
On treating negation within XSB (and upon extending XSB programming
with a form of logical negation, and its relations to existing varieties of

logic programming)

Jay Haleomb, Adam Pease

Teknowledge Corporation
1810 Embarcadero Road

Palo Alto, CA 94303, USA
jhalcomb@teknowledge.com

apease@teknowledge.com

"Observe carefully the small facts upon which the largest inferences depend." - A. Conan Doyle

Abstract

A variety of techniques within logic
programming have developed for treating
negated formulae. These essentially involve
constructibility restrictions which are imposed
upon complexity classes of quantifieational
formulae, and which thereby determine models
and model classes of computer programs
declaratively regarded. These construetibility
restrictions are themselves implemented by
imposing restrictions upon both the syntax and
semantics of particular computing languages
such as Prolog. Current alternative paradigms of
logic programming in Prolog include the
theorem-proving implementing semantics of
first-order conjunctive normal form assertions,
and definite and Horn clause logic programming
systems. In this paper we discuss some
relationships between the resolution principle
and these systems, particularly as they concern
implementations of negation -- from negation-as-
failure through the treatment of negation within
the Prolog extension XSB, involving tabling. We
examine another proposal [T. Van Le, 1993] for
the treatment of negation in Prolog, and we
produce an interim report on implementing this
form of negation within XSB, including a formal
characterization, timing results, and comments
upon heuristics. We also provide examples of the
use of negation in XSB on knowledge based

reasoning applications., and discuss practical
performance issues as well as implications for
knowledge engineering that follow from
implementing this facility.

Introduction

Many problems in logical inference benefit from
the use of expressive logical representations. In
previous work, (Cohen et al, I999) (Pease et
2000) we have shown the value in creating
reusable logical representations. Our research and
application efforts are now driving us to examine
how we can achieve high performance, including
speed of inference, on the reusable and
expressive representations we create. Some of
our current projects build on the XSB [Sagonas,
et al, 2000] deductive database. XSB has several
virtues which include its impressive speed in
performing deductions in large knowledge bases
which may have long inference chains. As we
discuss below, XSB Prolog is, however, a rather
basic language for knowledge representation
compared to languages such as KIF [Genesereth,
1994] or CycL [Cycorp, 2001]. One feature
needed in an expressive logical representation, in
order to create a reusable formulation, is that of
negation. While any predicate defined by a
knowledge engineer could also have a negated
version, that basic although inelegant solution
does not scale well when one considers the need

84

From: AAAI Technical Report SS-01-01. Compilation copyright © 2001, AAAI (www.aaai.org). All rights reserved.

to negate compound formulae. For this reason,
we believe that logical negation is a key feature
for a reasoning system that is to handle a
knowledge base of any significant size. The
issues to be considered in fully implementing
logical negation in a knowledge representation
system include: inferential soundness and
completeness, and efficiency.

Background to the negation problem in logic
programming: Unification and the Resolution
Principle

J.A. Robinson [1965] introduced the resolution
principle for logic programming. Various
refinements and extensions of the general method
have been formulated since..Some version of the
resolution principle is used in most modem logic
programming languages, and in Prolog (and
XSB) in particular. The resolution principle is an
inference rule which maps a pair of sentences
within a first-order language to another sentence,
according to a schema which we will shortly
produce: But to discuss the resolution principle,
first we must mention the operations of
substitution and unification.

Terms in our language are either: variables,
individual constants, or the result of applying
atomic function constants to variables or
individual constants (as in, e.g., f(X,a,h(gCO)).
Unification is an operation upon two atomic
formulae (say, A and B) which, when successful,
produces a substitution of (possibly new) terms
for those occurring in A and B such that the
result of the substitution makes A and B
identieai. Such a substitution is called a unifier
for A and B.

An important fact about the unifiers for two
expressions A and B is that when they exist,
there is a ’least’ such unifier - one which makes
the fewest substitutions possible which render A
and B identical. Such a unifier is called a ’most
general unifier’.

(Resolution principle, one form)

To explain the resolution principle, first we write
Sub(X,E) to indicate the result of uniformly
making substitutions of the vector of terms, X,
for selected terms occurring in E. A convenient
way of indicating such substitutions is with, e.g.,
the notation: [X/a, f(X)/b]..

From A1 v...v An and BI v...v Bm, infer

Sub(X, (A1 v...v Aj-1 v Aj+I v...v B1 v...v Bk-1
v Bk+l v...v Bm), where X is that substitution of
terms for terms which is the most general unifier
for the expressions Aj and Bk; i.e., X is the least
substitution of terms such that Sub(X,Aj)
Sub(X,not Bk).

The resolution principle itself relies upon the
nontrivial notions of substitution of terms, and
the unification of terms (and, by extension)
formulae. In consideration of space, though, we
must omit discussion of these details. The
important fact for us now is that resolution is a
powerful generalization of the inference rule
traditionally known to logicians as Modus
Ponens. Using resolution, operating under
appropriate selection/generation strategies for the
materials to resolve upon in constructing a proof,
it is possible to derive refutation-complete proof
procedures for significant classes of expressions
of FOL Refutation-completeness means that if a
set of sentences of FOL is unsatisfiable (has no
model), then the resolution process will derive, in
finitely many steps, a contradiction fi’om that set.
Since a standard strategy for proving that a set of
sentences, S, logically implies another sentence
A is to conjoin the negation of A with the
conjunction of those in S and then to infer a
contradiction from that expression, the resolution
principle can (after appropriate Skolemization
and canonicalization) be used to show the logical
implication of A from S, for various forms of
sentences. [See, for instance, Chang and Lee,
1973]

Normal Forms

The second important fact we notice is that
among the classes of formula types of FOL, for

85

logic programming purposes, the following are of
particular note (in increasing order of restriction):
the conjunctive normal form, the Horn form,
and the definite clause form. We briefly discuss
each of these.

The conjunctive normal form of a sentence of
FOL is any conjunction of expressions, each
conjunct of which is of the form (for some n and
some m, possibly one or the other 0):

not AI v ... v not An v An+l v ... v Am

The important fact here is that we may
legitimately speak of the conjunctive normal
form of any expression of FOL, since any
expression of FOL has a provably equivalent (in
a certain sense) conjunctive normal form.

A Horn clause is any conjunction of
expressions each of the form:

not AI v ... v not An v Am

where either m or n may be O.

A definite clause is a further restriction of the
Horn form. It is any conjunction of expressions
each of the form:

not A1 v ... v not An v An+l

where n may be O.

By imposing restrictions or other refinements
upon the general resolution principle, and by
devising appropriate control (e.g., selection)
strategies, the logic programmer can devise
refutation-complete proof methods for each of
the classes of normal forms we’ve mentioned.

Logic programs and theorem proving

Prolog is one instance of a logic programming
language embodying Kowalski’s precept
’algorithm=logic-l-control’. But ’vanilla’ Prolog
(Prolog without any ’not’ operator at all)
requires that the ’logic’ of this equation be
definite -clause logic: the restriction to FOL

inference which results from evaluating only
definite clauses, i.e., expressions of the form:

not PI v ... v not Pn v Pn+l

where each Pi is an atomic literal formula. Such
formulae are themselves logically equivalent to
expressions of the form

P1 & ... & Pn-1 ffi> Pn (and are written in Prolog
as Pn:-Pl,...,Pn-1.)

We notice that the restriction to definite clauses
is imposed by the requirement that there be at
least one positive (un-negated) literal in the
disjunctions of the conjunctive normal form.
Since Prolog simpliciter also doesn’t allow for
the evaluation of expressions of the form

PI & ... & Pn ffi> false (in Prolog this would be
an illegal expression: fail:- P1, ... , Pit.)

this imposes a further reduction upon the
canonical forms to which Prolog inference can be
directly applied. Such clauses must be def’mite --
must have at least one positive atomic disjunct.
This restriction means that direct Prolog
resolution cannot directly represent nor resolve
disjunctive facts of the form not P1 v...v not Pn.

Even when Prolog is augmented with the
addition of its usual ’not’ operator, which
expresses negation-as-failure, it is inferentially
complete only expressions which have Horn
clause canonical form.

For ground formula, the ’negation-as-failure’
method of evaluation amounts to the ’dosed-
world’ assumption, that a ground formula p(a)
false whenever either the assertion p(a) does not
appear in the program, or it is not deducible from
assertions in the program context.

This anomaly arises from the typical Prolog
implementation of ’not’, which behaves
functionally as though:

86

notOO:-caH(X),!,fail.
not(X):-true.

A typical sentence of FOL which has no
equivalent Horn clause normal form (hence, still
less any definite clause form) is the axiom
expressing atomicity within Boolean algebras:

exists(X) all(Y)(not (X=O) & (x*y=y =>
=0))

Without the means to resolve upon such
expressions, the full inferential capability of FOL
cannot be directly employed upon knowledge
representations. On the other hand, it is well
known that the introduction of such means
introduces considerable complexity, and a
concomitant inefficiency, into the evaluation of
knowledge representations. An inference
capability which operates to prove theorems in
FOL which can be expressed in conjunctive
normal form (and hence any theorem of FOL),
called a theorem prover. Theorem provers
improve upon other forms of logic programming,
like Prolog, by being able to resolve the full
generality of expressions in conjunctive normal
form, not merely those in Horn clause or definite
clause form.

A closer look at the problem of negation in
Prolog

Prolog with the addition of the usual ’not’
operator treats the evaluation of positive and
negated goals differently. While a positive goal,
fCX), is evaluated by searching for a proof of
existsCX) (fO0), negated goal, no t(fCX)), is
evaluated for a proof of all(X)(not fiX)), as
be shown.

Logically, a sentence of the form,
all(X) all(Y) (b(X)=>aO0) is equivalent
all(X) exists(Y)(b(Y) ffi> a(X)) so that
evaluation of a goal a(X):-b(Y) ought to
evaluated as: allOO(aOO :- exists(Y) bOO).
so it is, for non-negated predicates.

But in particular the evaluation of a negated body
subgoal, not bOO,
as in (*) all(X) all(Y)(aCX):-not boo)
all(X) (a(X) :- exists(Y)(not However,
standard Prolog evaluates rules of the form
(*) as: an(X) (a(X):- not exists(OO bOO).

Such inference is sound, when it succeeds for
ground X, but it is not logically complete in the
general case, for unbound X. This is
demonstrated by Prolog’s not returning a binding
for X in such cases.

Prolog may also sometimes involve itself in
infinitely looping processes during the resolution
of certain forms of expression (those involving
circular reference). This is because it employs
’depth-first’ search strategy, which may lead to it
continue pursuing an unfruitful inference path.
XSB provides a mechanism, tabling, which can
control this behavior in many eases. [Warren,
2000].

Van Le negation: the ’non’ operator

Van Le (Techniques of Prolog Programming,
[1993]) offers another approach to the negation
problem. In constructing an expert system shell,
he defines a Prolog predicate ’non’ such that the
evaluation of (the attempt to unify) a goal
non(fiX)) seeks a maximally general substitution
for fiX) such that fiX)fails. 1.e., it fails if there
are no values of X such that fiX) holds, but
moreover if there is a value for X such that
nonOC(X)) holds , that value is returned..
algorithm which implements this evaluation is
not overly complex and Van Le is able to
demonstrate for this method of treating negation
that non(non(p(X)) implies

It is a feature of this method that such evaluation
requires that Prolog has beforehand distinguished
the function and constant symbols in use. It is
because of this distinguished treatment that ’non’

87

is able to return values. That it does return such
values yields mother feature of the ’non’
predicate: it can be used to define the universal
quantifier ’all’, (roughly expressed - we omit
details about renaming of variables to avoid
clashes) through the definition:

all(X, p(X)):- not(non(p(X)).

The last clause may be read: it is false that
exists(X, non(p(X)).

Similarly, all(X, not p(X)) may be defined
not(p(X)). With suitable definitional extensions,
it is then possible to define multiple
quantification, as in all(X, exists(Y, p(X,Y)).

Examples in XSB

Employing an adaptation of Van Le’s
methodology, the following (and similar) data
and query have been run at Teknowledge in XSB.
The input materials were derived from the High
Performance Knowledge Base project (Pease, et
al, 2000).

Facts in the K_B:

capableOfDoing(unitedNationsOrganization,
CONFLICT, mediators) :-
instance_of(CONFLICT, intemafionalConfliet),
instance_o f(COUNTRYA, country),
instance_o f(COUNTRYB, country),
opponentslnConflict(COUNTRYA,
COUNTRYB, CONFLICT).

instanee_of(OBJ, SUPERSET)
OBJ~=SUPERSET, instance of(OBJ, SUBSET),
subset_of(SUBSET, SUPERSET).

Input query: setof(WHO, all(CONFLICT,
implies(and(instance_of(CONFLICT,
territorialDispute), opponentslnConfliet(iran,
iraq, CONFLICT)), capableOtDoing(WHO,
CONFLICT, mediators))), LIST).

Answer: [unitedNationsOrganization].

Although this query was run interpreted (and run
over a miniscule KB), the evaluation of this
query in XSB was so rapid (on a moderately
quick PC), that the attempt to time it fell beneath
the horizon of XSB’s cpu timing mechanism,
which measures epu speed in 10,000ths of a
second. However, compilation always produces
increases in efficiency over interpretation.

instance_of(hYP_TerritorialDispute_.28532600,
territorialDispute).

subset of(territorialDispute,
intemationalConflict), isa(iraq, country).

instanceOf(iran, country).

opponentslnConflict(iran, iraq,
hYP_TerritorialDispute_28532600)

Rules in the KB:

opponentslnConfliet(Y, X, EVENT)
opponentslnConflict(X, Y, EVENT).

Theorem provers, again

One theorem prover which has been
implemented as an Prolog compiler is PTTP: the
Prolog Technology Theorem Prover [Stiekel,
1988, 1989]. PTTP is a refutation-complete
inference engine for FOL which uses a slight
extension of the Resolution Principle we have
mentioned. One of the techniques which PTTP
uses to achieve its level of generality is to employ
negation, not as an operator, but in the form of
individually negated predicates, i.e., for each
predicate p(x), the negation of the predicate
expressed as a predicate, not_p(X). This
translation is accomplished during the
compilation state of a query (and so adds little to
the execution process, while it is transparent to

88

the user), but it has the drawback that PTTP must
compile each contained disjunction of an
expression in conjunctive normal form in both
positive and in several contrapositive forms. This
last feature does impede execution. It also means
that PTTP must sometimes be resolving over
highly ’unnatural’ forms; hence, forms less likely
to produce fi’uitful inferences in the course of
proof construction.

At Teknowledge we are presently implementing
an XSB compiler for our knowledge
representations which employs an adaptation of
the Van Le strategy of negation.

Sagonas, Swift, Warren, Freire, Rao, Dawson,
Kife. April 4, 2000. The XSB System, Version
2.2, Vols. 1, 2, Programmer’s Manual,
http://xsb.sourceforge.net/.

Stickel, M.E. 1988. A Prolog technology theorem
prover: implementation by an extended Prolog
compiler. Journal of Automated Reasoning 4, 4,
353-380.

Stickel, M.E. June, 1989. A Prolog technology
theorem prover: a new exposition and
implementation in Prolog. Technical Note 464,
Artificial Intelligence Center, SILl International,
Menlo Park, California.

References

Cohen, Chaudhri, Pease and Schrag. 1999. Does
Prior Knowledge Facilitate the Development of
Knowledge Based Systems, proceedings of
AAAI-99.

Cycorp, 1999, Features of the CycL Language.
http://www.cyc.com/cycl.html

Chang , C-L and Lee, R C-T. 1973. Symbolic
Logic and Mechanical Theorem Proving.,
Academic Press, NewYork.

Genesereth, M. and Fikes, R. 1995, Knowledge
Interchange Format v. 3.0.
http://logic.stanford.edu/kif/Hypertext/kif-
manual.html

Hogger, Christopher. 1984. Introduction to Logic
Programming. Academic Press, London.

Pease, A., Chaudhri, V., Lehmann, F., and
Farquhar, A., 2000, Practical Knowledge
Representation and the DARPA High
Performance Knowledge Bases Project,
proceedings of KR-2000.

Robinson, J.A. January, 1965. A Machine
Oriented Logic Based on the Resolution
Principle. J. ACM 12, pp. 23-41.

Van Le, T. 1993. Techniques of Prolog
Programming (with implementation of logical
negation and quantified goals). John Wiley
Sons, Inc., New York, 601 pp.

Wan-en, David S. July 31, 1999. Programming in
Tabled Prolog (Dratt).
http://www.cs.sunysb.edu/~warren/xsbbook/book
.html

89

