
Logic Programming Agents and Game Theory

Marina De Vos� and Dirk Vermeir
Dept. of Computer Science,

Free University of Brussels, VUB,
Pleinlaan 2, Brussels 1050, Belgium,
email:[marinadv,dvermeir]@vub.ac.be

Abstract

In this paper we present a framework for logic programming
agents to take part in games in such a way that stable models
of the system, the ones agreed upon by all the members, cor-
respond with the different equilibria of the game. The pro-
posed transformations from games to ordered choice logic
program produce a multi-agent system where each agent em-
bodies the reasoning of a player and where the system itself
represents the structure of the game. This allows us to mon-
itor the knowledge and beliefs of the agents, i.e. the flow of
information between agents/players.

Introduction
Game theory (Osborne & Rubinstein 1996) makes contribu-
tions to many different fields. In particular, there is a natural
connection with multi-agent systems.
In this paper we use logic programming to represent agents
that exhibit game-theoretic behavior. We concentrate on so-
called extensive games with perfect information: a sequen-
tial communication structure of players taking decisions,
based on full knowledge of the past.
We use an extension of logic programming, called Or-

dered Choice Logic Programs (OCLPs). The order is used to
represent the agent’s situation-dependent preferences. Rea-
soning about appropriate decisions is captured using “choice
rules”, which are essentially clauses where the disjunction in
the head is interpreted as “exclusive or”.
We show that extensive games with perfect information

have a natural formulation as multi-agent systems with a
particularly simple information-flow structure between the
agents, each of which is a OCLP. The stable model seman-
tics of such a system is shown to coincide with the game’s
equilibria (Nash or subgame perfect, depending on the trans-
formation used to construct the agents). Moreover, the fix-
point computation of a model closely mirrors the actual rea-
soning of a player in reaching a conclusion corresponding to
an equilibrium.
The continuation of this paper is organized as follows: in

Sect. 2, we give a brief overview of OCLPs which model the
reasoning capabilities of our individual agents. In Sect. 3 we
illustrate that OCLPs can be usefull to simulate a wide class
of general logic program, such that the answer set semantics

�The author wishes to thank to FWO for its support.

of the former corresponds with our stable model semantics.
Section 4 is devoted to extensive games with perfect infor-
mation and their different equilibria. Our multi-agent sys-
tems, capable of producing the equilibria of extensive games
with perfect information, are introduced in Sec. 5. We end
this paper with a section on relationships to other approaches
and directions for future research.

Ordered Choice Logic Programs
In this section we will give a brief informal overview of
Ordered Choice Logic Programming (De Vos & Vermeir
2000), or OCLP for short. OCLP finds its origin in decision
making and knowledge representation. This formalism al-
lows programmers to explicitly express decisions, i.e. exclu-
sive choices between multiple alternatives, and to work with
situation dependent preferences among the different alterna-
tives of a decision. We will explain the basics1 of OCLP by
means of Tommy’s Birthday Dream.

Example 1 Today it is Tommy’s birthday. Six years old,
time goes fast. To celebrate this, his mother agreed to invite
some of his friends over for a party. Sitting in his room he
is dreaming about his own private party: “A huge birthday
cake with lots of candles, of course not forgetting the icing.
Lots of candy and biscuits. We just have to make sure that
there is plenty, you can never have enough treats. But no
matter what, there definitely has to be that big cake. Hope-
fully my mum will let me decide, that way I can have every-
thing my heart desires. I know that if she starts interfering,
she will force me to choose. That is what moms always do.”
Intuitively, one would expect two possible outcomes for this
party:

� Tommy’s Birthday, Tommy is planning, Tommy and his
friends having cake, biscuits and candy.

� Tommy’s Birthday, Tommy’s mother does the planning,
Tommy and his friends only having cake.

OCLP combines Choice Logic Programs (De Vos & Ver-
meir 1999a; 1999b), for providing the rules to represent the
decisions, and Ordered Logic Programs (Gabbay, Laenens,
& Vermeir 1991), as the basic concept for the semantics.

1We restrict to global interpretation and we give a simplified no-
tion of defeating which is sufficient for the main part of this paper.
Full details can be found in (De Vos & Vermeir 2000).

From: AAAI Technical Report SS-01-01. Compilation copyright © 2001, AAAI (www.aaai.org). All rights reserved. 



��

��

��

��

�������� �

	�
�� � ��������
���	���� � ��������

	�
� � ��������

�� ������� �
���	���� � 	�
�� � 	�
� � ������

Figure 1: Tommy’s Birthday Dream.

Formally, an OCLP � is a pair ����� where � is a collec-
tion of CLP’s. Thus each component is a finite set of rules
of the form � � � where � and � are finite sets of atoms.
Such a component represents knowledge, including choices,
with a certain amount of generality/preference. The genera-
lity/preference among components is expressed by the par-
tial order relation �. Another frequently used notion for
OCLPs, especially in examples, is the directed acyclic graph
(dag) in which the nodes are the components and the arcs re-
present the relation “�” (the strict version of �).

Example 2 Tommy’s Birthday dream can easily be trans-
lated into the OCLP depicted in Fig. 1, where the choice
rules in�� correspondwith Tommy specifically knowing that
either he or his mother will do the organization and that in
case his mother will be in charge, he will be forced to choose
between all the goodies. The order, together with the rules
of �� and ��, expresses that Tommy is more in favor of cake
than any of the other treats. Finally �� introduces the gen-
eral fact that it is Tommy’s birthday.

An interpretation is a set of atoms that are assumed to be
true (atoms not in the interpretation are false).
Given an interpretation, we call a rule � � �� � �� appli-
cable when the precondition �, called the body � �, is true
(i.e. � � �). A rule � � �� � �� is said to be applied
iff it is applicable and the consequence �, called the head
��, contains exactly one true atom. The latter condition
is reasonable as rules with more than one element in their
head represent decisions of which only one alternative may
be chosen.
Now that we have interpretations, we can finally distinguish
the different alternatives, as we only consider two atoms to
be alternatives if a choice between them is forced, i.e. there
exists a more specific and applicable choice rule with a head
containing (at least) the two atoms. So given an atom 	
in a component �, we can define the alternatives of 	 in
that component � with respect to an interpretation as those
atoms that appear together with 	 in the head of a more spe-
cific applicable choice rule.
Formally, for � 	 �, 	 an atom and � an interpretation,

the alternatives for 	 in � w.r.t. � are defined by

��
��	� � 

 � 
 �� 	 
 �� 	 � 	 � �� � �


�� � � 
 
	� 
� � ���

Example 3 Reconsider Tommy’s Dream OCLP of example
2. Let � and � be the following interpretations:

� � 
�������� �	
� and � � 
�������� �	���
�� 


The set of alternatives for ���
��� in �� wrt � equals:

��
��
����
���� � � �

while the one wrt � is:

��
��
����
���� � 

��
� 
����� 


In words, this means that ���
���� is not part of any decision
when concerning � , while it is if you are using � instead.

The model semantics for choice logic programs is fairly
simple: an interpretation is a model iff every rule is either
not applicable (i.e. the body is false) or applied (i.e. the
body is true and the head contains exactly one head atom).
For OCLPs something extra is required to cover the cases in
which two or more alternatives of a decision are triggered. In
such situations the most specific alternative should be cho-
sen. In the event that some alternatives are equally specific, a
random choice between them is justified. We call this mech-
anism of choice according to specificity defeating.
Formally, a rule � 	 � 	 � is defeated w.r.t. an inter-

pretation � iff for each head literal 	 	 ��, there is an ap-
plied competing rule � � 	 � 	 � where � �� �2 for which
��� � ��

��	� holds.

Example 4 Recall the interpretation � given for Tommy’s
Dream OCLP in example 3. Both rules in �� are defeated
wrt � , as their head atoms, 
���� and ���
���� , have an
alternative, 
��
 , which is the head atom of the more specific
applicable rule in ��.

Now we are ready to define the model semantics for
OCLPs. An interpretation is a model if every rule appearing
in one of the components is either not applicable, applied
or defeated. Stable models are introduced to filter out mo-
dels that assume too much or which are unintuitive. Just as
for standard logic programs, they are based on a Gelfond-
Lifschitz transformation. The transformed logic program
�� , where � is an interpretation, is obtained by the fol-
lowing procedure:

1. Remove all rules that are defeated w.r.t.� .

2. Remove all atoms that are false in � from the heads of
the remaining choice rules (i.e. from those rules that have
more than one head atom).

3. Replace each remaining choice rule � by the set of con-
straints3


� ��� 	� 
 � 
	� 
� � ��� 


4. Consider all remaining rules as a single positive logic pro-
gram �� .

A stable model is then an interpretation which is a minimal
model of the transformed program.

Example 5 Tommy’s Dream program of example 2 has two
models which are also stable, namely:

�� � 
�������� � 
���� � ���
���� � 
��
 �	
� 
� and
�� � 
�������� � 
��
 �	���
�� 

2This notion of defeat is called credulous. An alternative skep-

tical approach is obtained by demanding that a competing rule
�� � � � � satisfies � � �.

3Rules with an empty head are called constraints.



These stable models correspond exactly to the intuition
given in example 1.

In (De Vos & Vermeir 2000) a simple algorithm for the
computation of stable models is given.

OCLP’s and Answer Sets for Generalized
Logic Programs

In (De Vos & Vermeir 1999b) it was shown that choice logic
programs, which do not have negation, can simulate a wide
class of seminegative logic programs. Specifically, for every
semi-negative positive-acyclic4 datalog program � , there
exists a choice logic program �� such that the stable models
of � and �� coincide.
In this section we generalize this result by showing an

equivalence between generalized logic programs, i.e. dis-
junctive logic programs that allow for negation as failure in
the head, and OCLP’s. See e.g. (Lifschitz 2000) for a defi-
nition of the answer set semantics of such programs.
Given a generalized logic program � , we define a OCLP

��� � � �
��������� where � � � � � . The rules in
the 3 components are defined as follows (note that in ��� �,
we consider ��� 	 as an atom):

� For each atom 	 appearing in � , add a “ negation-as-
default” rule ��� 	� to � .

� For each rule � � � from � , add the set of “shifted”
rules


	� �� ��� �� � 
	�� � 	 	 ��

to �.

� For each atom 	 appearing in � , add a choice rule 	 �
��� 	� to �.

Theorem 1 Let � be a positive-acyclic generalized logic
program.� is an answer set of � iff� � 
��� 	 � 	 �	��
is a stable model of ��� �.

Extensive Games with Perfect Information
In this section we give a brief and informal overview of ex-
tensive games with perfect information (Osborne & Rubin-
stein 1996).
An extensive game is a detailed description of a sequential

structure representing the decision problems encountered by
agents (called players) in strategic decision making (agents
are capable to reason about their actions in a rational man-
ner). The agents in the game are perfectly informed of all
events that previously occurred. Thus, they can decide upon
their action(s) using information about the actions which
have already taken place. This is done by means of passing
histories of previous actions to the deciding agents. Termi-
nal histories are obtained when all the agents/players have
made their decision(s). Players have a preference for cer-
tain outcomes over others. Often, preferences are indirectly

4A semi-negative program � is called positive-acyclic if there
is an assignment of positive integers to all the atoms appearing in
� such that the number of the head of any rule is greater than any
of the numbers assigned to positive atoms appearing in its body.

����������

���������

1

��� ��
��� ��

��� ��

�

�
�
�

�
�
�

2

� �

�

�� �

�

�� �

�

�
�
�

�
�
�

2

� �

�

�� �

�

�� �

�

�
�
�

�
�
�

2

� �

�

�� �

�

�� �

Figure 2: The Sharing-an-Object game of example 6.

modeled using the concept of payoff where players are as-
sumed to prefer outcomes where they receive a higher pay-
off.
Summarizing, an extensive game with perfect information is
4-tuple, denoted ����� �� ������� �, containing the players
� of the game, the histories � , a player function � telling
who’s turn it is after a certain history and a preference rela-
tion�� for each player � over the set of terminal histories.
For examples, we use a more convenient representation: a
tree. The small circle at the top represents the initial his-
tory. Each path starting at the top represents a history. The
terminal histories are the paths ending in the leafs. The num-
bers next to nodes represent the players while the labels of
the arcs represent an action. The number below the terminal
histories are payoffs representing the players’ preferences
(The first number is the payoff of the first player, the second
number is the payoff of the second player, ...).

Example 6 Two people use the following procedure to
share two desirable identical objects. One of them proposes
an allocation, which the other either accepts or rejects. In
the event of rejection, neither person receives either of the
objects.
A game, ����� �� ������� �, that models the individuals’
predicament is shown in its alternative representation in Fig.
2.

A strategy of a player in an extensive game is a plan that
specifies the actions chosen by the player for every history
after which it is her turn to move. A strategy profile contains
a strategy for each player.
The first solution concept for an extensive game with perfect
information ignores the sequential structure of the game; it
treats the strategies as choices that are made once and for all
before the actual game starts. A strategy profile is a Nash
equilibrium if no player can unilaterally improve upon his
choice. Put in another way, given the other players’ strate-
gies, the strategy stated for the player is the best this player
can do5.

Example 7 The extensive game with perfect information of
example 6 has nine Nash equilibria 6:

5Note that the strategies of the other players are not actually
known to �, as the choice of strategy has been made before the play
starts. As stated before, no advantage is drawn from the sequential
structure.

6A profile is represented as a pair of strategies �	�� 	�� for
player � and �where 	� is written as the the concatenation of the ac-
tions corresponding to the different histories (in the order in which



�

������

������

Child

Good Bad

�

�� �

��

�
�
�

�
�
�

Parent

Punish Not Punish

�

�� �

�

�� �

Figure 3: The Child-Parent game of example 8.

�

���
���

Child
Good Bad

�

�� �

��

�
�
�
�

Parent
Punish Not Punish

�

�� �

�

�� �

�

��� ���

Parent
Punish Not Punish

�

�� �

�

�� �

(a) (b)

Figure 4: The subgames of the Child-Parent game of exam-
ple 9.

((2,0),yyy), ((2,0), yyn), ((2,0), yny),
((2,0),ynn), ((1,1),nyy), ((1,1),nyn),
((0,2),nny), ((2,0), nny), ((2,0),nnn) .

Although the Nash equilibria for an extensive game with
perfect information are intuitive, they have, in some situ-
ations, undesirable properties due to not exploiting the se-
quential structure of the game. These undesirable properties
are illustrated by the next example.

Example 8 The game in Fig. 3 has two Nash equilibria:
(Good, Punish) and (Bad, Not Punish), with payoff profiles
(1,2) and (2,1). The strategy profile (Good, Punish) is an
unintuitive Nash equilibrium because given that the Parent
chooses Punish after history Bad, it is optimal for the Child
to choose Good at the start of the game. So the Nash equi-
librium is sustained by the “threat” of the Parent to choose
Punish if the Child is Bad. However, this threat is not cred-
ible since the Parent has no way to commit herself to this
choice. Thus the Child can be confident that the Parent will
Not Punish him in case he is Bad; since the Child prefers the
outcome (Bad, Not Punish) to the Nash equilibrium (Good,
Punish), he has thus the incentive to deviate from the equi-
librium and choose Bad. We will see that the notion of a
subgame perfect equilibrium captures these considerations.

Because players are informed about the previous actions
they only need to reason about actions taken in the future.
This philosophy is represented by subgames. A subgame is
created by pruning the tree in the upwards direction. So, in-
tuitively, a subgame represent a stage in the decision making
process where irrelevant and already known information is
removed.

Example 9 The two subgames of the game presented in ex-
ample 8 are depicted in Fig. 4.

they appear in figure 2). E.g. ���� ��� ���� has player � choosing
��� �� while player 2 chooses � for histories ��� �� and ��� �� but �
for history ��� ��.

Instead of just demanding that the strategy profile is op-
timal at the beginning of the game, we require that for a
subgame perfect equilibrium the strategy is optimal after ev-
ery history. In other words, for every subgame, the strategy
profile, restricted to this subgame, needs to be a Nash equi-
librium. This can be interpreted as if the players revise their
strategy after every choice made by them or an other player.

Example 10 The Child-Parent game of example 8 has one
subgame perfect equilibrium, (Bad, Not Punish), corre-
sponding to the non-credible threat of the Parent.
The Object-sharing game of example 6 has two subgame
perfect equilibrium :

���� ��� ���� and ���� ��� ���� 


Agents and Game Theory
In this section we demonstrate how OCLPs can be used to
represent extensive games with perfect information in such a
way that the stable models of the program correspond with,
depending on the transformation, the Nash equilibria or the
subgame perfect equilibria. In the first part we repeat the re-
sults of (De Vos & Vermeir 2000) and argue that their trans-
formations do not take the individual players and the struc-
ture of the game into account. In the second part, we intro-
duce two new transformations with the same capabilities as
the previous ones but with consideration for the individual-
ity of the players and to some extent the game’s structure. In
the last part we create separate OCLPs for each player and
combine them in a multi-agent system of which the stable
models correspond to the Nash or subgame perfect equili-
bria.

Phase 1: OCLPs Representing Games
In (De Vos & Vermeir 2000) it was shown that a finite ex-
tensive game with perfect information can easily be trans-
formed in a OCLP in such a way that either the Nash equi-
libria or the subgame perfect equilibria of the game corres-
pond with the stable models of the program.
Let us start with the transformation, called �	, needed to

obtain the Nash equilibria of the game. The set of compo-
nents consists of a component containing all the decisions
that need to be considered and a component for each payoff.
The order amongst the components is established accord-
ing to their represented payoff (higher payoffs correspond to
more specific components) with the decision component at
the bottom of the hierarchy (the most specific component).
Since Nash equilibria do not take into account the sequential
structure of the game, players have to decide upon their strat-
egy before starting the game, leaving them to reason about
both past and future. This is reflected in the rules: each rule
in a payoff component is made out of a terminal history (path
from top to bottom in the tree) where the head represents the
action taken when considering the past and future accord-
ing to this history. The component of the rule corresponds
with the payoff the deciding player would receive in case the
history was carried out.
The transformation, called �
, of extensive games with

perfect information needed to obtain the subgame perfect



��

� � ��
�� � �

� � �� � �
�� � �� �
�� � �� �
�� � �� �

�� � �
�� � �
�� � �
�� � �
� � ��

� � ��

� � ��

� � ��

��

��

��

��

�� � �
� � ��

��

�� �

�� �� � �

� � ��
�� �

�� � �� �
�� � �� �
�� � �� �

�� �
�� �
�� �
�� �
� � ��

� � ��

� � ��

� � ��

��

��

��

��

� � ��

Figure 5: The corresponding �	 and �
 OCLPs of the ex-
tensive game with perfect information of example 6.

equilibria is quite similar to the one for obtaining the Nash
equilibria. The only difference between the two is the cre-
ation of rules: since subgame perfect equilibria take the se-
quential structure into account, players no longer need to
reason about what happened before their decision. They can
solely focus on the future.

Example 11 Reconsider the object-sharing game of exam-
ple 6. The corresponding OCLP �	 is depicted on the left
side of Fig. 57. This program �	 has nine stable models
which exactly correspond with the nine Nash equilibria of
the game.
The right side of Fig. 5 shows �
. This �
 has the subgame
perfect equilibria �	� ������� and �
� ������� as its stable
models.

Theorem 2 Let ����� �� ������� � be a finite extensive
game with perfect information and let �	 and �
 be its cor-
responding OCLPs. Then, �� is a Nash equilibrium (resp.
subgame perfect equilibrium) for ����� �� ������� � iff ��

is a stable model for �	 (resp. �
).

Looking at Fig. 5 one notices that all information con-
cerning players is totally lost during the transformation pro-
cess. The structure of the game is broken apart but is still,
with lots of effort, retrievable from the programs. In the next
two subsections we will focus on bringing the players in the
program structure, first in a single OCLP and afterwards in
multi-agent system where each agent represents a player of
the game8.

Phase 2: Player Based OCLPs
In the previous subsection we argued that the transforma-
tions �	 and �
 of (De Vos & Vermeir 2000) totally ignore

7To make the graph more readable we renamed the actions
��� ��, ��� �� and ��� �� as respectively 
, � and �. We also labeled
the responses of the second player to make the choices disjoint.

8It is also possible to put more emphasis on the game’s structure
by assigning an agent to each decision instead of to each player.

� �
�

��

�

��

�

��

�

��

�

��

�

��

�

� � ��

� � ��

� � ��

� � ��

�� � �

�� � �
�� � �

�� � �� � �

� � ��
�� �� � �

�� � �
�� � �� �
�� � �� �
�� � �� �

� �
�

��

�

��

�

��

�

��

�

��

�

��

�

� � ��

� � ��

� � ��

� � ��

� � ��
�� �� � �

�� � �� �
�� � �� �
�� � �� �

�� � �� �
�� �
�� �

�� �

�� �

� � �� � � ��

Figure 6: The phase 2 OCLPs of the extensive game with
perfect information of example 6.

the players of the game. However, it is fairly simple to adapt
them in such a way that they do take into account those play-
ers. Instead of having a payoff component for every payoff
in the game, we now introduce payoff components corre-
sponding to the distinct payoffs of each player (e.g. if two
players � and � have a payoff 0 then we now have two com-
ponents � �

�
and ��

�
instead of the single component ��).

Rules made out of a terminal history are now put in the
component corresponding to the player taking the associ-
ated decision and her perceived payoff. The decision com-
ponent is no longer necessary as we put the decision rule(s)
of a player in the component with the highest payoff corre-
sponding to this player. The order among the components is
established, first among components of the same player, ac-
cording to their payoff (lower payoff is more general) and,
secondly, according to the structure of the game (the first
deciding player is less specific). The transformation for ob-
taining the Nash equilibria is denoted as � �

	 , while �
�

 is

used to obtain the subgame perfect equilibria.
The next example illustrates the proposed transforma-

tions.

Example 12 Reconsider the object-sharing game of exam-
ple 6. The transformations � �

	 and � �

 are depicted in Fig.

6. The program � �
	 (resp. �

�

 ) has precisely the Nash equili-

bria (resp. subgame perfect equilibria) as its stable models.

Theorem 2 is still valid for the new transformations.

Theorem 3 Let ����� �� ������� � be a finite extensive
game with perfect information and let � �

	 and �
�

 be its cor-

responding OCLPs. Then, �� is a Nash equilibrium (resp.
subgame perfect equilibrium) for ����� �� ������� � iff ��

is a stable model for � �
	 (resp. �

�

 ).

Phase 3: Multi-agent Systems
The multi-agents systems that we propose for our games
consist of a finite number of agents which are connected in



the form of a loop by uni-directional communication chan-
nels . Each agent uses an OCLP for the representation of its
reasoning skills. A convenient representation for our multi-
agent system � is a sequence���� 
 
 
 �	 of OCLPs, where
the chain of communication starts at�� and ends at�	 to go
back to ��. The models of the systems as a whole are those
individual models that are accepted (as a model) by every
agent in the system. A minimal model (according to set in-
clusion) is called stable. An elegantfixpoint characterization
of stable models can be defined as follows: the first agent ��

in the chain proposes (one of) her stable model(s)� � to her
successor ��. Since�� may not be a model for ��, �� will
adapt it, within the boundaries of her capabilities, to a new
model�� for ��. Then�� is forwarded to �� etc. The mo-
del�	 produced by the last player �	 is then sent back to
��. The computation stops if a model can flow through the
chain without alterations. This method corresponds nicely
with the way the players reason in an extensive game. Each
player thinks along the lines of “what will the other play-
ers/agents after me do in case I would decide this”. After
her model has passed the whole chain she receives a model
reflecting the actions of the other players. According to her
strategy she then can reconsider her actions. So the whole
sequence of models one obtains before reaching the model
which everybody approves of reflects the reasoning process
of the entire population of players and the way they respond
to actions each others actions.
The transformations � �

	 and �
�

 can be easily adapted to

yield the agents’ programs in a multi-agent system: if suf-
fices to “cut” the partial order between components corre-
sponding to different players. �	 and �
 denote the multi-
agent versions of resp. �	 and �
.
Note that, while a simple linear structure suffices to re-

cover extensive games with perfect information, our multi-
agent systems allow for much more complex communica-
tion structures to model e.g. limited awareness of other play-
ers etc.

Example 13 Fig. 7 depicts the two multi-agent systems cor-
responding to the Object-sharing game of example 6 to ob-
tain either the Nash equilibria (�	 on the left side) or the
subgame perfect equilibria (�
 on the right).

Theorem 4 Let ����� �� ������� � be a finite extensive
game with perfect information and let �	 and �
 be its
multi-agent. Then, �� is a Nash equilibrium (resp. subgame
perfect equilibrium) for ����� �� ������� � iff �� is a stable
model for �	 (resp. �
).

Furthermore we can show that in both systems a fixpoint
is obtained no matter what the initial model was and this
with no more iterations than the number of agents. This is
mainly due to the guaranteed existence of a subgame perfect
equilibrium which is also a Nash equilibrium.

Relationship with other approaches
Some research has already been done in the area of agents
and games, although with different viewpoints. For exam-
ple, (Rosenschein & Zlotkin 1994) investigates methods to

��

�

��

�

��

�

�� � �� �
�� � �� �
�� � �� �

�� � �� � �
�� � �
�� � �

�� � �

�� � �

��

�

��

�

��

�

�� � �� �
�� � �� �
�� � �� �

�� � �� �
�� �
�� �

�� �

�� �


�

��

��

�� �� � �

��

�

��

�

��

�

� � ��

� � ��

� � ��

� � ��

� � ��

��

��


�

�� �� � �

��

�

��

�

��

�

� � ��

� � ��

� � ��

� � ��

� � ��

� � �� � � ��

Figure 7: The multi-agent systems to obtain the Nash equi-
libria and subgame perfect equilibria of the extensive game
with perfect information of example 6.

prevent agents exploiting game theoretic properties of ne-
gotiations. The topic of (Birk 1999) is the evolution of co-
operation in N-player iterated prisoner’s dilemma and how
this process can be speeded up. (Poole 1997) incorporates
the players of the game directly into its logic programming
formalism for strategic games in order to obtain mixed strat-
egy Nash equilibria. We, on the other hand, are interested
in multi-agent systems that are able to represent, in an in-
tuitive way, games such that agents correspond with players
and models with the equilibria.

Directions for Future Research
For the future, we plan to extend our multi-agent system to
allow more complex ways of communicating. A lot of inter-
esting questions arise once the complexity is raised. What
happens in case of multiple incoming channels? Can we
model notions as “Common knowledge” and “Distributed
knowledge” in such a way that agents can use it advanta-
geously? What happens if an agent is not forced to pass all
its knowledge?
Furthermore, we are investigating the possibility of using
these multi-agents systems for the representation of repeated
games with both finite and infinite horizon.

References
Birk, A. 1999. Trust in an N-Player Iterated Prisoner’s
Dilemma. In Agents’99 WC on trust.

De Vos, M., and Vermeir, D. 1999a. Choice Logic Pro-
grams and Nash Equilibria in Strategic Games. In Flum, J.,
and Rodrı́guez-Artalejo, M., eds., Computer Science Logic



(CSL’99), volume 1683 of Lecture Notes in Computer Sci-
ence, 266–276. Madrid, Spain: Springer Verslag.
De Vos, M., and Vermeir, D. 1999b. On the Role of Nega-
tion in Choice Logic Programs. In Gelfond, M.; Leone,
N.; and Pfeifer, G., eds., Logic Programming and Non-
Monotonic Reasoning Conference (LPNMR’99), volume
1730 of Lecture Notes in Artificial Intelligence, 236–246.
El Paso, Texas, USA: Springer Verslag.
De Vos, M., and Vermeir, D. 2000. A Logic for Mod-
elling DecisionMaking with Dynamic Preferences. In Pro-
ceedings of the Logics in Artificial Inteligence (jelia2000)
workshop, volume 1919 of Lecture Notes in Artificial In-
telligence, 391–406. Springer Verslag.
Gabbay, D.; Laenens, E.; and Vermeir, D. 1991. Credulous
vs. Sceptical Semantics for Ordered Logic Programs. In
Allen, J.; Fikes, R.; and Sandewall, E., eds., Proceedings of
the 2nd International Conference on Principles of Knowl-
edge Representation and Reasoning, 208–217. Cambridge,
Mass: Morgan Kaufmann.
Lifschitz, V. 2000. Answer set programming and plan
generation. Journal of Artificial Intelligence to appear.
Osborne, M. J., and Rubinstein, A. 1996. A Course in
Game Theory. Cambridge, Massachusets, London, Enge-
land: The MIT Press, third edition.
Poole, D. 1997. The independent choice logic for mod-
elling multiple agents under uncertainty. Artificial Intelli-
gence 94(1–2):7–56.
Rosenschein, J. S., and Zlotkin, G. 1994. Rules of En-
counter. Designing Conventions for Automated Negotiation
among Computers. The MIT Press.


