
Diagnosing Dynamic Systems in A-Prolog

Michael Gelfond
Computer Science Dept.
Texas Tech University
mgelfond@cs.ttu.edu

Joel Galloway
Computer Science Dept.

University of Texas at El Paso
jgallo@cs.utep.edu

Introduction
The main goal of this paper is to continue the investi-
gation of applicability of A-Prolog (a loosely defined
collection of logic programming languages under the
answer set semantics (Gelfond & Lifschitz 1991))
knowledge representation and reasoning. In the first
part of the paper we address the problem of diagnos-
ing faulty behavior of a dynamic system. We are espe-
cially interested in such classical aspects of this prob-
lem as modeling of systems and their environments,
interleaving of deliberation and action, and prioritiz-
ing typical causes of specific faults. We start with
suggesting a new version of a definition of diagno-
sis. The roots of our definition go back to (Reiter
1987) and its recent modifications (Thielscher 1997;
Band, McIlraith & Son 2000) which take into account
the dynamics of system’s behavior. Similar to the work
in (Baral, Mcllraith & Son 2000) our approach is based
on the semantics of action languages (Gelfond & Lifs-
chitz 1998). Unlike (Baml, McIlraith & Son 2000)
do not use action language £. Instead we assume that
the set of all possible trajectories of the system is de-
scribed by a domain description of an action language
.A£ (Band & Gelfond 2000) (possibly augmented
logic programming rules of A-Prolog). We believe that
this language is sufficiently powerful for a wide range
of applications and allows us to give a definition of
diagnosis which, we believe, is substantially simpler
than other definitions we were able to find in the lib
erature. Simplicity of the definition and the recent dis-
coveries of the close relationship between A-Prolog and
reasoning about effects of actions allow us to develop
a collection of simple algorithms for computing diag-
noses. The algorithms are based on the ideas from an-
swer set programming (’Marek & Truszczynski 1999;
Niemela 1999; Lifschitz 1999) and are implemented on
top of SMODELS (Niemela & Simons 1996) - a system
for computing stable models of logic programs. Ac-
cording to our definition all diagnoses are created equal.
In practice however, some diagnoses are more equal
than others. Selection of the "best" diagnosis is often

based on some heuristic information about the plausi-
bility of different types of faults. By way of example we
show how our choice of A-Prolog as a knowledge repre-
sentation language allows us to incorporate this heuris-
tic information in the corresponding diagnostic systems.
The heuristics improve the quality of diagnoses as well
as efficiency of computation. The second part of the pa-
per describes a software architecture for an agent capa-
ble of discovering and diagnosing faulty behavior of the
system, testing it’s suspected faulty components, and re-
pairing components which indeed are found to be faulty.
The architecture, of course, s~ongly relies on the ideas
developed in the first section.

Background

Let S be a physical system consisting of a set, C, of
components. We assume that a state of the system can
be described by a collection F offluents - relevant prop-
erties of these components whose truth values may de-
pend on time, and that the dynamics of the system are
controlled by a set A = Ao U Ae of (elementary) ac~
tions capable of changing S’s states. The set Ao con-
sists of actions performed by the system (or an agent
controlling the system) and a set A~ consists of exoge-
nous actions whose occurrence can cause system com-
ponents to malfunction. A system S will be modeled by
a system description SD consisting of rules of A-Prolog
defining components of S, its fluent and actions, causal
laws determining the effects of these actions, and the
actions’ executability conditions. A state of S will be
identified with a complete and consistent set of fluent
literals which are true in this state. (By fluent literals
we mean fluents and their negations.) We assume that
SD has a unique answer set which defines an action de-
scription of.A£. (In our further discussion we will often
abuse the notation and identify this action description
with SD.) Semantics of.A£ associates SD with a tran-
sition diagram TD representing all possible trajectories
of S. States of TD are states of S and arcs are labeled
by compound actions - sets of elements from A. Causal
laws of SD can be divided into two parts. The first part,
SDn, contains laws describing normal behavior of the
system. Their bodies usually contain special fluent lit-

77

From: AAAI Technical Report SS-01-01. Compilation copyright © 2001, AAAI (www.aaai.org). All rights reserved.

.0
"’’’°

-s i"

slm r

T
Fignre 1: .A~

erals of the form -~ab(c). The statement ab(c) is read
as "component c of system S is abnormal". Its use in
diagnosis goes back to (Reiter 1987). The second part,
SDb, describes effects of exogenous actions damaging
the components. Such laws normally contain relation ab
in the head or positive parts of the bodies. The existence
of the second component (absent in (Reiter 1987)),
be essential for our approach to computing diagnosis.

History of S up to a moment n is specified by a collec-
tion F, of statements in the ’history description’ part of
.A£. We assume that the system’s time is discrete, ti
and t,+l stand for two consecutive moments of time in
the interval 0..n. Statements off have the form:

1. obs(l, t) (fluent literal I was observed to be true at
moment t), and

2. hpd(a, t) (elementary action a E A was observed
happen at moment t) where < t < n.

To simplify the presentation we only consider histories
with observations closed under the static causal rules
of.A£, (i.e. if every state of S must satisfy a constraint
’fluent literal l0 is true if fluent literals from P are true’
and literals from P are observed in F the so must be lo).

The following definitions are from (Baral & Gelfond
2000). Let SD be an action description and I~ be a
history of the system up to a moment n. We say that
a path ¢0, ao, or1,..., an-l, crn in TD is a model of F
w.r.t. SD iff

1. ak = {a: h (a, k) e I";
2. ifoba(l,k) F thenl E ok.

IfF has a model we say that F is consistent (with respect
to SD). We say that fluent literal I holds in a model M
at time k < n (and write M ~ h(l,k))ifl E crk.
We say F ~ h(l, k) if h(l, holds in all models of
F. Notice that, in contrast to £, a domain description
of.A£ is consistent only if changes in the observations
of system’s states can be explained without assuming
occurrences of any action not recorded in F.

To better understand the terminology let us consider the
following example.

78

Example 0.1 Consider a system S consisting of an
analog circuit JtC from figure I. Switches sl and s2
are mechanical components which cannot become dam-
aged. Relay r is a magnetic cot. If not damaged, it
is activated when Sl is closed causing s2 to become
closed. Undamaged bulb b emits light ff s2 is closed.
For simplicity we consider an agent capable of per-
forming one action, c/ose(sl). The environment can
represented by two damaging exogenous actions: brks,
which causes b to become faulty, and srg, which dam-
ages r and b fib is not protected.

The description, SD, of S consists of statements:

Components
coop(r).
switc/,(sl), stoitc/=(sy).
Fluents
f(closed(SW))

~--
switch(SW).

f(ab(X))
~--

comp(X).
f(active(re)), f(prot(b)), f(on(b)).

Notice that this description implies that, according to
our model, switches never malfunction.

AgentActions { a_act(close(sx)

EzogenousActions {z-act(srg).Z-act(brks)"

Causal Laws and Executability Conditions descn’bing
norma functioning of S are expressed as follows:

causes(dose(s), dosed(sl), 0).
caused(active(r), [closed(s1),-~ab(r)]).

8Dn caused(closed(s2), [active(r)]).
caused(on(b), [closed(s2),-,ab(b)]).
caused(-~on (b), [’,closed(s2)]).
impossible_if (close(s1), [closed(x)]).

(causes(A, L, P) says that execution of action A in a
state satisfying fluent literals from P causes fluent liter-
als L to become true in a resulting state; caused(L, P)
means that every state satisfying P must also satisfy L,
impossible_if(A, P) indicates that action A is not ex-
ecutable in states satisfying P.) The system’s malfunc-
tioning information is given by:

causes(brks, ab(b),
causes(sr g, ab(r) , ~

SDb causes(srg, ab(b), [-~prot(b)]).
caused(-,on(b), [ab(b)
caused(- cti e(r), [ab(r)]).

Now consider a history, F0 of S:

{
hpd(aose(s~),
obs(’.closed(Sl),
obs(-~closed(s2),

Fo obs(-~ab(b),
obs(’,ab(r),

obsO~rot(b), 0).
It is easy to see that the path or0, close(s1), al is the
only model, ofFo w.r.t. SD and that F0 ~ h(on(b), 1)

Possible d|agnosis
Let r._l be a history of system S described by SD,
o. be the set of fluent literals observed by the system
controlling agent at moment n, and OT = {obs(l, T)
l G or). By a diagnostic state of S at moment n we
mean a pair,

DS. = (r._1,o.) (1)
If S behaves properly then o, does not contradict r,_ i,
i.e.r. -- r._l [3 on is consistent with respect to
SD. Otherwise we say that DS. is a symptom of the
system’s malfunctioning at moment n and therefore S
needs diagnosis.
Our definition of a possible diagnosis is based on the
notion of an explanation tiom (Baral & Gelfond 2000).
In our terminology, an explanation, E, of a symptom
DS,, is a collection of statements

E = {hpd(al, t) : 0 < t < n and ai q Ae} (2)

such that r,-1 U On U E is consistent with respect to
SD.

Definition A possible diagnosis of a symptom DSn
consists of explanation E of DSn together with the set
A of components possibly damaged by actions from E.
More precisely, A = {c : M ~ h(ab(e), n 1)} where
M is a model oft._1 u on u E with respect to SD.

Example 0.2 To illustrate our definitions let us again
consider system S from Example 0.1. According to Fo,
at moment 0, sl and s2 are open, all circuit components
are ok, s t is closed by the agent, b is protected, and b is
on at 1. Suppose that instead, the agent observes that at
time 1 bulb b is off, i.e.

o(1) = {-on(b)}.

Intuitively, this is viewed as a symptom, DSI, of the
malfunctioning of S. The same conclusion can be ob-
tained formally by checking that r0 u O1 is inconsistent
with respect to SD. It is not difficult to see that there
are three possible diagnoses of DSt:

D1 -- ({hpd(brks, 0)}, {b})
02 = {{hpd(srg, 0)}, {r})
93 = ({hpd(brks, 0), hpd(srg, 0)}, {b, r})

Computing Diagnoses
In this section we show how the need for diagnosis can
be determined and how diagnoses can be found by the
techniques of answer set programming. We start by de-
scribing an encoding a of domain descriptions of .A£
into programs of A-Prolog suitable for execution by
SMODELS. Since SMODELS takes as an input pro-
grams with finite Herbrand base we first need to elimi-
nate the references to lists in causal laws of.A. This can
be done as follows:

1. a(causes(a, lo, [11.../,])) is the collection of atoms
dlaw(d), head(d, lo), action(d, a) and prec(d,
for every li (1 < i < n) where d = di (t-) with di
ing a new function symbol and { being a list of terms
occurring in the corresponding causal law.

2. a(caused(lo, Ill.,,/hi)) is the collection of atoms
slaw(d), head(d, lo), pree(d, for every li (1 <
i<n).

3. a(impossible_if(a,[ll...l,])) is a constraint
~- h(ll,T),...,h(ln,T),

pc(a, T).
Now consider domain description of A£ with action de-
scription SD, history r,, and let

a(SD, F) = {a(ax) : ax 6 SD} U rI(n)

where II(n) is defined as follows:

I. h(L, T’) ~ d_law(D),
head(D, L),
action(D, A),
pc(A, T),
pree_h(D, T).

2. h(L,T) sJa o(O),
head(D, L)
prec_h(D, T).

n(~) 3. prec_f(D, T) +- prec(D, e),

not h(P, T).
4. prec.h(D, T) +-- not prec_/(D, T).
5. h(L,T’) +-- f(L),

h(L,T),
not h(-L, T’).

6. pc(A, T) +- hpd(A, T).
7. h(L,T) +- obs(L,T).

Here D, A, L are variables for the names of laws, ac-
tions, and fluent literals respectively, and T, T’ denote
consecutive time points from interval [t3, n]; pc, which
stands for occurs, is used to allow separation between
actions observed and actions hypothesized. The follow-
ing terminology will be useful for describing the rela-
tionship between answer sets of a(SD, F) and models
oft with respect to SD:

We say that an drawer set AS of a(SD, r,) defines a
trajectory p = a0, ao, 0"1, ¯ ¯ ¯, an--l, ~rn where, I G ak
iffh(l, k) 6 AS (0 < k < n) and ah = {a pc(a, k)
AS} (o <_ k < n).
The following theorem establishes the relationship be-
tween the theory of actions in A.E and logic program-
ming.

Theorem 0.1 Let SD be a description of system S and
r be its history up to the moment n. If the initial situ-
ation off is complete (i.e. for anyfluent f of SD,
contains obs(f , O) or obs(-~f , 0)) then M is a model
r if/’M is a trajectory defined by some answer set of
 (SD, r).
(The theorem is similar to the result from (Turner 1997)
which deals with a different language and uses the def-
initions from (McCain & Turner 1995)). The following
corollary will be useful for some diagnostic algorithms
discussed in this paper. First some notation. Let SD

79

be a description of system S, DS = (F.,o.+,) be
diagnostic state of S,

TEST(DS) = a(SD, F) U O.+i U R113 R2 (3)

where

h(f,O) +- not h(~f,O).RI h(-~F, O) +-- not h(F,

R~ { ~ obs(l, n + 1), not h(l, n + 1).

The rules of R, are sometimes called the awareness ax-
ioms. They guarantee that initially the agent considers
all possible values of the domain finents. If the agent’s
information about the initial state of the system is com-
plete these axioms can be omitted. The R2 says that the
agent’s observations are correct and hence shall coin-
cide with the agent’s predictions.

Corollary 0.1 A diagnostic state DS is a symptom of
a malfunctioning system S ifftheprogram TEST(DS)
has no answer set.

To diagnose a symptom DS we construct a program,
DM, which generates possible explanations of DS.
Such programs will be termed diagnostic modules.
Finding diagnoses will be reduced to finding answer
sets of the program

:D(DS) = TEST(DS) tJ DM (4)

The simplest diagnostic module, DMo, can be defined
by the following rules:

1. oc(A, T) +-- O<_T<_n,
z.act (A)
not -~oc(A, T).

2. -,oc(A, T +-- O<_T<_n,
x.act(A),
not oc(A, T).

Answer sets of a program

:Do = TEST(DS) u DMo

correspond to possible diagnoses of the symptom DS.
SMODELS will find these answer sets if they exist or
report failure otherwise. The possible diagnosis can be
easily extracted from the corresponding answer set. It
is not difficult to see that DMo generates every possible
set of occurrences of exogenous actions and hence, by
Theorem 1, :Do finds all the diagnoses of DS. In our
further discussion we will deviate from the strict adher-
ence to the syntax of A-Prolog and use instead a choice
operator of SMODELS (Simons 1999). In the new no-
tation, rules (1) and (2) DMowill be replaced by one
rule

{oc(A,T):x-act(A)} +-- 0 < T

80

Refining the diagnoses
Normally, we are not interested in all possible diagnoses
of a symptom - only in those which satisfy certain cri-
teria. In this section we demonstrate how some of such
criteria can be incorporated in the corresponding diag-
nostic modules.

In many cases, for instance, some constant, m, deter-
mines the time interval in the past that an agent is will-
ing to consider in it’s search for possible explanations.
This limiting of the search space can be incorporated in
the rules of DMo by replacing a statement 0 < T < n
in their bodies by n - m < T < n. (For simplicity, in
the following program examples we let m = 0.)

Sometimes the search can be limited by restricting at-
tention to explanations consisting of a limited number
of actions. This can be easily implemented using the
choice rule of SMODELS. For instance, the program

:D, = TEST(DS) U DMI

where

DMI = l{oe(A, n): z_act(A)}2.

will find all diagnoses of a symptom DS which can be
explained by at most two occurrences of exogenous ac-
tions at moment n. For diagnostic symptom DSo in
the previous section, :D1 will generate diagnoses D l-D3
(with hpd replaced by oe).

It is worth noticing that ff we were to expand system
description SD from Example 0.1 by adding one more
exogenous action, a, completely unrelated to DSo, :D1
would return additional diagnoses containing a. Diag-
noses containing actions irrelevant to the symptom can,
in many cases, be eliminated by expanding diagnostic
modules with domain independent rules. It would be
very natural for instance to write something like:

1 rel(A,L) +-- d_law(D),
head(D, L),
action(D, A),
z_a ct (A).

2 rel(A,L) +-- s_law(D),
head(D, L)
pree(D, P),
rel(A, P),
z_a ct (A).

and

3a l{oc(A,n- 1) : rel(A,L)}2 +- obs(L,n).

Unfortunately, SMODELS will not allow the use of the
last role since the relation tel is defined recursively. In-
stead we can replace this rule by

3b l{oc(A,n- 1) : z_act(A)}2.
4 tel(A) ~-- obs(L,n),

rel(A,L).
5 +-- oe(A,n-1),

not tel(A).

The new diagnostic module,

2)2 = TEST(DS) U

where DM2 consists of rules (I) - (5) above will elim-
inate diagnoses containing irrelevant action a. Notice,
that the ability of A-Prolog to represent recursive rules
together with a one-directional nature of causal laws are
responsible for the relative ease of representation.

Unfortunately, the new diagnostic module, will still re-
turn diagnosis D3. It would be very nice to be able to
construct a diagnostic module capable of only finding
diagnoses minimal with respect to some diagnostic or-
dering. (A simple set-theoretic ordering would allow
us to drop diagnosis Ds from Example 0. I). Unfortu-
nately, in general, A-Prolog without disjunction is not
sufficiently powerful for this purpose.

We are however often able to use A-Prolo8 to express
various heuristics which allow us to produce higher
quality diagnoses. To illustrate this point let us consider
the following example.

Example 0.3 Let us consider a system description SD
from Example 0. l and suppose that in his search for di-
agnoses the diagnostician of,.q uses the following infor-
mation: Normally, an unexpected absence of light can
be explained by a broken bulb. However, if there was a
recent storm in the area the diagnostician uses a differ-
ent rule which says: Unexpected absence of light after
a storm is normally caused by a power surge. These
are typical prioritized default rules. Since the second
rule is more specific if should be preferred to the first
one whenever possible. The diagnostic module DMs
modeling our diagnostician is built according to a gen-
end methodology of representing prioritized defaults in
A-Prolog. it consists of the rules:

1 ocCbrks, n-1) +-- obs(-~onCb),n),
not -~oc(brks, n - 1),
not better(dl, n - 1).

2 f(dl, T) +-- obs(-,on(b),
not -,oc(brks, n - 1).
not better(dl, n - 1).

z o (srg, n- 1)
h(storra, n - 1),
not -,oc(srg, n - 1),
not better(d2, n - 1).

4 f(d2, T) +-- obs(-.on(b), n),
h(storra, n - 1),
not -~oc(srg, n - 1),
not better(d2, n - 1).

5 {oc(A,n- 1): z_act(A)} obs(-.on(b),n),
not better(d3, n - 1).

6 better(D1,T) *-- prefer(D2, D1),
f(D2, T).

7 prefer(d2, dl).
prefer(d1, d3).
prefer(d2, d3).

81

Rules (1), (3) of the program represent defaults (d 1)
(d2) mentioned above. Default (d3) defined by (5)
Catch-all rule the diagnostician resorts to when the first
two defaults are inapplicable. Priorities between de-
faults are given by the relation prefer. Litemls of the
form f(i,T) (where f stands for fired) indicate that
default i was applied in the process of eonslructing the
corresponding answer set. The relation better(D, T),
defined by rule (7), holds when a default preferred to
is fired at moment T. The presence of not better(l, T)
in the body of rule (1) together with rule (4) guarantees
that default dl will not be applied if more specific (and
therefore preferred) default d2 can be fired instead. (Ar-
gnably, a more natural representation may be obtained
by reifying defaults and rules but we hope that the above
example is sufficient to illustrate the point).

Notice, that the initial situation in Example 0.1 is in-
complete and hence the diagnostic module

2)3 = TEST(DS) U
will diagnose the symptom, DSo, with two possible di-
agnoses, D1 and D2; D1 corresponds to the absence
of a storm, while D2 reflects the possibility of stormy
weather. If we consider a different history, F~, obtained
from ro by adding

-~h(storm, O)

the new symptom, DS’ will still requires diagnosis.
This time D1 will (correctly) be the only possible di-
agnosis found by 2)3. (Of course if the diagnostician
learns h(storra, 0) he will change his mind and will
come up with a new poss~le diagnosis, D2.)

Now let us assume that the diagnostician is capable of
testing system components. His possible diagnosis, D1,
suggests that he should test bulb b. Suppose that the
test reveals the bulb is ok. Intuitively, the diagnostician
knows that brks did not occur and now must believe
that srg occurred. Likewise, if there had been a storm,
and testing determined that the relay re is ok, the diag-
nosticiaa now knows that srg did not happen and must
believe that brks occurred. This is exactly the behavior
exhibited by 2)a. Notice, however, that by construction,
2)s only finds possible diagnosis of aa unexpected ab-
sence of light. It does not deal with observations con-
taining statements of the form ab(c). For our example
the corresponding diagnostic module can be obtained
by expanding 2)s into :D4 by the rules:

oe(brks, n - 1) *-- obs(ab(b),n),

f(d4, n - 1) +-
hOrror(b), n 1)
obs(ab(b),n),
h(prot(b), n 1)

prefer(d4, di). (1 < i < 3)
oc(srg, n - 1) ~-- obs(ab(r),
f(d5, n - 1) +- obs(ab(r),
prefer(dS, di). (1 < i < 3)

For many system descriptions, these types of rules
can be extracted automatically from the corresponding

causal laws. We plan to discuss some possible ways of
doing this in the full paper.

Testing and repairing components
Let us now assume that a diagnostician is also capa-
ble of testing if a given component is faulty and that
the tests are performed instantaneously. The last con-
dition is equivalent to the assumption that no actions,
exogenous, or otherwise, which can change the state of
the system are performed during the process of testing.
First we need the following definition:

Definition We say that a diagnosis of a symptom
DS, = (Fr*-l, o.) is a possible diagnosis in which all
components in A are faulty.

Let us assume that we have a function
POSSIBLE_DIAG(SD, DS) which returns a
possible diagnosis (E, A) of a symptom DS of SD.
(A = 0 indicates that no such diagnosis can be found).
The function, FIND_DIAG which takes a system
description SD and a symptom DS. as parameters and
returns a diagnosis D = (E, A) of DS. can be defined
as follows:

REPEAT
(E, A) := POSSIBLE_DIAG(SD,
REPEAT

select c E A;
if c is faulty
r,,-I := r._l u obs(ab(c, n 1));
else rr*-i := rr*-i U -.obs(ab(c,n 1));

UNTIL c is not faulty or
all components are faulty;

UNTIL every element of A is faulty;
RETURN (E, ZX).

Notice that A = 0 indicates that no diagnosis is found
- the diagnostician failed. To illustrate the algorithm,
consider

Example 0.4 Consider SD from Example 0.3 and the
following initial situation: At time 0, b is not protected,
there is a storm, all components are ok, both switches
are open, and an agent closes si. At time l, our diag-
nostician observes that the bulb b is not on. He calls
a function NEED_DIAG(SD, DSI) which searches
for an answer set of TEST(DS). There are no such ̄
sets and hence a diagnostic symptom DS is detected.
Now the agent calls a function POSSIBLE_DIAG.
Let us assume that it is based on diagnostic module T~4.
The function returns possible diagnosis

PD1 = ({oc(srg, 0)}, {r, b})

The agent selects a component r from A and deter-
mines that PDI is not a diagnosis because r is found to
be ok. Observation obs(-~ab(r), is added to Fo and
POSSIBLE_DIAG is called again with new DSI as
a parameter. It generates another possible diagnosis

PD2 = ~{oc(brks, 0)}, {b})

82

Bulb b is then tested by the agent, and is found to be
faulty. Observation obs(ab(b), 0) is added to F0 and
FIND_DIAG returns PD2.

The next example shows that finding a diagnosis may
not always lead to a correct explanation of a symptom
of a malfunctioning system.

Example 0.5 Let us consider a scenario from Exam-
pie 0.4 again, except that this time there is no storm at
time O. FIND_DIAG computes PD2, b is found to
be faulty, obs(ab(b), 0) is added to the history, and di-
agnosis PD2 is returned. Now suppose b is repaired,
but it is observed that b is still not on! Since we assume
that no exogenous actions occur during testing this can
mean only that brks is a wrong explanation - we really
had a power surge. In order to always find a correct ex-
planation, it is essential to repair damaged components
and observe the behavior of the system after repair.

This can be done by inlroducing a special function,
repair(C) for every component c of SD. The effect
of this action is defined by the following causal law:

causes(repair(C),-~ab(C),

To make this work we need to modify some of our def-
initions. Instead of observations or, in the definition
of a diagnostic situation DS, we must allow observa-
tious at any time T :> n. The corresponding history
should be allowed to contain the repair actions at these
times. Finally, the diagnostic modules must be modi-
fied to deal with more complex observations. We will
illustrate such a modification by showing how to change
rule 1 of DMs. The new role will look as follows:

1 oc(brks, n-1) +-- time(T),
T>n,
obs(",on(b),
not -,oc(brks, n - 1),
not better(dl, n - 1).

Other modifications are equally natural.

The resulting diagnostic modulus can be used in algo-
rithm MAINTAIN which monitors a system behav-
ior and, ifa symptom DS is discovered, repeatedly exe-
cutes the following three steps until S is no longer mal-
functioning or a diagnosis cannot be found:

1. Find a diagnosis

2. Repair faulty components

3. Check the system

A more detailed description is given below:

procedure MAINTAIN(SD, DS);

{ If no diagnosis for symptom DS can be found the
procedure exits with failure. Otherwise it restores the
correct behavior of the system by fixing the faulty com-
ponents. The system’s state DS is updated to contain a
record of the repairing process and a record of observa-
tions made at the end of repair. }

while NEEDS_DIAG(SD, DS) do
begin

(E, A) = FIND..DIAG(SD, DS);
if A) = O then

EXIT - print("NO DIAGNOSIS")
else

begin
R.EPA/R(A);
Expand DS by the
record of repair process;

end
end

This algorithm will allow us to correctly formalize rea-
soning ~om the second scenario of Example 0.5. After
the corresponding repair information is recorded in DS
the system will find a correct diagnosis PD1.

Conclusion

The paper describes an ongoing work on the develop-
ment of a diagnostic problem solving agent in A-Prolog.
The work is not intended to be practical - we are still
looking for good modeling techniques with clear and
pmvenly correct algorithm.q. The following can be of
interest to people who share these interests:

We presented a new definition of a symptom and possi-
ble diagnosis based on action description language ,A£
and showed how it can be used to search for possible
diagnoses in A-Prolog. Several examples outline the
methodology of constructing diagnostic modules con-
mining heuristic information. In particular we showed
how such information can be expressed in A-Prolog in
the form of prioritized defaults. The last section con-
rains a more general architecture of an agent capable
of combining diagnostic computation with testing and
repair. In the full paper we plan to give mathematical
analysis of correctness of the corresponding algorithms
and test them on medium size examples.

References
Baral, C., and Gelfond, M. 2000. Reasoning agents
in dynamic domains. In Minker, J,. ed., Logic-Based
Artificial Intelligence, Kluwer Academic Publishers,
257-279,

Band, C., and Gelfond, M. 1994. Logic programming
and knowledge representation. In Journal of Logic
Programming, volume 12, 1-80.

Baral, C., Gelfond, M., and Provetti, A. 1994. Reason-
ing about actions: laws, observations, and hypotheses.
In Journal of Logic Programming, volume 31,201-
244.

Baral, C., McIlraith, S., and Son, T. 2000. Formu-
lating diagnostic problem solving using an action lan-
gnage with narratives and sensing. In Proceedings of
the 2000 KR Conference, 311-322

de Kleer, J., Mackworth, A., and Reiter, R. 1992.
Characterizing diagnoses and systems. In Artificial In-
telligence, volume 56(2-3), 197-222.

Gelfond, M., and Lifschitz, V. 1988. The stable model
semantics for logic programming. In Logic Program-
ming: Proc. of the Filth Int’l Conf. and Symp., 1070-
1080.

Gelfond, M., and Lifschitz, V. 1991. Classical nega-
tion in logic programs and disjunctive databases. In
New Generation Computing, 365-387.

Gelfond, M., and Lifschitz, V. 1992. Representing ac-
tions in extended logic program.q1 In Proc. of Joint In-
ternational Conference and Symposium on Logic Pro-
gramming, 559-573.

Gelfond, M., and Lifschitz, V. 1998. Action
languages. In Electronic Transactions on ,4I, vol-
ume 3(16).

Lifschitz, V. 1999. Action languages, Answer Sets,
and Planning. In The Logic Programming Paradigm: a
25-Year Perspective. 357-373, Springer Verlag, 1999
Marvk, W., and Truszczynski, M. 1999. Stable models
and an alternative logic paradigm. In The Logic Pro-
gramming Paradigm: a 25-Year Perspective, 375-398,
Springer Verlag, 1999
MeCaln, T., and Turner, H. 1995. A causal theory of
ramifications and qualifications. In Artificial Intelli-
gence, volume 32, 57-95.

Niemela, I. 1996. Logic programs with stable model
semantics as a constraint programming paradigm. In
Annals of Mathematics and Artificial Intelligence,
1999
Niemela, I., and Simons, P. 1996. Efficient implemen-
tation of the well-founded and stable model semantics.
In Proc. of Joint lnt 7 Conf. and Symposium on Logic
Programming, 289-303.

Reiter, R. 1987. A theory of diagnosis from first prin-
ciples. In Artificial Intelligence, volume 32, 57-95.
Simons, P. 1999. Extending the stable model seman-
tics with more expressive roles. In 5th International
Conference, LPNMR "99, 305-316.
Thielscher, M. 1997. A theory of dynamic diagno-
sis. In Linkoping Electronic Articles in Computer anal
Information Science, volume 2(11).

H. Turner. 1997. Representing actions in logic pro-
grams and default theories. In Journal of Logic Pro-
gramming, 31(1-3):245-298, May 1997.

83

