that noise
and artifacts are suppressed, and we constructed a skele-
tonize operator that extracts the desired feature. The feature
lines can then be transformed into a graph whose edges rep-
resent polygons lying near the region of interest resp. the
feature.

A problem arises from reduced meshes (Kobbelt, Cam-
pagna, and Seidel 1998) with triangles of strongly varying
edge length. The proposed morphological operators have to
be extended to respect geometry as well as topology. There-
fore one would define a neighborhoodnhd of a vertexV as
the vertices lying inside a sphere of a certain radius centered

atV .
There are a number of applications in computer graphics

for which feature extraction is useful. We are interested in
patch layouting for reverse engineering in particular. The
proposed technique effectively extracts the desired feature
lines. Anyhow, there is still need for manual assistance, e.g.
in order to determine reasonable thresholds or to manually
fix the feature vector. At this point techniques from other
disciplines in computer science such as AI may be able to
help.

Furthermore, we transformed an unstructured surface rep-
resentation of an object into a structured description of this
object in terms of characteristics of its geometry. This de-
scription may be used as input to other algorithms concerned
with semantics of the object rather than plain geometry.
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