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Abstract

In this paper bounded model checking of asynchronous con-
current systems is introduced as a promising application area
for answer set programming. This is an extension of ear-
lier work where bounded model checking has been used for
verification of sequential digital circuits. As the model of
asynchronous systems a generalization of communicating au-
tomata, 1-safe Petri nets, are used. A mapping from bounded
reachability and deadlock detection problems of 1-safe Petri
nets to stable model computation is devised. Some experi-
mental results on solving deadlock detection problems using
the mapping and the Smodels system are presented. They
indicate that the approach is quite competitive when search-
ing for short executions of the system leading to deadlock.

Introduction
In this paper we put forward verification and, in particular,
symbolic model checking (Burch et al. 1992; Clarke, Grum-
berg, & Peled 1999) as a promising application area for an-
swer set programming systems. In particular, we demon-
strate how bounded model checking problems of asyn-
chronous concurrent systems can be reduced to computing
stable models of logic programs.
Verification of asynchronous systems is typically done by

enumerating the set of reachable states of the system for
all possible interleavings of atomic actions. Tools based on
this approach (with various enhancements) include, e.g., the
SPIN system (Holzmann 1997), which supports extended
state machines communicating through FIFO queues, and
the PROD tool (Varpaaniemi, Heljanko, & Lilius 1997)
based on high-level Petri nets. The main problem with enu-
merative model checkers is the amount of memory needed
to store the set of reachable states.
Symbolic model checking is widely applied especially in

hardware verification. The main analysis technique is based
on (ordered) binary decision diagrams (BDDs). In many
cases the set of reachable states can be represented very
compactly using a BDD encoding. Although the approach
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has been successful, there are difficulties in applying BDD-
based techniques, in particular, in areas outside hardware
verification. The key problem is that some Boolean func-
tions do not have a compact representation as BDDs and
the size of the BDD representation of a Boolean function
is very sensitive to the variable ordering used for construct-
ing the BDD. Bounded model checking (Biere et al. 1999)
has been proposed as a technique for overcoming the space
problem by replacing BDDs with SAT checking techniques
because typical SAT checkers use only polynomial amount
of memory. The idea is roughly the following. Given a se-
quential digital circuit, a (temporal) property to be verified,
and a bound �, the behavior of a sequential circuit is un-
folded up to � steps as a Boolean formula � and the nega-
tion of the property to be verified is represented as a Boolean
formula �. The translation to Boolean formulae is done so
that � �� is satisfiable iff the system has a behavior violat-
ing the property of length at most �. Hence, bounded model
checking provides directly interesting and practically rele-
vant benchmarks for any answer set programming system
capable of handling propositional satisfiability problems. A
main advantage of the bounded model checking approach is
that it can find fast counterexamples, i.e., behaviors violating
the correctness requirements. When searching for the coun-
terexamples by increasing gradually the bound �, one finds
those of minimal length. This helps the user to understand
the counterexamples more easily.
Until now bounded model checking has been applied to

synchronous hardware verification. In this work we extend
the approach to handle asynchronous concurrent systems. In
order to illustrate the approach we use a simple basic model
of asynchronous systems. We employ Petri nets and, in par-
ticular, focus on 1-safe Place/Transition nets (P/T-nets) as an
interesting generalization of communicating automata (De-
sel & Reisig 1998). It turns out that bounded model check-
ing for 1-safe P/T-nets is closely related to planning and
techniques used in, e.g., SAT planning could be employed.
Here we show how to map bounded model checking prob-
lems to the problem of finding stable models of logic pro-
grams by employing ideas used in reducing planning to sta-
ble model computation (Niemelä 1999).
The structure of the rest of the paper is the following. In

the next section we introduce Petri nets and the bounded
model checking problem. Then we present an extension of
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Figure 1: Running Example: A 1-safe P/T-net

the stable model semantics which we employ in the follow-
ing section to achieve a compact encoding of boundedmodel
checking using logic programs. We discuss mappings to al-
ternative ASP formalism, present some experimental results,
and end with some concluding remarks.

Petri nets and bounded model checking
We will now introduce P/T-nets. They are one of the sim-
plest forms of Petri nets. We will use as a running example
the P/T-net represented in Figure 1.
A triple ��� �� � � is a net if � � � � � and � 	

��
� ����
� �. The elements of � are called places, and
the elements of � transitions. Places and transitions are also
called nodes. The places are represented in graphical nota-
tion by circles, transitions by squares, and the flow relation
� with arcs.
We identify � with its characteristic function on the set

�� 
 � � � �� 
 � �. The preset of a node �, denoted by
��, is the set �	 � � � � � �	� �� � ��. In our running
example, e.g., �
� � ���� ���. The postset of a node �,
denoted by ��, is the set �	 � � � � � ��� 	� � ��. Again
in our running example ��� � �
�� 
�� 
��.
A marking of a net ��� �� � � is a mapping � �� �	.

A marking � is identified with the multi-set which con-
tains ���� copies of � for every � � � . A 4-tuple

 � ��� �� ����� is a net system (also called a P/T-net)
if ��� �� � � is a net and �� is a marking of ��� �� � �. A
marking is graphically denoted by a distribution of tokens
on the places of the net. In our running example in Figure 1
the net has the initial marking�� � ���� ���.
A marking � enables a transition 
 � � if �� � � �

� ��� 
� � ����. If 
 is enabled, it can occur leading to

a new marking (denoted �
�
� � �), where � � is defined

by �� � � � � ���� � ���� � � ��� 
� � � �
� ��. In the
running example the transition 
� is enabled in the initial

marking��, and thus��

��
�� �, where� � � ���� ��.

A marking�� is reachable in 
 if there is an execution,
i.e. a (possibly empty) sequence of transitions 
�� 
��    � 
�
and markings������    ����� such that: ��

�����

���

  ����
��� ��. A marking � is reachable within a

bound �, if there is an execution with � � transitions, with
which� is reachable from the initial state.

A marking is 1-safe if �� � � � ���� � �. A P/T-net

 is 1-safe if all its reachable markings are 1-safe. Notice
that 1-safeness is a semantic property. However, it can be
guaranteed by construction, as is usually done in modeling.
In this work we will restrict ourselves to P/T-nets which are
1-safe, have a finite number of places and transitions, and in
which each transition has both nonempty pre- and postsets.
Given a 1-safe P/T-net 
, we say that a set of transi-

tions � 	 � is concurrently enabled in the marking � ,
if (i) all transitions 
 � � are enabled in� , and (ii) for all
pairs of transitions 
� 
� � �, such that 
 �� 
�, it holds that
�
 � �
� � �. If a set � is concurrently enabled in the mark-

ing� , we can fire it in a step (denoted�
�
� � �), where

� � is the marking reached after firing all of the transitions
in the step � in arbitrary order. (It is easy to prove by us-
ing the 1-safeness of the P/T-net 
 that all possible orders
of transitions in a step � are enabled in� , and that they all
lead to the same final marking� �.) In our running example
in the marking� � � ���� �� the step �
�� 
� is enabled,
and will lead back to the initial marking ��. This is de-

noted by � � �������
� ��. Notice also that for any enabled

transition, the singleton set containing only that transition is
always (trivially) a step.
We say that a marking �� is reachable in step

semantics in a 1-safe P/T-net 
 if there is an step
execution, i.e. a (possibly empty) sequence of steps
��� ���    � �� and markings ������    ����� such

that: ��

��� ��

���   ����
��� ��. A marking

� is reachable within a bound � in the step semantics, if
there is a step execution with at most � steps, with which�
is reachable from the initial state.
We will often refer to the “normal semantics” as interleav-

ing semantics to more clearly distinguish it from the step
semantics. Note that if a marking is reachable in � transi-
tions in the interleaving semantics, it is also reachable in �
steps in the step semantics. However, the converse does not
necessarily hold. We have, however, the following theorem:

Theorem 1 For 1-safe P/T-nets the set of reachable mark-
ings in the interleaving semantics and the set of reachable
markings in the step semantics coincide.

Reachability and deadlock detection are among the most
important problems in the analysis of Petri net models.

Definition 1 (Reachability) Given a 1-safe P/T-net 
 and
a 1-safe marking� , is� a reachable marking of 
?

Definition 2 (Deadlock) Given a 1-safe P/T-net 
, is there
a reachable marking � which does not enable any transi-
tion of 
?

The reachability and deadlock problems for 1-safe Petri nets
are PSPACE-complete (Jones, Landweber, & Lien 1977;
Esparza 1998).
In the bounded case there are now two problems and two

different semantics to consider. We will define only one of
them, the others are defined in a similar fashion.

Definition 3 (Bounded deadlock, step semantics) Given a
1-safe P/T-net 
 and an integer bound � � �, is there a



marking� reachable within the bound � in the step seman-
tics such that� does not enable any transition of 
?

It is straightforward to prove that the bounded versions of
the problems are NP-complete when the bound � is given in
unary encoding. We can think about the bounded versions
of the problems as approximations of the original problem
which become increasingly better as the bound � increases.
The main motivation for using the bounded version is that

if we find a solution, then the original problem has also that
same solution. If not, we can increase the bound, and our ap-
proximation becomes better. Notice that if we set the bound
to be � � ���� � � ��, the bounded and non-bounded ver-
sions are guaranteed to be equivalent for both problems and
semantics. This is easy to see, as ��� � is the upper bound
on the number of 1-safe markings. Using such a bound is,
however, not practical for most systems having hundreds or
thousands of places. For most net systems a smaller bound
suffices for completeness.
The concurrencybetween transitions in the step semantics

often makes it possible to reach states using a smaller bound
than for the interleaving semantics. The choice of semantics
can have quite significant effects on the performance of the
bounded model checking in practice (see Experiments).
We will now define the notion of a reachability diame-

ter for both semantics, which is the semantic version of the
“sufficient bound”:

Definition 4 (Reachability diameter) Given a 1-safe P/T-
net 
, the reachability diameter � for the step (interleaving)
semantics is the smallest integer � � � such that the set of
reachable markings and the set of reachable markings in the
step (interleaving) semantics within bound � coincide.

See (Biere et al. 1999) for discussion on how to obtain a
reachability diameter using a QBF formula (using a slightly
different definition of the diameter, however, the discussion
still applies here). In practice the currently used tools do not
support the calculation of the diameter for examples of inter-
esting size. Therefore the bounded model checking results
are usually not conclusive if a solution is not found. There-
fore, boundedmodel checking is at its best in “bug hunting”,
and not as easily applicable in verifying systems to be cor-
rect.

Stable model semantics
In this section we introduce logic programs and the stable
model semantics originally presented in (Gelfond & Lifs-
chitz 1988) for normal logic programs of the form

�� ���    � ��� not ���    � not ��  (1)

Recently, this approach has been extended to handle new
kinds of constructs such as cardinality and weight con-
straints (Niemelä, Simons, & Soininen 1999; Niemelä & Si-
mons 2000). In this work we employ rules with cardinality
constraints in order to obtain a succinct and simple encoding
of model checking problems. The rest of the section reviews
the stable model semantics for such rules.
A cardinality constraint is an expression of the form

� ����    � ��� not ���    � not ��� � (2)

where � and � are two integers giving the lower and upper
bound of the constraint, respectively. For a cardinality con-
straint � (2), we denote by ������ the corresponding set of
literals ����    � ��� not ���    � not ���. The idea is that
such a constraint is satisfied by a model for which the car-
dinality of the subset of the literals satisfied by the model is
between the integers � and � inclusive. Either of the bounds
can be omitted in which case a missing lower bound is be
taken as � and upper bound as�.
Cardinality constraint rules are of the form �� �

���    � �� where each �� is a cardinality constraint. They
are a generalization of normal rules, i.e., a literal � can be
seen as a shorthand for a cardinality constraint ����. For
instance, a rule

���� ��� ��� � � �not ��� not ��� � � ���� ��� ��� �� �

says that if at least one of ��� �� is missing from a stable
model, at least 1 but at most 2 from ���� ��� ��� are included,
and � is included, then some subset of ���� ��� ��� is con-
tained the model. Note that the empty set is also a possible
choice for the subset.
The semantics for cardinality constraint rules is a gener-

alization of the stable model semantics for normal logic pro-
grams and is given in terms of models that are sets of atoms.
Given a model � (a set of atoms) we use the notation � � �
iff � � � and � � not � iff � �� �.

Definition 5 A set of atoms � satisfies a cardinality con-
straint � of the form (2) (� � �) iff � � ���� �� � �
where

���� �� � �� � ������ � � � ��

is the number of literals in � satisfied by �.
A rule �� � ���    � �� is satisfied by � (� � �� �

���    � ��) iff � satisfies �� whenever it satisfies each of
���    � ��.

We also allow integrity constraints, i.e., rules without the
head constraint ��, which are satisfied if at least one of the
body constraints ���    � �� is not.
The idea is to define a stable model of a set of rules as a set

of atoms that satisfies the rules and is justified by them. Jus-
tifiability is captured by generalizing the concept of a reduct
used for normal rules (Gelfond & Lifschitz 1988).
The reduct �� of a constraint � of the form (2) w.r.t. a

set of atoms � is the constraint

�� ����    � ��� (3)

where �� � � � �not � � ������ � � � not ��. Hence,
in the reduct all negative literals and the upper bound are
removed and the lower bound is decreased by the number of
negative literals satisfied by� to account for the contribution
of the negative literals towards satisfying the lower bound.
For example, for a set � � ��� and a constraint �

� �not �� not �� �� 

the reduct �� is � ��� .
The reduct �� for a program � w.r.t. a set of atoms � is

a set of rules which contains a rule � � with an atom � as the



head if � � � and there is a rule � � � such that � appears in
the head and the upper bounds of the constraints in the body
of � are satisfied by �. The body of � � is obtained by taking
the reduct of the constraints in the body of �. Formally the
reduct is defined as follows.
Definition 6 Let � be a ground program and � a set of
ground atoms. The reduct �� of � w.r.t. � is defined by

�� � ��� ��
� �    � �

�
� � �� � ���    � �� � ��

� � ������� � � and for all � � ��    � ��
for the constraint �� of the form
� ����    � not ��� � ������ �� � ��

The role of the reduct is to provide the possible justifi-
cations for the atoms in �. Each atom in a stable model is
justified by the program in the sense that it is in the closure
of the reduct. The reduct is a set of rules of the form

�� ���    � �� (4)

where � is a ground atom and each constraint � � contains
only positive literals and has only a lower bound condition.
The closure ����� of a reduct � is defined as the unique
smallest set of atoms satisfying �. The uniqueness is im-
plied by the monotonicity of reduct rules, i.e., if the body of
a rule is satisfied by a model �, then it is satisfied by any
superset of �.

Definition 7 A set of ground atoms � is a stable model of a
program � iff � � � and � � ������.

Example 1 Consider a program �

� ���� ��� ��� ��

Observe that a stable model of a program�must be a subset
of the atoms appearing in the heads of the rules in� because
other atoms cannot appear in the closure of a reduct.
The empty set is not a stable model because � ��

� ���� ��� ��� � and similarly for every subset having more
than one of the atoms. However, ���� is a stable model of�
because it satisfies the rule and the reduct ����� � ��� ��
has ���� as its closure. In fact, � has three stable models
����, ����, and ���� as one would expect.
A program

��� � (5)

has two stable models �� and ��� demonstrating that stable
models are not necessarily subset minimal.

For the model checking applications in this paper two
features of cardinality constraints are important. One is
their ability to encode choices over subsets with rules of the
type (5). These kinds of choices can be encoded using nor-
mal rules only by introducing new extra atoms. The second
feature involves a conflict with two atoms out of a large set
of atoms, i.e., a rule of the form

� �����    � ���

which disallows any stable model contain at least two
atoms from ����    � ���. There seems to be no sim-
ple compact encoding of such a condition using normal
rules. The Smodels system (http://www.tcs.hut.
fi/Software/smodels/), which provides an imple-
mentation for cardinality constraint rules, includes primi-
tives supporting directly such constraints.

From bounded model checking to answer set
programming

In this section we develop a method for translating bounded
model checking problems of 1-safe P/T-nets to tasks of find-
ing stable models of cardinality constraint rules. We end the
section by discussing how a similar mapping could be done
using normal programs or propositional logic.
Consider a net � � ��� �� � � and a step bound �. We

construct a logic program �������, which captures the
possible executions of� up to � steps, as follows.

� For each place � � � , include a choice rule

������ � (6)

� For each transition 
 � � , and for all � � �� ��    � �� �,
include a rule

�
���� � ������    � �	��� (7)

where ����    � �	� is the preset of 
. Hence, a stable
model can contain a transition instance in step � only if
its preset holds at step �.

� For each place � � � and for all � � �� ��    � � � �,
include a rule

���� ��� ��
�����    � 

���� (8)

where �
��    � 

� is the preset of �. This says that �
holds in the next step if at least one of its preset transitions
is in the current step.

� For each place � � � , and for all � � �� ��    � � � �,
include a rule

� ��
�����    � 
	���� (9)

where �
��    � 
	� is the set of transitions having each �
in their preset and � � �. This rule states that at most one
of the transitions that are in conflict w.r.t. � can occur.

� For each place �, and for all � � �� ��    � �� �,

���� ��� ����� not 
�����    � not 
	��� (10)

where �
��    � 
	� is the set of transitions having � in
their preset. This is the frame axiom for � stating that
� holds if no transition using it occurs.

Consider the net � in Figure 1. The program ������� is
given in Figure 2. In the program������� the initial mark-
ing is not constrained but additional conditions on markings
can be stated using rules. For example, stable models not
satisfying a marking� at step � can be eliminate with rules

����� �� � �� not ����  � � ������ � �� �

�� ����  � � ������ � �� 

Example 2 For the initial marking �� of our running ex-
ample, the set ������ �� is

� not �����
� not �����

� �����
� ����

� �����

Now the stable models of the program ������ �� �
������� capture the markings reachable in � steps from



�
����� � �����
�
����� � ������ �����
�
����� � �����
�
���� � ����
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����� ��� 
����
����� ��� 
���
����� ��� 
����
���� ��� � �
����� 
�����
����� ��� 
����
� ��
����� 
����� 
�����
����� ��� ������ not 
����
����� ��� ������ not 
�����

not 
����� not 
����
����� ��� ������ not 
����
���� ��� ����� not 
���
����� ��� �����
where � � �� ��    �� �

������� �
������� �
������� �
������ �
������� �

Figure 2: Program �������

��. For the bound � � �, the program has four stable
models corresponding to the four possible steps:

������� ������ ������ ������
������� ������ 
����� ������ �����
������� ������ 
����� ������ �����
������� ������ 
����� ������ ������

For example, the first one corresponds to the empty step and
the second to a step where transition 
� occurs.

Any Boolean combination � of marking conditions can
be captured using a similar set of rules ����� ��. For exam-
ple, for eliminating stable models not satisfying a condition
� at step � requiring that ����� � � and (����� � � or
����� � �), it is sufficient to use rules ����� ��:

� not ����
����� ������ � ���������

� ���������� not �����
� ���������� �����

Now given a condition �� capturing initial markings for
which a net � is 1-safe, the stable models of ������ �� �
������� correspond to all executions of � up to � steps
from any initial marking satisfying��. Hence, our approach
can solve a reachability problem for a set of initial markings
given by a condition �� where the markings to be reached
are specified by another condition �.

Theorem 2 Let � � ��� �� � � be a 1-safe P/T-net for all
initial markings satisfying a condition ��. Net � has an
initial marking satisfying �� such that a marking satisfying
a condition� is reachable in at most � steps iff������ ���
������� � ����� �� has a stable model.

This approach can be adapted easily to handle deadlock
checking by adding rules�	����� eliminating stable mod-
els where some transition is enabled. Program �	�����
includes for each transition 
 � � , a rule

� ������    � �	��� (11)

where ����    � �	� is the preset of 
.

For our running example, the rules �	����� are

� �����
� ������ �����

� �����
� ����

Theorem 3 Let � � ��� �� � � be a 1-safe P/T-net for all
initial markings satisfying a condition��. Net� has an ini-
tial marking satisfying �� such that a deadlock is reachable
in at most � steps iff ������ �� � ������� � �	�����
has a stable model.

So far in this section we have considered only the transla-
tions of the step semantics versions of the problems. We can
create the interleaving semantics versions of all the prob-
lems by adding a set of rules �
����� to the step version of
the problem. The set �
����� includes for each time step
� � � � �� � a rule

� ��
�����    � 
����� (12)

where �
��    � 
�� is the set of all transitions. These rules
eliminate all stable models having more than one transition
firing in a step.

Corollary 1 Let ������� be a translation solving a
bounded model checking problem in the step semantics us-
ing a translation given above. Then the program��������
�
����� solves the same problem in the interleaving se-
mantics.

In (Biere et al. 1999) it is shown how bounded model
checking can be done also for linear time temporal logic
LTL. An interesting area of further work is to extend
bounded model checking of LTL formulae to the asyn-
chronous case. One of the main challenges is to allow as
much concurrency as possible, to obtain as small as possi-
ble diameter for the LTL model checking translation. Also
the safety property subset of LTL is interesting in this con-
text (Kupferman & Vardi 1999), as a simpler translation for
that LTL subset is possible.

Mappings to other ASP formalisms
Normal programs The mappings described above could
be done to normal logic programs. In fact, only rules (6),
(7), (8), (9), and (12) are not normal ones. The first three are
simple to handle. For example, (7) can be replaced by two
normal rules


���� not 
����� ������    � �	���

����� not 
���

(13)

where a new atom 
���� is introduced and (8) with � rules

���� ��� 
����
  
���� ��� 

���

However, the case of (9) and (12) is more challenging and
there seems to be no simple way of encoding such condi-
tions using only a linear number of normal rules. Hence,
the mappings can be done using normal rules but because of
conditions such as (9), the number of rules for each step in
the resulting program is not linear in the size of the net as is
the case for the mapping to cardinality constraint rules.



Propositional satisfiability The mapping from P/T-nets
to propositional satisfiability is also fairly straightforward
to construct. For example, one can use the mapping to
normal programs discussed above as the basis. The pro-
gram is acyclic except for rules (13). Hence, one can em-
ploy Clark’s completion and an extension of Fages’ theo-
rem (Fages 1994) discussed in (Babovich, Erdem, & Lifs-
chitz 2000). However, the size of the set of the resulting
propositional formulae for each step is not linear w.r.t. the
size of the -net because of the difficulties in encoding cardi-
nality conditions of the form (9) compactly using proposi-
tional formulae.
A further complication is caused by the fact that most ef-

ficient satisfiability checkers require that the input formu-
lae are transformed to conjunctive normal form (CNF). It
is non-trivial to tune the CNF transformation such that the
checkers have a reasonable performance. The basic prob-
lem is that an equivalent CNF formula can be exponentially
bigger than the original formula. This explosion is typically
avoided by introducing new atoms corresponding to subfor-
mulae but the new atoms can increase the search space of
the checker exponentially.

Experiments
We have implemented the translation of Theorem 2 from the
bounded model checking problem to the problem of finding
a stable model. Also the deadlock checking part �	�����
and the interleaving semantics part �
����� can be option-
ally added. The translation was implemented in C++ in quite
a straightforward manner with only two simple optimiza-
tions included:

� Place and transition atoms are added only from the time
step they can first appear on. Only atoms for places ����
in the initial marking are created for time � � �. Then for
each � � � � ���: (i) Add transition atoms for all transi-
tions 
��� such that all the place atoms in the preset of 
���
exist. (ii) Add place atoms for all places ������ such that
either the place atom ���� exists or some transition atom
in the preset of ���� �� exists.

� Duplicate rules are removed. (Duplicates can appear in
the conflict (9) and liveness (11) rules.)

As benchmarks we use a set of deadlock checking bench-
marks collected by Corbett (1995), where more detailed in-
formation about them can be found. They have been con-
verted from communicating state machines to 1-safe P/T-
nets by Melzer and Römer (1997). The models were picked
from those which have a deadlock. For each model and both
semantics we incremented the used bound until a deadlock
was found. We report the time for smodels to find the first
stable model using this bound. In some cases a model could
not be found within a reasonable time in which case we re-
port the time used to prove that there is no deadlock within
the reported bound.
The experimental results can be found in Fig. 3. The

columns of the table are the following:

� Problem: The problem name with the size of the instance
in parenthesis.

Problem �� � �� � St. � St.  Int. � Int.  States

DARTES(1) 331 257 32 0.5 32 0.5 �250000

DP(6) 36 24 1 0.0 6 0.1 728

DP(8) 48 32 1 0.0 8 0.3 6554

DP(10) 60 40 1 0.0 10 3.3 48896

DP(12) 72 48 1 0.0 12 617.4 �350000

ELEV(1) 63 99 4 0.0 9 0.4 137

ELEV(2) 146 299 6 0.5 12 3.9 1061

ELEV(3) 327 783 8 5.6 15 139.0 7120

ELEV(4) 736 1939 10 157.2 �13 1215.2 43439

HART(25) 127 77 1 0.0 �5 1.0 52

HART(50) 252 152 1 0.0 �5 5.7 102

HART(75) 377 227 1 0.0 �5 15.5 152

HART(100) 502 302 1 0.0 �5 35.9 202

KEY(2) 94 92 �25 1937.9 �26 56.1 536

MMGT(3) 122 172 7 11.1 10 87.2 7702

MMGT(4) 158 232 8 687.3 �11 1874.1 66308

Q(1) 163 194 9 0.1 �17 2733.7 123596

SENT(25) 104 55 2 0.0 3 0.0 231

SENT(50) 179 80 2 0.0 3 0.0 281

SENT(75) 254 105 2 0.0 3 0.0 331

SENT(100) 329 130 2 0.0 3 0.0 381

SPD(1) 33 39 1 0.0 4 0.0 8689

Figure 3: Experiments

� � : Number of places in the original net.

� � : Number of transitions in the original net.

� St. �: The smallest integer � such that a deadlock could
be found using the step semantics / in case of � � the
largest integer � for which we could prove that there is no
deadlock within that bound using the step semantics.

� St. �: The time in seconds to find the first stable model /
to prove that there is no stable model. (See St. � above.)

� Int. � and Int. �: defined as St. � and St. � but for the
interleaving semantics.

� States: Number of reachable states of the P/T-net (if
known).

The times reported are the average of 5 runs of the time
for smodels 2.26 as reported by the /usr/bin/time
command on a 450Mhz Pentium III PC running Linux. (The
time needed for creating the smodels input was quite small,
and therefore omitted.)
In many of the experiments the step semantics version had

a much smaller bound than the interleaving one. Also, when
the bound needed to find the deadlock was fairly small, the
bounded model checker was performing well.
The DP(x) problems are dining philosophers problems,

where in the step semantics the counterexample could al-
ways be found with a bound of 1, while in the interleaving
semantics the bound grew at the same speed as the number
of philosophers. In the examples ELEV(4), HART(x) and
Q(1) we were able to find the counterexample only when
using step semantics.
In the KEY(2) example we were no able to find a coun-

terexample with either semantics, even though the problem
is known to have only a small number of reachable states. In



contrast, the DARTES(1) problem has a large state-space,
and despite of it a counterexample of length 32 was ob-
tained. Thus it seems that the size of the state space is not
always decisive in the boundedmodel checker running time.
This is the first set of experiments we have tried with asyn-

chronous system benchmarks, and no major work has gone
into obtaining the best possible performance. Overall, the
results are promising, in particular, for small bounds and the
step semantics. However, we need to get a better understand-
ing of the behavior of the boundedmodel checking approach
by doing more experiments.

Conclusions
We introduce bounded model checking of asynchronous
concurrent systems modeled by 1-safe P/T-nets as an in-
teresting application area for answer set programming. We
present a mapping from bounded reachability and deadlock
detection problems of 1-safe P/T-nets to stable model com-
putation. The first experimental results indicate that sta-
ble model computation is a quite competitive approach to
searching for short executions of the system leading to dead-
lock and worth further study.
In our approach it is possible to do model checking for

a set of initial markings at once. This is usually difficult
to achieve in current enumerative model checkers and often
leads to state space explosion. All our benchmark exper-
iments used only a single initial state, as they were origi-
nally designed for a tool which does not support this fea-
ture. Thus more experimental work is needed on this aspect
of the translation. The bounded model checking translation
can also be seen more goal directed than the explicit state
version, as the constraints based on the final state of the sys-
tem can guide the search.
The net unfoldingmethod (see (Heljanko 1999; Melzer &

Römer 1997) and further references there) is another sym-
bolic model checking approach for asynchronous systems,
where answer set programming has been employed. Re-
lating this approach to bounded model checking would be
interesting. As further work the LTL model checking and
the safety LTL model checking problems look interesting.
There are also alternative semantics to the two presented in
this work. Experiments are needed to determine whether
they are useful for bounded model checking.
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