
Genes and Ants for Default Logic

Pascal Nicolas, Frédéric Saubion, Igor Stéphan
LERIA, Université d’Angers

2 Bd Lavoisier, F-49045 Angers Cedex 01
pascal.nicolas � igor.stephan � frederic.saubion@univ-angers.fr

Abstract

Default Logic and Logic Programming with stable model se-
mantics are recognized as powerful frameworks for incom-
plete information representation. Their expressive power are
suitable for non monotonic reasoning, but the counterpart is
their very high level of theoretical complexity. The purpose
of this paper is to show how heuristics issued from combina-
torial optimization and operation research can be used to built
non monotonic reasonning systems.

Introduction
Default Logic (Reiter 1980) appears as a natural frame-
work in order to formalize common sense reasoning from
incomplete information and then it allows non monotonic
reasoning. The non monotonicity of this logic relies on
the fact that adding a new axiom may invalidate previous
deductions. Therefore, these deductions are only plausi-
ble and their set is called an extension. Due to its level
of theoretical complexity (��

� � �������� (Gottlob 1992)),
the computation of an extension is a great challenge. Pre-
vious works (Cholewiński et al. 1999; Niemelä 1995;
Schaub 1998) have already investigated this computational
aspect of default logic and even if some systems have good
performances on certain classes of default theories, there is
no very efficient system for general extension calculus. The
Stable Model Semantics for Logic Programming (Gelfond
& Lifschitz 1988) can be viewed as a particular case of De-
fault Logic (Bidoit & Froidevaux 1991) and its complexity
is �	 � �������� (Bidoit & Froidevaux 1991). In many
cases the framework of logic programs is suitable for the
encoding of many problems and the efficient system smod-
els (Niemelä & Simons 1996) is available for this task.
In this paper, we adopt the point of view of Default Logic

and deal with Stable Models of Logic Program as extensions
of a default theory without refeering to their specific seman-
tics. We present different heuristics and show how they can
be used to handle this extension computation problem. The
purpose of these algorithms is to progressively improve a
given initial configuration in order to reach a solution. The
three general following approaches are considered here. Ge-
netic Algorithms are based on the principles of natural se-
lection. Populations of possible solutions evolve through a
Copyright c� 2001, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

process of mutation and crossover in order to generate bet-
ter and better configurations. Ant Colony Optimization is
inspired by the observation of the collective behaviour of
ants when they are seeking food. The possible solutions are
now paths inside a graph, and paths become better and better
during the process. At last, Local Search relies on an incre-
mental improvement of a potential solution to a given prob-
lem by local movements from a configuration to its neigh-
bours. Part of this work has been developped in (Nico-
las, Saubion, & Stéphan 2000b) and (Nicolas, Saubion, &
Stéphan 2000a).

Problem Description
In Default Logic (Reiter 1980) knowledge is represented
by means of a default theory �
��� where
 contains the
“sure” knowledge (in this work it is a set of propositional
formulas) and� is a set of default rules (or defaults). A de-
fault Æ � � ����������

�
is an inference rule (, � and all �� are

propositional formulas) whose meaning is “if the prerequi-
site is proved, and if for all � � �� � � � � � each justifica-
tion �� is individually consistent (in other words if nothing
proves its negation) then one concludes the consequent � 1”.
Given a default theory it is possible to infer a set of plau-

sible conclusions called an extension and defined by Reiter
as the fixpoint of a special operator. But, we prefer to recall
here the equivalent following pseudoiterative characteriza-
tion because it is closer to our approach of the extension
computation.

Theorem 1 (Reiter 1980) Let �
��� be a default theory
and � a formula set. We define �� �
and for all � � �,

���� � ������ �

�
�

����
� ����������

�
� ���� � �

and � �� ����	� � �� � � � � �

�

Then, � is an extension of �
��� iff � �
��
����� .

For a set of formulas �, ����� denotes as usual the set of
logical consequences of�, and� � � has its common sense
of deduction in classical logic. It is important to note that
a default theory may have one or multiple extensions and

1If Æ is a default rule, ����Æ�, ����Æ� and ��	��Æ� respectively
denotes the prerequisite, the set of justifications and the consequent
of Æ. These definitions will be also extended for sets of defaults.

From: AAAI Technical Report SS-01-01. Compilation copyright © 2001, AAAI (www.aaai.org). All rights reserved.

sometimes no extension at all. In the theorem 1 we can re-
mark that �, the whole extension to build, is used in its own
definition. This non constructive characterization is also an
argument to choose a “guess and check” method as we have
done in this work.
Furthermore, given a default theory �
���, to compute

its extension � is equivalent to find its Generating Default
Set � since � � ���
 � �������� (Risch 1996).

Definition 1 Let � be an extension of a default theory
�
���, its Generating Default Set is

���
����� �

�
� ����������

�
� � � � and

� �� ����	� � �� � � � � �

�

To end this technical part, we recall the notions of
grounded default set and incrementally non-conflicting de-
fault set.

Definition 2 (Schwind 1990) Given a default theory
�
���, a set of defaults �
 � is grounded if � can
be ordered as a sequence �Æ�� � � � � Æ	� satisfying : 	� �
�� � � � � ��
 � ������Æ�� � � � � Æ����� � ����Æ���

Lemma 1 (Schwind 1990) Every generating default set is
grounded.

Definition 3 (Nicolas, Saubion, & Stéphan 2000a) Given a
default theory �
���, a set of defaults �
 � is incre-
mentally non-conflicting if � can be ordered as a sequence
�Æ�� � � � � Æ	� satisfying : 	� � �� � � � � ��	� � ����Æ���
 �
������Æ�� � � � � Æ��� �� ���

This last definition is strongly related to the non constructive
characterization of an extension as mentioned above.
Given a default theory �
���, the problem we address

in this paper consists in computing an extension � of this
theory. An Extension Computing Problem (ECP) can be de-
fined w.r.t. our heuristic approach by the following compo-
nents :

Definition 4 ECP

 A default theory �
���

 The set ��� � �
 of possible configurations called can-
didate generating default sets.

These candidate generating default sets characterize asso-
ciated candidate extensions which can be defined as :

Definition 5 Given a Default theory �
���, a candidate
generating default set � � ���, the candidate extension
associated to � is

���
����� � ���
 � ������Æ� � Æ � ���

Given an ��	 , a solution is a candidate generating de-
fault set � � ��� such that ���
����� is an extension
w.r.t. theorem 1.
The last step of our heuristic approach consists in defin-

ing an evaluation function in order to compute the fitness of
a candidate generating default set w.r.t. to the notion of so-
lution. This evaluation relies on the four intermediate func-
tions described below.

�� rates if the candidate extension is consistent or not.

����� �

�
� �� ����� is consistent
� ���������

�� rates the correctness of the candidate generating default
set with respect to the definition 1.

����� � �	��� �Æ�� ����� � � �!�"���

with defined as follows.

Æ� � � ����� � � ��� ����� � ����
���� ���� �!��� �
���� ���� ���� �
���� �!��� ���� �
���� �!��� �!��� �
�!��� ���� �!��� �
�!��� ���� ���� �
�!��� �!��� ���� �
�!��� �!��� �!��� �

� is a positive number that represents a penalty given to
each default that has been wrongly applied or wrongly not
applied.

�� rates the level of groudedness of the candidate generating
default set.

����� � �!�"�	�

where 	 is the biggest grounded set 	
 ������.

�� definitely checks this property

����� �

�
� �� ����� is grounded
� ���������

Then, we can give the whole definition of the evaluation
function.

Definition 6 Given a Default theory �
���, a candidate
generating default set � � ���, the evaluation of � is
defined by �#!�
 ��� � �� �����

if ����� � �
then �#!���� � �
else if ����� � � and ����� � �

then �#!���� � �
else �#!���� � ������ �����

Theorem 2 A solution of an ECP is a set � � ��� such
that �#!���� � �.

We now describe the different methods that we propose to
solve an ECP.

Genetic Algorithms
Genetic Algorithms (Michalewicz 1996; Holland 1975) are
based on the principle of natural selection. We first consider
a population of individuals which are represented by their
chromosomes. Each chromosome represents a potential so-
lution to the given problem. An evaluation process and ge-
netic operators determine the evolution of the population in
order to get better and better individuals. The different com-
ponents of a genetic algorithm are:

1. a representation of the possible configurations : in most
cases, chromosomes will be strings of bits representing
its genes,

2. a way to generate an initial population,

3. an evaluation function: it rates each potential solution,

4. genetic operators that define the evolution of the pop-
ulation : two different operators will be considered :
Crossover allows to generate two new chromosomes (the
offsprings) by crossing two chromosomes of the current
population (the parents), Mutation arbitrarily alters one
or more genes of a selected chromosome,

5. parameters : maximum population size ���� and prob-
abilities of crossover �� and mutation ��. We choose
���� � ��� ���� �

�����	
� .

A representation scheme consists of the two following el-
ements : a chromosome language � defined by a chosen
size and an interpretationmapping to translate chromosomes
in term of generating default set, which provides the se-
mantics of the chromosomes. In our context, for each de-
fault � ����������

�
we encode in the chromosome the prereq-

uisite with one bit, and all justifications ��� ���� �	 con-
jointly with one other bit. Therefore, given a set of de-
faults � � �Æ�� � � � � Æ	� the size of the chromosome will
be �� and the chromosome language � is the regular lan-
guage �� � ���	 (i.e. strings of �� bits). Given a chromo-
some � � �, ��� denotes the value of � at occurrence �.
Occurrences of � are elements of �������. The interpreta-
tion mapping, defining the semantics of the previous chro-
mosomes (the semantics of chromosome is also called its
phenotype), can be formally described as :
Definition 7 Given the set of default � and chromosome
language �, an interpretation mapping is defined as

�
� �� � ������ �!����such that :

	Æ� � ������ Æ�� �

�
���� if ������ � � and ���� � �
�!��� in other cases

Therefore, the chromosomes encode the candidate gener-
ating default sets as :

Definition 8 Given a default set �, a chromosome � � �,
the candidate generating default set associated to � is :

�������� � �Æ� � � � ���� Æ�� � �����

Intuitively, for a default Æ�, if ������ � � then its pre-
requisite is considered to be in the candidate extension
and if ���� � � no negation of its justifications is as-
sumed to belong to the candidate extension induced by �.
���
����� and �������� will be simply denoted
����� and ������ when it is clear from the context.
Remark that since we have to compute the set of logical
consequences of
 and of the consequents of the supposed
applied defaults, a theorem prover will be needed in our sys-
tem.

Example 1 Let �
��� � ��!�� �� � �
�
� � ���
��

� � � �
�
�� be a

default theory. We get : ����������� � � � � �
�
� and

���������� � ����!� ��� which is really an extension but
also ����������� � �� � �

�
� � ���
��

� and ���������� �
����!� ���$�� which is not an extension.

Generation of the initial population is crucial to the ef-
ficiency of genetic algorithms. The most simple way is a
random generation but this does not take into account the
considered default theory. A more efficient way consists
in generating chromosomes with already grounded pheno-
types. For a default theory �
���, the useful subset of �
is always grounded but usually� is not a generating default
set. So, the interesting phenotypes are the grounded (consis-
tent) subsets of �. We introduce a probability of insertion
of a default in the candidate generating default set � � to ran-
domly create a candidate and we randomly associate to each
default Æ of� a number �Æ � ��� �. The induction definition
below gives by fixpoint the candidate generating default set
��.

 �� � �� �� � �,

 	� % ��	Æ � �����
 � ���������� � ����Æ��
�� � ���� � �Æ� �� �Æ & �� !�"

 � ��������� � �Æ��� �� �
� ���� ���������

�� � ���� � �Æ�

Then a chromosome �� can be chosen randomly from
����������� � ���. We also guarantee that all the
chromosomes of the initial population are different.
The process is similar to generate an initial population

with incrementally non-conflicting grounded phenotypes.
The following condition is added to the inductive part of the
construction :

	� � �� � � � � ��	� � ����Æ��
 � ��������� � �Æ�� �� ��

However, we never completely check if all defaults are not
conflicting together because our goal is not to build a gen-
erating default set. All our thesis is this task is too difficult
for a classical algorithm so we just try to give good starting
points of our searching method.
The purpose of the selection stage is, starting from an

initial population 	 , to generate a selected population 	 ���
containing chromosomes with the best rates according to
the evaluation function. Genetic operators, which define
the evolution of the population, will be applied on this
intermediate population to get the next population deriving
from the initial 	 . The selection process is based on an
ordering � of the individuals, natural extension of the
usual ordering of � extended with: 	' � �� ' � � and
	' � ��� � '. Given a population 	 of size ����, we
built an ordered population

	� � ������� ���� ��!��
	�� �� � & � � �#!����� � �#!�����
	�� �� � �� � � �� �� �� �

The first condition implies that the chromosomes are ordered
w.r.t. to their evaluation and the second condition implies
that two identical chromosomes are represented only once in
	�. Note that if two chromosomes have the same evaluation
value, they are ordered arbitrarily.
We choose the ranking selection to generate the parent

population. Remind that the population size is such that
��� ���� �

�����	
� , i.e. ���� � ������.

To keep a large diversity of selected chromosomes as par-
ents, we introduce a Hamming distance (" that parents
must respect. Hamming distance is the number of differ-
ing bits between two binary chromosomes. We define the
family of sets of chromosomes �	����� as follows:

 	� � �,

 	� � 	���, �� the ��� chromosome of 	�,
if(!����)_"���!��������� � (" then 	� � 	��� �
���� else 	� � 	���.

The selected population 	��� is defined as 	� with
�!�"�	�� � � . The parents population 	����	��, that will
be used for crossover and mutation, is a multiset of chromo-
somes such that each ��� � & � in 	��� occurs � � � � �
times in 	����	��. This construction is required to preserve
the maximum size of the population ����.
As mentioned before, genetic operators are now applied

on the selected population	����	��. Crossover is performed
in the following way:

 select randomly two chromosomes in 	����	��
 generate randomly a number � � ��� �

 if � & �� then the crossover is possible;

– select a random position � � ��� � � � � ��� ��

– the two chromosomes �!�� ���� !�� !���� ���� !�	� and
�$�� ���� $�� $���� ���� $�	� are replaced by the two
new chromosomes �!�� ���� !�� $���� ���� $�	� and
�$�� ���� $�� !���� ���� !�	�.

 if the crossover does not occur then the two chromosomes
are put back in 	����	��.

Mutation is defined as :

 For each chromosome � � 	����	�� and for each bit $�
in �, generate a random number � � ��� �,

 if � & �� then mutate the bit $� (i.e. flip the bit).

The population obtained after these evolution operations
becomes the current population and will be the new input
of the whole process described previously. This full process
is repeated to generate successive populations and one has
to define the number of populations to be explored. The
best chromosome of each population w.r.t. the evaluation
function represents the current best solution to the problem.
This methodology has been implemented in our system

GADEL that is written in Prolog and is able to deal with ev-
ery kind of Reiter’s default theories. The performances of
GADEL are described below in the section Results.

Ant Colony Optimization
Ant Colony Optimization (ACO) metaheuristics (Dorigo,
Bonabeau, & Theraulaz 2000; Corne, Dorigo, & Glover
1999) have been inspired by the observation of the collec-
tive behaviour of ants when they are seeking food. For in-
stance, we suppose that there are many ants in a nest and
that we deposit food in a place linked to the nest by two dif-
ferent paths 	� and 	�, such that 	� is shorter than 	�. At
the beginning of their exploration approximatively the same
number of ants will choose one path or the other. But, after

few minutes, most of the ants will use the shortest path 	�.
The emergence of this shortest preferred path is explained
by the following points.

 every ant deposits a little bit of pheromone all along its
walk

 every ant directs itself by doing a probabilistic choice bi-
aised by the amount of pheromone that it finds on each
possible path

 the pheromone evaporates

Thus, the amount of pheromone on 	� will increase faster
than on 	� since in a same duration a greater number of ants
take this path. And consequently, a greater number of ants
will choose 	� since its attractivity becomes greater. And
so on, by reinforcement, the amount of pheromone on 	�
decreases and this on 	� increases directing almost all ants
on this shortest path.
This collective behaviour based on a kind of shared mem-

ory (the pheromone) can be used for the resolution of every
combinatorial problem that can be represented as the search
of a certain path in a graph. For the ECP in Default Logic
we propose the following encoding.

Definition 9 Let �
��� a default theory, its default graph
is

��
��� � �� � ���� ����� *�

where �� and ��� are two particular vertices added to the
default set, and * is the arc set defined by

* � ����� Æ��	Æ � ��
 � ����Æ�

!�" 	� � �	��Æ�
 � �����Æ� �� ���

� ��Æ� Æ�� � ��� Æ �� Æ��

� ��Æ� �����	Æ � ��

In addition, each arc ��� �� � * is weighted by an artificial
pheromone +��� that is a positive real number.

We do not systematically put an arc from �� to every default
in �, since we want to start the search by defaults that can
be applied in
 . In addition, after this initialization phase,
we remove from * the arcs

�Æ� _� !�" �_� Æ� �� �� � �	��Æ��
 � �����Æ� � ��

and
�Æ� Æ�� ��
 � �����Æ� � �����Æ�� � �

By this way we reduce the search space, because in the first
case such defaults (like � �

��
) can never be applied, and in the

second case the two defaults are incompatible together. Note
that in this case it does not forbid this two defaults to appear
in the same path as it is defined below. It is obvious, that
many other efforts could be done to prune this graph but this
could become very expensive.

Definition 10 Given a default theory �
���, a path	 from
�� to ��� in ��
���, the candidate generating default set
associated to 	 is 	 ��.

In the sequel, we identify vertices and defaults and we in-
differently use 	 as a generating default set or as a path in
the graph. The goal of ant colony is to find a path that corre-
sponds to a true generating default set. At the beginning, the

pheromone on every arc of the graph is initialized to � in or-
der to give equal chance to all paths. During the process this
pheromone globally evaporates and increases on arcs that
are on “good” paths in order to concentrate a great number
of ants on goods paths.
In order to guide each ant during its journey from �� to

��� we also used a local evaluation based on the next func-
tion ���.

Definition 11 Let 	 a path in the graph and Æ a default. We
say that:

 Æ is grounded in 	 , if
 � �����	 � � ����Æ�

 Æ is compatiblewith 	 , if 	� � �	��Æ�
������	 � �� ��

and we define
loc(, Æ) = 0.9 if Æ is grounded in 	 and compatible

with 	
= 0.5 if Æ is only compatible with 	
= 0.2 if Æ is only grounded in 	
= 0.1 otherwise

This local function combined with the recorded pheromone
leads to the definition of the attractivity of a vertex Æ for an
ant staying on the last vertex of a partial path 	 between ��
and ���. The coefficients were chosen intuitively and can be
adapted to improve the performance of the system.

Definition 12 Let ��
��� � �,�*� a default graph, 	
a path from vertex �� to vertex #�. We define ��#�� 	 � �
�#� � , �	 ���� �#�� #�� � *� the set of vertices reachable
from #� and the attractivity of each vertex #� � ��#�� 	 �

*�#�� #� � 	 � �
+��� � �����	� #�����

��������� 	
+��� � �����	� #����

where is a positive number that permits us to give more or
less influence of the local evaluation

This attractivity is the basis for the random walk of each ant
from �� to ��� as it is described in the next algorithm.

Function ant_travel
�������� ��
	 � �
while ������� �� ��� do

compute *��������� #� for all # � ���������� 	 �
choose vertex ��'� � ���������� 	 � with

probability*��������� ��'�� 	 �
add next at the end of 	
�������� ��'�

endwhile
return 	

And the whole algorithm is the following.

Procedure ACO_DL
input

�
��� a default theory
�$!�� the number of ants in the colony
�!'���� the maximum number of iterations
!���! the coefficient for local evaluation

initialize the graph��
���
����� �!���
���� � �

while not ���� do
for � � � to �$!�� do 	 ��� !��_��!#��
update + by means of the best � paths
	�� �+��� � +��� � ���� �* evaporation *�
��������� �#!��$����!��� � �
����� ����� % �!'����� �� ��������

endwhile

At each step, the best paths are determined with respect to
the �#!� function defined in Definition 6 and the update of
pheromone by means of the � �� best path 	 is done by.

+��� ��� +��� �� � ������� 	!����� ����	

Also, the chosen coefficient can be changed to improve the
system.
This methodology has been implemented in our system

ANTDEL that is written in Java and is able to deal with every
kind of normal logic program that we considered as default
theories. The performances of ANTDEL are described in the
section Results.

Local Search
Local Search is a class of powerful methods to tackle dif-
ficult optimization problems. The development of modern
metaheuristics such as Tabu Search or Simulated Anneal-
ing (Michalewicz & Fogel 2000; Aarts & Lenstra 1997) has
greatly increase their use and their efficiency. A general lo-
cal search procedure can be defined as

Procedure local search
choose an initial starting point ' in
While not termination condition do

'�improve(')
Endwhile
return(')

where is the search space. The sub-procedure improve(')
returns a new point - in the neighborhood of ' which is bet-
ter than ' if such a point exists. Designing a local search al-
gorithm consists in choosing the well suited notion of neigh-
borhood together with an appropriate termination condition
and the evaluation process. There exists many extensions of
this basic principle : descent method, descent with random
walk, metropolis, simulated annealing, tabu search ...
The evaluation of possible moves from a point to one of its

neighbors will be based on the previous evaluation function.
We just focus here on the basic structures : the definition
of a search space and of a neighborhood. Here, the search
space is the previously defined ���.
Concerning the moves in this search space, according to

the definition of candidate extensions associated to individ-
uals, they will be defined w.r.t. the notion of applied default.
We impose that two neighbor candidate generating default
sets differ only by one of their defaults. The neighborhood
can be defined as a function : !
 ��� � ��	
 such that
! ��� � �� � � ��� � � � � � � �Æ�� Æ �� � " � � �
���Æ�� Æ � ��. For our experiments, we choose to imple-
ment a simple local search method : Descent with Random
Walk. We recall this approach in our context :

Input : Initial individual �
Probability of random walk ���
Number of iterations Depth-LS

.���� �
�������� �
iter� 0
While iter # Depth-LS do

proba� random
if proba� 	��
then, w.r.t. �#!� function, choose the best

� � � ! ��������� � ���������
else choose randomly � � � ! ���������
�������� � �

if �#!���������� & �#!��.����
then .���� �������
iter� iter + 1

Endwhile
return .���

Note that the random walk principle is added to avoid lo-
cal minima. In our system, this procedure will be performed
on a given number of individuals randomly chosen in the
current population.

Results
The system GADEL is implemented in Sicstus Prolog 3.8.3.
and we have evaluated its performance on a family of exam-
ples from graph theory : the Hamiltonian cycle problem for
a ladder graph. Each problem �!�_� (�� vertices in the
graph) has been generated and encoded in a default theory
(���� defaults) by means of system tbase as it is described
in (Cholewiński et al. 1999) and has exactly two different
extensions.

�� � ! �� !� ! � �

� �� �
��� ���
 ��
��� ���

� �� ���� ���� �� ��� ���

 �
 �
��
 �
�� ����� ����

 �� �
��

��� ��� ���
 ����

� �� ���� �� ��� ���� ���

�� �� ���� ���� ��� ��
�� ����

�� �
 ����� ���� �� ���� ����

� �
 ����� ���� ���
��� �
�

Table 1: Influence of Hamming distance

Table 1 refers to the influence of the Hamming distance
for the problem �!�_� (30 runs per Hamming distance
(" with parameters ���� � ���, �� � ���, �� � ���,
�� � ���, an initial incrementally non-conflicting grounded
population, a one point crossover and a maximum number of
populations equal to 200). �/ is the number of successful
runs, � the average time in seconds of a run, �	 the aver-
age number of populations, �� the average time in seconds
to do one iteration, �/� the average time in seconds to do a
successful run and 	/ the average number of populations of
the successful runs. It shows the importance of population
diversity to increase the stability of themethod (in number of
iterations) and to speed up each iteration by decreasing the

size of the population. It demonstrates also that a too high
selective pressure ((" � ��) strongly reduces the chances
to have a successful run by decreasing too much the size of
the selected population (and then the offsprings).
The next study is based on the benchmark�!�_�with the

parameters : ���� � ���, �� � ���, �� � ���, (" � ��,
��� � ����. The figure 1 shows the improvement due to
the local search procedure w.r.t. the number of generations
to be explored to get a solution. The local search is per-
formed on 5 chromosomes at each generation. Of course,
increasing the number of local search iterations increases the
computation time. Based on our experiments, it seems that
a local search of depth � provides the best results w.r.t. the
ratio number of generations - time. The next figures 2 and 3

0

100

200

300

400

500

600

700

800

900

0 2 4 6 8 10

Nb
 o

f G
en

er
at

ion
s

Depth of LS

Figure 1: Generation number w.r.t LS Depth

show the influence of the number of chromosomes that are
improved by the local search on the number of generations
to be explored and on the computation time. These exper-

0

100

200

300

400

500

600

700

0 2 4 6 8 10

Ti
m

e
(s

)

Nb of Candidates for LS

Figure 2: Computation time w.r.t. Number of improved can-
didates

0

100

200

300

400

500

600

700

800

900

0 2 4 6 8 10

Nb
 o

f G
en

er
at

ion
s

Nb of Candidates for LS

Figure 3: Generation number w.r.t. Number of improved
candidates

iments show that the introduction of the local search algo-
rithm in the genetic algorithms process clearly improves its
performance. The only difficulty is then to adjust the differ-
ent parameters to get the best results.

We compare GADEL and its local search improvement
with DeRes (Cholewiński et al. 1999) because both systems
accept any kind of propositional closed default theories. In

GADEL GADEL+LS DeRes

Problem nd nad np cpu np cpu cpu

���_ 29 8 22.0 12.2 4.4 15.2 11.1

���_� 37 10 83.5 111.2 12.2 105.3 338.6

���_
 45 12 260.1 609.3 46.3 458.2 8868.1

Table 2: Comparison

table 2 the first column gives the used default theories. The
second and third columns show respectively number of de-
faults for this theory (nd) and number of applied defaults
for an extension of this theory (nad). The fourth and fifth
columns give respectively average number of populations
(np) and CPU time in seconds (cpu) for GADEL, sixth and
seventh columns give respectively average number of popu-
lations (np) and CPU time in seconds (cpu) for GADEL+LS
and finally the eighth column gives the CPU time in sec-
onds (cpu) for DeRes to compute one extension with the full
prover option.
The system ANTEL is implemented in Java So-

laris_JDK_1.2.1_04c and is able to deal with every Reiter’s
default theory that is equivalent to a logic program. ANTDEL
is not currently able to deal with any default theory because
we have not yet implemented a theorem prover inside it but
there is no theoretical restriction to envisage this task. The
performances related in the next table have been obtained
with colonies of 100 ants and 200 iterations at most and each
problem have been tested 100 times. %suc is the ratio of suc-
cessfull tests over the whole number of tests. ni (respectively
cpu) is the average number of iterations (respectively time in
sec) of the successfull tries. np is the number of paths that
are updated after each iteration and is the coefficient tha
goves more or less importance to the local evaluation.

problem � np %suc ni cpu

ham3x2 1 10 15 97 72

ham3x2 2 10 87 64 62

ham3x2 4 10 100 9 20

ham3x2 6 10 98 5 12

ham5x2 6 10 44 64 85

ham5x2 6 20 53 56 73

These very few and first results show that the local eval-
uation has to be fixed to at least � if one wants to obtain
acceptable results. But, this is only a first approach and,
for instance, we are working on a more complex structure
of pheromone in order to better exploit the notion of good
path.

Conclusion
In this paper, we have introduced various heuristics methods
to compute an extension of a default theory. At this time we
have implemented two systems GADEL and ANTDEL whose
performances have been described.
Future works will consist in improving these systems ei-

ther by including other optimization techniques or by study-
ing the parallel aspects of our algorithms in order to include
distributed computations.

References
Aarts, E., and Lenstra, J., eds. 1997. Local Search in Com-
binatorial Optimization. John Wiley and Sons.
Bidoit, N., and Froidevaux, C. 1991. General logical
databases and programs: Default logic semantics and strat-
ification. Information and Computation 91(1):15–54.
Cholewiński, P.; Marek, V.; Mikitiuk, A.; and
Truszczyński, M. 1999. Computing with default logic.
Artificial Intelligence 112:105–146.
Corne, D.; Dorigo, M.; and Glover, F. 1999. New Ideas in
Optimization. Mac Graw Hill.
Dorigo, M.; Bonabeau, E.; and Theraulaz, G. 2000. Ant al-
gorithms and stimergy. Future Generation Computer Sys-
tems 16:851–871.
Gelfond, M., and Lifschitz, V. 1988. The stable model
semantics for logic programming. In Proc of ICLP.
Gottlob, G. 1992. Complexity results for nonmonotonic
logics. Journal of Logic and Computation 2(3):397–425.
Holland, J. 1975. Adaptation in Natural and Artificial
Systemes. University of Michigan Press.
Michalewicz, Z., and Fogel, D. 2000. How to Solve It:
Modern Heuristics. Springer Verlag.
Michalewicz, Z. 1996. Genetic Algorithms + Data Struc-
tures = Evolution Programs. Springer Verlag.
Nicolas, P.; Saubion, F.; and Stéphan, I. 2000a. Combining
heuristics for default logic reasoning systems. In Proc of
the ���� IEEE ICTAI2000.
Nicolas, P.; Saubion, F.; and Stéphan, I. 2000b. Gadel : a
genetic algorithm to compute default logic extensions. In
Proc of ECAI, 484–488.
Niemelä, I., and Simons, P. 1996. Efficient implementation
of the well-founded and stable model semantics. In Maher,
M. J., ed., Proc of the Joint International Conference and
Syposium on Logic Programming, 289–303. MIT Press.
Niemelä, I. 1995. Towards efficient default reasoning.
In Mellish, C., ed., Proc of the IJCAI, 312–318. Morgan
Kaufmann Publishers.
Reiter, R. 1980. A logic for default reasoning. Artificial
Intelligence 13(1-2):81–132.
Risch, V. 1996. Analytic tableaux for default logics. Jour-
nal of Applied Non-Classical Logics 6(1):71–88.
Schaub, T. 1998. The Automation of Reasoning with In-
complete Information: From semantic foundations to effi-
cient computation, volume 1409 of LNAI. Springer Verlag.
Schwind, C. 1990. A tableaux-based theorem prover for a
decidable subset of default logic. In Stickel, M., ed., Proc
CADE. Springer Verlag.

