
Set Semantics and Operations Based Upon Answer Set Semantics

James D. Jones

Computer Science
College of Information Science and Systems Engineering

University of Arkansas at Little Rock
2801 S. University Av.

Little Rock, AR. 72204-1099
james.d.jones@acm.org

I. Abstract

We propose to extend the language of extended logic
programs by providing a declarative semantics for the use of sets
as terms. Such an extension is intuitively natural, since humans
frequently reason about collections of items. Our approach to
defining a declarative semantics for sets differs from other
approaches in that other approaches are very limited in their use
of negation, and our approach is model-theoretic in a context
allowing multiple models. Further, our approach is based on the
answer set semantics, providing a well understood foundation.
The language defined here can represent a wide range of
common sense problems. As a side effect, an auxiliary
contribution of this work is that a subset of this work provides a
declarative semantics for how the setof symbol and how sets as
terms should be and can be implemented in Prolog..

II. Motivation and Preview

In this paper, we extend the language of extended
logic programs (Baral, Gelfond 94) by defining a
declarative semantics for sets as terms. This is achieved
by the addition of two built-in predicates, setof and r.
Also added are the punctuation symbols {, }, [, and].
While there are other approaches for defining semantics
for sets (Beeri, et. al. 91, Dovier et al. 96, Gervet 94,
Jayaraman, Plaisted 89, Kuper 90), it is believed that our
semantics is a) simpler, and b) more expressive (as a
consequence of being defined in a rich family of
languages). The greater expressiveness results from a)
allowing arbitrary set terms (for example, any level of
nesting of sets and lists), and b) allowing programs that
have multiple belief sets. (Although, the proof of these
claims is beyond the scope of this paper.)

The primary motivation for these extensions is
that many real-life queries (or processing requests) are of
the form “give me the set of all” For example, one may
ask, “give me the set of all employees which have not
received a raise in the past two years.” Other types of
queries involving sets are queries involving ranking. For
example, one may ask “who are the top 10 active baseball

players,” or “what rank is John Doe.” One must know the
set of all baseball players, and the evaluation criteria, in
order to answer such questions. Of course, one could
“hard code” such an answer with something like
rank(“john doe”, 3). However, such an approach is not
general purpose, and is fraught with problems.

As will be defined more precisely later, to answer
such set related questions, we will define the predicate
setof. For readers familiar with Prolog, the syntax will be
very similar to the syntax of the built-in predicate of the
same name. That is, it will be of the form:

setof(X, F, S)

where the first argument will contain the variables for
which we wish to “collect” data; the second argument will
contain the formula(e), or criteria, which define the data
we want to collect; and the final argument will be the set
into which the results will be placed. Again, for readers
familiar with Prolog, the semantics of setof in our
language has similarities to the procedural meaning of the
built-in Prolog predicate setof, where the unbound
variables are universally quantified.

Our semantics is based on entailment. This fact
provides the fundamental distinction between our
approach and other approaches. The only elements which
can appear in such a set are those terms appearing in
ground instances of the formula(e) contained in the setof
predicate which are entailed by the belief set(s).

III. Formalization of the Language

A. Syntax

The language that we are considering will consist
of predicate constants, function constants, object
constants, object variables, the connectives ¬, not, and

��
,

and the symbols , (the comma), {, }, [, and]. setof and r
are special predicate constants defined by the language.

From: AAAI Technical Report SS-01-01. Compilation copyright © 2001, AAAI (www.aaai.org). All rights reserved.

Definition: A term is defined inductively as follows:
1. an object constant or an object variable is a

term.
2. if f is an n-ary function symbol and t1, ..., tn

are terms, then f(t1, ..., tn) is a term.
3. if t1, ..., tn n�0 are terms, then {t1, ..., tn} is a

term. (Terms of this form are called set
terms, and have the meaning normally
associated with sets.)

4. if t1, ..., tn n�0 are terms, then [t1, ..., tn] is a
term. (Terms of this form are lists.)

Note that item 3 of the definition of a term is the
major contribution of this definition. Note also that this
definition allows for arbitrary terms: terms with any level
of nesting of sets, and sets whose elements themselves are
arbitrary (formed from any traditional term, set or list.)

Definition: An atom is of the form P(t1, ..., tn), where P is
an n-ary predicate constant, the ti 0�i�n are
terms.

Definition: A literal is an atom or its strong negation
(i.e., P(t1, ..., tn) or ¬P(t1, ..., tn)).

Definition: An extended literal is a literal preceded by
not.

Definition: A formula is defined inductively as follows:

1. a literal is a formula
2. an extended literal is a formula
3. if F and G are formulae, then F,G is a

formula, read as a conjunction, F and G

4. if F(X�) is a formula, then setof(�(X�),F (X�),Y)
is a formula
 where

X� is an n-tuple of variables
appearing in F(X�), n�1

�(X�) and Y are arbitrary terms

5. if F(X�) is a formula, then ¬setof(�(X�),F (X�),Y)
is a formula
 where

X� is an n-tuple of variables
appearing in F(X�), n�1

�(X�), Y are arbitrary terms �

Note that items 4 and 5 of the definition of a
formula are the primary contribution of this definition.
For brevity, we accept the common definitions for ground
atoms, etc.

Definition: An extended logic program with setof
consists of rules of the form:

L � F1, ..., Fn

where
L is a literal
Fi are formulae
n�0 �

B. Semantics

1. Ground Rules

In the following, we consider the Herbrand
interpretation of symbols. Furthermore, we consider only
ground rules. Rules containing variables, except for X� in
setof(�(X�),F (X�),Y) are meant to represent schemas for
ground instances of rules. The Y in the setof formula of
such rules are replaced only by finite, ground, set terms.

2. Entailment With Respect to a Belief Set

Definition: Given an extended logic program with setof
�, Lit is the set of ground literals in the language
of �.

Definition: The definition of a literal l is the collection
of all ground instances of l which are heads of
rules.

Let � be an extended logic program with setof.
Let S�Lit be a set of literals such that for every literal l �
S appearing in a formula in � involving setof, the
definition of l is finite.

Definition: Entailment w.r.t. S. Let Q be some ground
formula.

case 1: Q is of the form setof(�(X�),F (X�),Y).
S � Q iff Y is {�(t�): S � F(t�) where
�(t�) is an arbitrary term formed from
the tuple of ground terms which are
among the ground terms appearing in
F}.

case 2: Q is of the form ¬setof(�(X�),F(X�),Y).
S � Q iff Y is not {�(t�): S � F(t�)
where �(t�) is an arbitrary term formed
from the tuple t� of ground terms which
are among the ground terms appearing
in F}.

case 3: Q is a literal. S � Q iff Q � S.
case 4: Q is an extended literal, that is, of the

form not P. S � Q iff P � S. �

Note that the difficulty in defining entailment of
setof is the potential self-referential nature of setof. An
approach to semantics based on fixed points could lead to
an endless cycle. At the termination of each loop through
this cycle there could exist a different set. Entailment
based on this different set could yield results that
perpetuate the cycle. Our semantics avoids this difficulty
by first fixing a set S, and then defining entailment with
respect to this fixed set. This same difficulty, and this
same solution exists for defining a semantics for negation
as failure.

Definition: S satisfies a rule iff for every formula F in the
body of the rule, if S � F, then L, the head of the
rule, is an element of S. That is, L � S.

Definition: S is a belief set of � iff S is a minimal set
satisfying all the rules of �.

Example 1
Let � be the following program:

Pa �
Pb �
R(Y) � setof(X, P(X), Y)

Replacing the last rule with all the ground instances of the
schema, our program is the following:

(1) Pa �
(2) Pb �
(3) R({}) � setof(X, P(X), {})
(4) R({a}) � setof(X, P(X), {a})
(5) R({b}) � setof(X, P(X), {b})
(6) R({a, b}) � setof(X, P(X), {a, b})

Let S = {Pa, Pb, R({a, b}) }. Rules 3 thru 5 are satisfied
by S, since neither the bodies, nor their heads are entailed
by S. The body of rule 6 is entailed by S, therefore R({a,
b}) should be an element of S. Rules 1 and 2 are trivially
entailed by S. Since S is a minimal set satisfying the rules
of this program, S is a belief set of this program. There
are no other belief sets of this program. �

3. Entailment With Respect to a Program

Negation-as-failure creates the possibility that a
program may have a unique belief set, may have no belief
set, or may have more than one belief set. The semantics
defined so far in this paper does not accommodate
multiple belief sets. We will now extend our semantics to

accommodate multiple belief sets. This is the key point at
which we believe our semantics to be superior to other
attempts to define a semantics for sets. We believe that
there are also other reasons that our semantics are
superior, but the ability to reason in the presence of
multiple belief sets is clearly the most significant. It is
because our semantics is based upon entailment that our
semantics possesses this ability.

Definition: p_set_of is a special predicate constant
belonging only to the query language. It is of the
same syntactical form as setof.

p_set_of is introduced only as a convenience for
the reader, to avoid confusion between entailment w.r.t. a
belief set, and entailment w.r.t. a program. This
distinction is important only when the program has
multiple belief sets. For all intents and purposes, setof
could be used throughout. All the previous definitions
regarding grounding, formulas, etc. are correspondingly
modified to use p_set_of instead of setof in the
appropriate context defined as follows. Formulae
involving setof appear only in the bodies of rules.
Formulae involving p_set_of appear only as queries to
programs.

Definition: Entailment w.r.t. �. Let Q be some ground
formula. Let �(�) = {S: S is a belief set of �}.

case 1: Q is of the form p_set_of(�(X�),F(X�),Y).
� � Q iff Y is {�(t�): S � F(t�) for all S
� �(�), where �(t�) is an arbitrary
term formed from the tuple t� of ground
terms appearing in F}.

case 2: Q is of the form ¬p_set_of(�(X�),F(X�),Y).
� � Q iff Y is not {�(t�): S � F(t�) for
all S � �(�), where �(t�) is an
arbitrary term formed from the tuple t�
of ground terms appearing in F}.

case 3: Q is a literal. � � Q iff Q � S for all S �
�(�).

case 4: Q is an extended literal, that is, of the
form not P, where P is a ground literal.
� � Q iff P � S for some S � �(�). �

Definition: answers to queries. Let Q be some sequence
of ground formulae, q � Q be a ground formula.
For any such Q posed as a query to �, � answers
yes iff � � q for all q � Q, no iff � � ¬q for
some q � Q, and unknown otherwise. (That is, �
� Q iff � � q for all q � Q; � � ¬Q iff � � ¬q
for some q � Q; otherwise � �/ Q and � �/ ¬Q.)

Example 2
This example demonstrates entailment with respect to a
program, and demonstrates the difference between
entailment with respect to a belief set and entailment with
respect to a program. More importantly, this example
illustrates that caution must be used when reasoning about
sets which are entailed by a program. It may not be clear
what the user is actually reasoning about when reasoning
with sets.

Assume we have the following program. Assume also that
there exists a defined predicate number which determines
the cardinality of a set term.

attack(fred, me) �
attack(john, me) � not attack(bill, me)
attack(bill, me) � not attack(john, me)
setof_attackers(Y) � setof(X, attack(X, me), Y)

This program has two answer sets, S1 and S2 defined as
follows.

S1 = {attack(fred, me), attack(john, me),
setof_attackers({fred, john})}
S2 = {attack(fred, me), attack(bill, me),
setof_attackers({fred, bill})}

Note that belief set S1 entails

setof(X, attack(X, me), {fred, john})

and that belief set S2 entails

setof(X, attack(X, me), {fred, bill}).

Suppose that the user of this program has the following
informal rule: “if the number of attackers is 1, then fight,
otherwise run.” Suppose we ask the query

� p_set_of(X, attack(X, me), Y)

The program entails

p_set_of(X, attack(X, me), {fred}).

The user of such a program would be led to believe that
there was only one attacker, hence, “fight.” Yet, it is clear
that in each of the belief sets, the number of attackers is 2,
hence, the user should have “run.” This is not a problem
with the semantics. Rather, this example demonstrates
that one must make careful use of such a system. The
proper results would be obtained if we added the following
rules to the program. (We assume the standard
interpretation for integers.)

fight � set_of_attackers(S),
number(S, N),
N <_ 1

run � set_of_attackers(S),
number(S, N),
N >_ 1

The two answer sets for this program are:

S3 = {run, attack(fred, me), attack(john, me),
setof_attackers({fred, john})}

S4 = {run, attack(fred, me), attack(bill, me),
setof_attackers({fred, bill})}

Hence, the program properly entails run. What sets this
example apart is that we are not concerned about the set
entailed by the program. Rather, we are concerned about
characteristics (in this case, cardinality) of the sets
entailed by all the belief sets. Further, this example
illustrates that it is vitally important to consider
entailment with respect to a belief set and entailment with
respect to a program. A set entailed by a belief set may
implicate the contents of that belief set, which in turn
implicates what is entailed by a program. We have a
concomitant entailment. �

C. Set Operations

Definition: r(X, S1, S2) is an atom. This atom is true
when X � S1, and set S2 is the set obtained by
removing element X from set S1.

All the basic set operations can be defined in the
language itself, using the built-in predicate r(X, S1, S2).
Following are definitions for union, intersection,
difference, cardinality, member, equal, and subset.

	 member(X, S)
X is a member of set S

member(X, S) � r(X, S, S1)

	 union(S1, S2, S3)
the union of sets S1 and S2 is set S3

union({}, S, S).
union(S1, S2, S3) � r(X, S1, S1a),

r(X, S2a, S2),
union(S1a, S2a, S3).

The basic idea behind union is to recursively : 1)
define a set S1a which is composed of all but one of the
elements of set S1, 2) define a set S2a which is composed of
all of the elements of set S2 and the element in the
difference set of S1 - S1a, and 3) union the two new sets, S1a

and S2a.

	 intersection(S1, S2, S3)
the intersection of sets S1 and S2 is set S3

intersection(S, S, S).
intersection({}, S, {}).
intersection(S1, S2, S3) � r(X, S1, S1a),

r(X, S2, S2a),
r(X, S3, S3a),
intersection(S1a, S2a, S3a) .

intersection(S1, S2, {})� r(X, S1, S1a),
not member(X, S2),
intersection(S1a, S2, {}) .

The meaning of the first two rules is
straightforward: a set intersects itself, and the intersection
of a set and the empty set is the empty set. The basic idea
behind the third rule is to define three new sets by
removing the same element from the original sets, and
determine the truth of intersection involving these new
sets. The basic idea behind the last rule is that two sets are
disjoint if no element of the first set is also an element of
the second set.

	 difference(S1, S2, S3)
the set difference between S1 and S2 is S3

difference(S, {}, S).
difference(S1, S2, S3) � r(X, S1, S1a),

r(X, S2, S2a),
difference(S1a, S2a, S3)

difference(S1, S2, S3) � r(X, S2, S2a),
not member(X, S1),
difference(S1, S2a, S3)

The meaning of the first rule is straightforward.
The second rule is utilized in those cases where an element
occurs in each of the sets under consideration (i.e., S1 and
S2). The last rule is utilized in those instances where an
element occurs in the second set, and not in the first set.
We want to eliminate such elements from consideration.

	 cardinality(S, N)
the cardinality of set S is N

cardinality({}, 0).
cardinality(S, N) � r(X, S, S1),

cardinality(S1, N1),
N is N1 + 1.

The meaning of the first rule is straightforward:
the empty set has no elements. The last rule states that
the cardinality of a set is one greater than the cardinality
of a set composed from this same set with one element
removed.

	 equal(S1, S2)
set S1 is equal to set S2

equal({}, {}).
equal(S1, S2) :-

r(S, S1, S1a),
r(S, S2, S2a),
equal(S1a, S2a).

Two sets are equal if the same element can be
removed from both sets, and the resulting sets are equal.

	 subset(S1, S2)
set S1 is a subset of set S2

subset({}, S).
subset(S1, S2) � r(X, S1, S1a),

r(X, S2, S2a),
subset(S1a, S2a).

The empty set is a subset of every set. The basic
idea behind the last rule is that one set is a subset of
another if we can recursively remove the same element
from each, and determine that subset is true of the
resulting sets.

IV. Final Comments

We have defined a syntax and a declarative
semantics for the use of sets as terms in the context of the
answer set semantics. The syntax is powerful, allowing
arbitrary set terms to be represented at any level of
nesting. The semantics is simple, being defined with
respect to entailment. We have clearly differentiated
between that which is entailed by a belief set, and that
which is entailed by a program. This distinction is
important only when a program has multiple belief sets.

For programs with unique belief sets, that which is
entailed by a belief set coincides with that which is
entailed by a program. The answer set languages are very
expressive in that they can represent a wide range of
common sense problems. Endowing these languages with
the ability to reason about sets opens up a very large class
of problems that can be properly represented and reasoned
about.

It is believed that expanding this work to infinite
sets is relatively straightforward. It is also believed that
applying this semantics for sets to the more advanced
answer set languages (epistemic disjunction, and epistemic
specifications) is relatively straightforward. Future work
must consider more recent work on set semantics.

Acknowledgments

I wish to thank my teacher and mentor, Michael
Gelfond, for the many fruitful discussions that led to this
work.

Bibliography

(Apt, Bol 94) Apt, Krzysztof R., and Roland N. Bol:
Logic Programming and Negation: A Survey,
Journal of Logic Programming, vol 19/20
May/July 1994.

(Baral, Gelfond 94) Baral, Chitta, and Michael Gelfond:
Logic Programming and Knowledge
Representation, Journal of Logic Programming,
vol 19/20 May/July 1994.

(Beeri, et. al. 91) Beeri, S. Naqvi, O. Shmueli, and S.
Tsur: Set Constructors in a Logic Database
Language, Journal of Logic Programming,
10(3):181-232, 1991.

(Dovier et al. 95) Dovier, Agostino, Enrico Pontelli, and
Gianfranco Rossi: The CLP Language {log}, and
the relation between Intensional Sets and
Negation, New Mexico State University technical
report NMSU-CSTR-9503, March 95.

(Dovier et al 96) Dovier, Agostino, Enrico Pontelli, and
Gianfranco Rossi: {log}: A language for
programming in logic with finite sets, Journal of
Logic Programming, 28(1):1-44, 1996.

(Gelfond 92) Gelfond, Michael: Logic Programming and
Reasoning with Incomplete Information (to
appear in The Annals of Mathematics and
Artificial Intelligence, 1994)

(Gelfond, Lifschitz 88) Gelfond, Michael and Vladimir
Lifschitz: The Stable Model Semantics for Logic
Programming, 5th Intl Conference on Logic
Programming 1988

(Gelfond, Lifschitz 90) Gelfond, Michael, and Vladimir
Lifschitz: Logic Programs with Classical
Negation. In D. Warren and Peter Szeredi,
editors, Logic Programming: Proceedings or the
7th Int’l Conf, 1990.

(Gelfond, Lifschitz 91) Gelfond, Michael, and Vladimir
Lifschitz: Classical Negation in Logic Programs
and Disjunctive Databases, New Generation
Computing, No. 9 1991

(Gervet 94) Gervet, Carmen.: Constraint Logic
Programming with Finite Set Domains,
Proceedings of International Logic Programming
Symposium, 1994

(Gervet 97) Gervet, Carmen: Interval propagation to
reason about sets: Definition and
implementation of a practical language,
Constraints, 1(3):191-244, 1997.

(Jayaraman 92) Jayaraman, B.: Implementation of
Subset-Equational Programs, Journal of Logic
Programming, 12(4):299-324, 1992

(Jayaraman, Plaisted 89) Jayaraman, B., and D. A.
Plaisted: Programming with Equations, Subsets
and Relations, Proceedings of NACLP89, MIT
Press, 1989

(Kuper 90) Kuper, Gabriel: Logic Programming with
Sets, Journal of Computer and System Science,
1990

(Lloyd 87) Lloyd, J.W.: Foundations of Logic
Programming, Berlin, Germany: Springer-
Verlag

