
An A-Prolog decision support system for the Space Shuttle

M. Nogueira
Department of Computer Science
University of Texas at El Paso

monica@cs.utep.edu

M. Balduccini, M. Gelfond, R. Watson
Department of Computer Science

Texas Tech University
�balduccini, mgelfond, rwatson�@cs.ttu.edu

M. Barry
Advanced Technology Development Lab

United Space Alliance
mrb@rice.edu

Abstract

The goal of this paper is to test if a programming methodol-
ogy based on the declarative language A-Prolog, algorithms
for computing answer sets of programs of A-Prolog, and
programming systems implementing these algorithms can
be successfully applied to the development of medium size
knowledge-intensive applications. We report on a successful
design and development of such a system controlling some of
the functions of the Space Shuttle.

Introduction
The research presented in this paper is rooted in recent de-
velopments in several areas of AI. Advances in the work on
semantics of negation in logic programming (Gelfond & Lif-
schitz 1988; 1991) and on formalization of common-sense
reasoning (Reiter 1980; Moore 1985) led to the development
of the declarative language, A-Prolog, used in this paper to
encode the domain knowledge, and to an A-Prolog based
methodology for representing defaults. Insights on the na-
ture of causality and its relationship with answer sets of logic
programs (Gelfond & Lifschitz 1993; McCain & Turner
1995; Turner 1997) determined the way we characterize ef-
fects of actions and solve the frame, ramification, and qual-
ification problems which, for a long time, caused difficul-
ties in modeling reasoning about dynamic domains. Work
on propositional satisfiability influenced the development
of algorithms for computing answer sets of A-Prolog pro-
grams and programming systems (Niemelä & Simons 1997;
Citrigno et al. 1997; Cholewinski, Marek & Truszczyński
1996) implementing these algorithms. Last, but not least,
we build on earlier work on applications of answer set pro-
gramming to planning (Dimopoulos, Nebel & Koehler 1997;
Lifschitz 1999; Balduccini et al. 2000).

The goal of this paper is to test if these methodologies, al-
gorithms, and systems can be successfully applied to the de-
velopment of medium size knowledge-intensive applications.
We build on previous work (Watson 1999; Barry & Watson
1999; Gelfond & Watson 1999) in which the authors devel-
oped a prototype of a Prolog-based system,��, capable of
checking correctness of plans and finding plans for the op-
eration of the Reaction Control System (RCS) of the Space

Copyright c� 2001, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Shuttle. The RCS is the shuttle’s system that has primary re-
sponsibility for maneuvering the craft while it is in space. It
consists of fuel and oxidizer tanks, valves and other plumb-
ing needed to provide propellant to the maneuvering jets of
the shuttle. It also includes electronic circuitry: both to con-
trol the valves in the fuel lines and to prepare the jets to
receive firing commands.

The RCS is computer controlled during takeoff and landing.
While in orbit, however, astronauts have the primary con-
trol. When an orbital maneuver is required, the astronauts
must perform whatever actions are necessary to prepare
the RCS. These actions generally require flipping switches,
which are used to open or close valves or to energize the
proper circuitry. In more extreme circumstances, such as
a faulty switch, the astronauts communicate the problem to
the ground flight controllers, who will come up with a se-
quence of computer commands to perform the desired task
and will instruct the shuttle’s computer to execute them.

During normal shuttle operations, there are pre-scripted
plans that tell the astronauts what should be done to achieve
certain goals. The situation changes when there are failures
in the system. The number of possible sets of failures is too
large to pre-plan for all of them. Continued correct operation
of the RCS in such circumstances is necessary to allow for
the completion of the mission and to help ensure the safety
of the crew. An intelligent system to verify and generate
plans would be helpful. It is within this context that this
work fits.

The system presented here, as well as ��, can be viewed
as a part of a decision support system for shuttle flight con-
trollers.

In this work we build a substantially more detailed model of
the RCS than in��. In particular, we

1. substantially simplify the model of the part of the RCS
represented by�� without loss of detail,

2. include information about electrical circuits of the RCS,
which was missing in��,

3. include a new type of action – computer commands con-
trolling the position of valves,

4. include a planning module(s) containing a large amount

From: AAAI Technical Report SS-01-01. Compilation copyright © 2001, AAAI (www.aaai.org). All rights reserved.

of heuristic information (this substantially improves qual-
ity of the plans and efficiency of the search),

5. include a Java interface to simplify the use of the system
by a flight controller and by the system designers.

The resulting system, � , seems to be suitable for practi-
cal applications. Work leading to its deployment at United
Space Alliance is currently underway.

To understand the functionality of� let us imagine a shuttle
controller who is considering how to prepare the shuttle for
a maneuver when faced with a collection of faults present in
the RCS (for example, switches and valves can be stuck in
various positions, electrical circuits can malfunction in vari-
ous ways, valves can be leaking, jets can be damaged, etc).
In this situation, the controller needs to find a sequence of
actions (a plan) to ready the shuttle for the maneuver. �
can serve as a tool facilitating this task. The controller can
use it to test if a plan, which he came up with manually, will
actually be able to prepare the RCS for the desired maneu-
ver. The system can also be used to automatically find such
a plan. In the next section we will give a brief introduction
into the design of the system.

System’s Design

The system,� , consists of a collection of largely indepen-
dent modules, represented by lp-functions 1 and a graphical
Java interface, � . The interface gives a simple means for the
user to enter information about the history of the RCS, its
faults, and the task to be performed. At the moment there
are two possible types of tasks: checking if a sequence of
occurrences of actions in the history of the system satisfies a
goal, �, and finding a plan for � of a length not exceeding
some number of steps,� . Based on this information, � ver-
ifies the input is complete, selects an appropriate combina-
tion of modules, assembles them into an A-Prolog program,
�, and passes � as an input to a reasoning system for com-
puting stable models (In � this role is currently played by
SMODELS, however we also plan to investigate performance
of other systems.) In this approach, the task of checking a
plan � is reduced to checking if there exists a model of the
program � � � . A planning module is used to describe a
set of possible plans the user is interested in and the cor-
rectness theorem guarantees that there is a one-to-one cor-
respondence between the plans and the set of stable models
of the program. Planning is reduced to finding such models.
Finally, the Java interface extracts the appropriate answer
from the SMODELS output and displays it in a user-friendly
format.

In the rest of this section we give a slightly more detailed
description of particular modules.

1By an lp-function we mean program � of A-Prolog with input
and output signatures ����� and ����� and a set ������ of sets
of literals from ����� such that, for any � � ������, � �� is
consistent, i.e. has an answer set.

Plumbing module
The Plumbing Module (��) models the plumbing system
of the RCS, which consists of a collection of tanks, jets
and pipe junctions connected through pipes. The flow of
fluids through the pipes is controlled by valves. The sys-
tem’s purpose is to deliver fuel and oxidizer from tanks to
the jets needed to perform a maneuver. The structure of
the plumbing system is described by a directed graph, ��,
whose nodes are tanks, jets and pipe junctions, and whose
arcs are labeled by valves. The possible faults of the system
at this level are leaky valves, damaged jets, and valves stuck
in some position.

The purpose of �� is to describe how faults and changes
in the position of valves affect the pressure of tanks, jets and
junctions. In particular, when fuel and oxidizer flow at the
right pressure from the tanks to a properly working jet, the
jet is considered ready to fire. In order for a maneuver to
be started, all the jets it requires must be ready to fire. The
necessary condition for a fluid to flow from a tank to a jet,
and in general to any node of ��, is that there exists a path
without leaks from the tank to the node and that all valves
along the path are open.

The rules of �� define a function which takes as input the
structural description, ��, of the plumbing system, its state
including position of valves and the list of faulty compo-
nents, and determines: the distribution of pressure through
the nodes of ��; which jets are ready to fire, and; which
maneuvers are ready to be performed.

To illustrate the issues involved in the construc-
tion of �� , let us consider the definition of fluent
���		
���� ����� ���, describing the pressure on a node
� by a tank ��. It is not difficult to define this relation for
the tank nodes. For other nodes, the definition is recursive.
It says that any non-tank node �� is pressurized by a tank
�� if �� is not leaking and is connected by an open valve
to a node �� which is pressurized by ��.

Representation of this definition in standard Prolog is prob-
lematic, since the corresponding graph can contain cycles.
(This fact is partially responsible for the relative complex-
ity of this module in ��, which was Prolog-based.) The
ability of A-Prolog to express and to reason with recursion
allows us to use the following concise definition of pressure
on non-tank nodes.

h(pressurized_by(N1,Tk),T) :-
not tank_of(N1,R),
not h(leaking(N1),T),
link(N2,N1,V),
h(in_state(V,open),T),
h(pressurized_by(N2,Tk),T).

The Plumbing Module consists of approximately 40 rules.

Valve control module
The flow of fuel and oxidizer propellants from tanks to
jets is controlled by opening/closing valves along the path.

The state of valves can be changed either by manipulat-
ing mechanical switches or by issuing computer commands.
Switches and computer commands are connected to the
valves, they control, by electrical circuits.

The action of flipping a switch �� to some position � nor-
mally puts a valve controlled by �� in this position. Sim-
ilarly for computer commands. There are, however, three
types of possible failures: switches and valves can be stuck
in some position, and electrical circuits can malfunction in
various ways. Substantial simplification of the � �� mod-
ule is achieved by dividing it in two parts, called basic and
extended � �� modules.

At the basic level, it is assumed that all electrical circuits are
working properly and therefore are not included in the rep-
resentation. The extended level includes information about
electrical circuits and is normally used when some of the
circuits are malfunctioning. In that case, flipping switches
and issuing computer commands may produce results that
cannot be predicted by the basic representation.

Basic valve control module At this level, the � �� deals
with a set of switches, computer commands and valves, and
connections among them. The input of the basic � ��
consists of the initial positions and faults of switches and
valves, and the sequence of actions defining the history of
events. The module implements an lp-function that, given
this input, returns positions of valves at the current moment
of time. This output is used as input to the plumbing mod-
ule. The possible faults of the system at this level are valves
and switches stuck at some position(s).

Effects of actions in the basic � �� are described in a vari-
ant of action language �, which contains both static and
dynamic causal laws, as well as impossibility conditions.
Our version of � uses a slightly different syntax which, due
to limitations of the inference engines currently available,
avoids lists and nesting of function symbols. The use of
� allows to prove correctness of logic programming imple-
mentation of causal laws (Gelfond & Gabaldon 1997). (Of
course, it does not guarantee correctness of the causal laws
per se. This can only be done by domain experts.) The com-
plexity of this representation would make it hard to employ
STRIPS-like formalisms (which do not allow static causal
laws).

The following rules show an example of syntax and use of
our version of �. The first is a dynamic causal rule stating
that, if a properly working switch �� is flipped to state � at
time � , then �� will be in this state at the next moment of
time.

h(in_state(Sw,S),T+1) :-
occurs(flip(Sw,S),T),
not stuck(Sw).

A static connection between switches and valves is ex-
pressed by the next rule. This static law says that, under
normal conditions, if switch �� controlling a valve � is in

some state � (different from gpc2) at time � , then � is also
in this state at the same time.

h(in_state(V,S),T) :-
controls(Sw,V),
h(in_state(Sw,S),T),
neq(S,gpc),
not h(ab_input(V),T),
not stuck(V),
not bad_circuitry(V).

The condition not bad circuitry(V) is used to stop this rule
from being applied when the circuit connecting �� and � is
not working properly. (Notice that the above dynamic rule
is applied independently of the functioning conditions of the
circuit, since it is related only to the switch itself.) If the
switch is in a position, ��, different from gpc, and a com-
puter command is issued to move the valve to position ��,
then there is a conflict in case �� �� ��. This is an abnormal
situation, which is expressed by fluent �� ���
��� �. When
this fluent is true, negation as failure is used to stop the ap-
plication of this rule. In fact, the final position of the valve
can only be determined by using the representation of the
electrical circuit that controls it. This will be discussed in
the next section.

Extended valve control module The extended � �� en-
compasses the basic � �� and also includes information
about electrical circuits, power and control buses, and the
wiring connections among all the components of the system.

This module, too, defines an lp-function. It takes as input
the same information accepted by the basic � �� , together
with faults on power buses, control buses and electrical cir-
cuits. The extended � �� returns positions of valves at the
current moment of time, exactly like the basic � �� .

Since (possibly malfunctioning) electrical circuits are part
of the representation, it is necessary to compute the sig-
nals present on all wiring connections, in order to deter-
mine the positions of valves. The signals present on the
circuit’s wires are generated by the Circuit Theory Module
(CTM), included in the extended � �� . Since this mod-
ule was developed independently to address a different col-
lection of tasks (Balduccini, Gelfond & Nogueira 2000a;
2000b), its use in this system is described in a separate sec-
tion.

The state of a valve in the extended ��� is determined by
the signals present on its two input wires, labeled open and
closed. If the open wire is set to 1 and the closed wire is set
to 0, the valve moves to state open. Similarly for the state
closed. The following static law defines this behavior.

h(in_state(V,S1),T) :-
input(W1,V),
input(W2,V),
input_of_type(W1,S1),
input_of_type(W2,S2),

2A switch can be in one of three positions: open, closed, or gpc.
When it is in gpc, it does not affect the state of the valve.

h(value(W1,1),T),
h(value(W2,0),T),
neq(S1,S2),
not stuck(V).

The output signals of switches, valves, power buses and con-
trol buses are also defined by means of static causal laws.

At this level, the representation of a switch is extended by
a collection of input and output wires. Each input wire is
associated to one and only one output wire, and every in-
put/output pair is linked to a position of the switch. When
a switch is in position �, an electrical connection is estab-
lished between input, ��, and output, ��, of the pair(s)
corresponding to �. Therefore the signal present on �� is
transferred to��, as expressed by the following rule.

h(value(Wo,X),T) :-
h(in_state(Sw,S),T),
connects(S,Sw,Wi,Wo),
h(value(Wi,X),T).

In this module, few rules are required. The � �� , without
the Circuit Theory module, consists of 36 rules.

Circuit theory module
The Circuit Theory Module (���) is a general descrip-
tion of components of electrical circuits. It can be used as
a stand-alone application for simulation, computation of the
topological delay of a circuit, detection of glitches, and ab-
duction of the circuit’s inputs given the desired output.

The ��� is employed in this system to model the electri-
cal circuits of the RCS, which are formed by digital gates
and other electrical components, connected by wires. Here,
we refer to both types of components as gates. The structure
of an electrical circuit is represented by a directed graph �
where gates are nodes and wires are arcs. A gate can pos-
sibly have a propagation delay � associated with it, where
� is a natural number (zero indicates no delay). All signals
present in the circuit are expressed in 3-valued logic (0, 1,
u). If no value is present on a wire at a certain moment of
time � then it is said to be unknown (u) at � .

This module describes the normal and faulty behavior of
electrical circuits with possible propagation delays and 3-
valued logic.

In ��� , input wires of a circuit are defined as the wires
coming from switches, valves, computer commands, power
buses and control buses. Output wires are those that go to
valves. The ��� is an lp-function that takes as input the
description of a circuit, �, the values of signals present on
its input wires, the set of faults affecting its gates, and de-
termines the values on the output wires of � at the current
moment of time.

We allow for standard faults from the theory of digital cir-
cuits. A gate,�, malfunctions if its output, or at least one of
its input pins, are permanently stuck on a signal value. The
effect of a fault associated to a gate of the direct graph, �,
only propagates forward.

��� contains two sets of static rules. One of them allows
for the representation of the normal behavior of gates, while
the other expresses their faulty behavior. To illustrate how
the normal behavior of gates is described in the��� , let us
consider the case of the Tri-State gate. This type of compo-
nent has two input wires, of which one is labeled enable. If
this wire is set to 1, the value of the other input is transferred
to the output wire. Otherwise, the output is undefined. The
following rule describes the normal behavior of the Tri-State
gate when it is enabled.

h(value(W,X),T+D) :-
delay(G,D),
input(W1,G),
input(W2,G),
type_of_wire(W2,G,enable),
neq(W1,W2),
h(value(W1,X),T),
h(value(W2,1),T),
output(W,G),
not is_stuck(W,G).

It is interesting to discuss how faults are treated when they
occur on the input wire of a gate. Let us consider the
case of a gate � with an input wire stuck at value � .
This wire is represented as two unconnected wires, � and
	�
�� ������ �, corresponding to the normal and faulty
sections of the wire. The faulty part is stuck at value � ,
while the value of � is computed by normal rules depend-
ing upon its connection to the output of other gates. Rules
for gates with faulty inputs use 	�
�� ������ � as input
wire. The example below is related to a Tri-State gate with
the non-enable wire stuck to � .

h(value(W,X),T+D) :-
delay(G,D),
input(stuck_wire(W1),G),
input(W2,G),
type_of_wire(W2,G,enable),
neq(W1,W2),
h(value(stuck_wire(W1),X),T),
h(value(W2,1),T),
output(W,G),
not is_stuck(W,G).

Notice that condition not is stuck(W,G) prevents the above
rules from being applied when the output wire is stuck.
Whenever an output wire is stuck at � , the corresponding
rule guarantees that its signal value is always� .

The behavior of a circuit is said normal if all its gates are
functioning correctly. If one or more gates of a circuit mal-
function then the circuit is called faulty.

The description of faulty electrical circuit(s) is included as
part of the RCS representation. However, it is not neces-
sary to add the description of normal circuits controlling a
valve(s) since the program can reason about effects of ac-
tions performed on that valve through the basic � �� . This
allows for an increase in efficiency when computing models
of the program.

The Circuit Theory module contains approximately 50 rules.

Planning module
This module establishes the search criteria used by the pro-
gram to find a plan, i.e. a sequence of actions that, if exe-
cuted, would achieve the goal. The modular design of �
allows for the creation of a variety of such modules.

The structure of the Planning Module (��) follows the
generate and test approach of (Dimopoulos, Nebel &
Koehler 1997; Lifschitz 1999). Since the RCS contains
more than 200 actions, with rather complex effects, and may
require very long plans, this standard approach needs to be
substantially improved. This is done by addition of various
forms of heuristic, domain-dependent, information. In par-
ticular, the generation part takes advantage of the fact that
the RCS consists of three, largely independent, subsystems.
A plan for the RCS can therefore be viewed as the com-
position of three separate plans that can operate in parallel.
Generation is implemented using the following rule:

1{occurs(A,T): action_of(A,R)}1 :-
subsystem(R),
not goal(T,R).

This rule states that exactly one action for each subsystem
of the RCS should occur at each moment of time, until the
goal is reached for that subsystem. Notice that the head of
this rule has the form ��� ��� � !� ����" . It defines a subset
� � ! of terms such that � ��� � " . Normally, there
are many possible sets satisfying these conditions. Hence,
a program containing this type of rules has multiple answer
sets, corresponding to possible choices of �.

In the RCS, the common task is to prepare the shuttle for a
given maneuver. The goal of preparing for such a maneu-
ver can be split into several subgoals, each setting some jets,
from a particular subsystem, ready to fire. The overall goal
can therefore be stated as a composition of the goals of indi-
vidual subsystems containing the desired jets, as follows:

goal :-
goal(T1,left_rcs),
goal(T2,right_rcs),
goal(T3,fwd_rcs).

The plan testing phase of the search is implemented by the
following constraint

:- not goal.

which eliminates the models that do not contain plans for the
goal.

Splitting into subsystems allows us to improve the efficiency
of the module substantially. For instance, finding a plan of 5
steps takes 4.74 seconds, as opposed to some hours required
when the representation of the RCS is not partitioned in sub-
systems. Notice that, since there are some dependencies be-
tween some subsystems, a very small number of extremely
rare (and undesirable) plans can be missed. It’s possible to
modify the Planning module in order to find these plans, but
this issue was not investigated in this paper.

The module contains also other domain-dependent as well as
domain-independent heuristics. The reasons for adding such

heuristics are two-fold: first, to eliminate plans which are
correct but unintended, and second, to increase efficiency.
A-Prolog allows for a concise representation of these heuris-
tics as constraint rules. This can be demonstrated by means
of the following examples.

Some heuristics are instances of domain-independent
heuristics. They express common-sense knowledge like
“under normal conditions, do not perform two different ac-
tions with the same effect.” In the RCS, there are two differ-
ent types of actions that can move a valve, � , to a state, �:
a) flipping the switch, ��, that controls � , to state � or b)
issuing the (specific) computer command, ��, capable of
moving � to �. In A-Prolog we can write this heuristic as
follows

:- occurs(flip(Sw,S),T),
controls(Sw,V),
occurs(CC,T1),
commands(CC,V,S),
not bad_circuitry(V).

More domain-dependent rules embody common-sense
knowledge of the type “do not pressurize nodes which are
already pressurized.” In the RCS, some nodes can be pres-
surized through more than one path. Clearly, performing an
action in order to pressurize a node already pressurized will
not invalidate a plan, but this involves an unnecessary action.
Although we do not discuss optimality of plans in this paper,
the shortest sequence of actions to achieve the goal is a good
candidate as the optimal plan(s). The following constraint
eliminates models where more than one path to pressurize a
node �� is open.

:- link(N1,N2,V1),
link(N1,N2,V2),
neq(V1,V2),
h(in_state(V1,open),T),
h(in_state(V2,open),T),
not stuck(V1,open),
not stuck(V2,open).

As mentioned before, some heuristics are crucial for the im-
provement of the planner’s efficiency. One of them states
the general rule, used by flight controllers, that “a normally
functioning valve connecting nodes �� and �� should not
be open if �� is not pressurized.” This heuristic clearly
prunes a significant number of unintended plans. It is repre-
sented by a constraint that discards all plans in which a valve
� is opened before the node, preceding it, is pressurized.

:- link(N1,N2,V),
h(in_state(V,open),T),
not h(pressurized_by(N1,Tk),T),
not has_leak(V),
not stuck(V).

The improvement offered by domain-dependent heuristics
has not been studied mathematically here. However, exper-
iments showed impressive results. In the case of tasks in-
volving a large number of faults, for example, the introduc-
tion of some of the most effective heuristics reduced the time

required to find a plan from hours to seconds. Preliminary
results of the analysis of the experiments seem to indicate
that time depends on the ratio between the number of plans
and the number of possible action sequences. The effective-
ness of heuristics may be therefore anticipated by observing
the effect that they have on the ratio. The dependence on
the ratio explains also why sometimes heuristics, intended to
improve the quality of plans, cause time to increase. In fact,
the number of undesired plans that they remove is larger than
the number of sequences of actions removed, which makes
the ratio smaller.

Table 1 presents a summary of five experiments, taken from
a set of about thirty problems that we ran. An additional
interesting information related to these experiments is the
number of ground rules. This number ranges from a few
thousand rules for the simplest cases to hundreds of thou-
sand for the most difficult ones. The columns of the table
indicate: task name; number of RCSs subsystems involved
in the task; number of steps required to reach the goal; to-
tal number of actions required to achieve the goal (actions
of different subsystems may be executed in parallel); num-
ber of faults affecting the RCS; time needed to check a plan;
time needed to find a plan. All times are expressed in sec-
onds and were taken on a Pentium II 350MHz system, run-
ning NetBSD 1.4.1, LPARSE 0.99.59 and SMODELS 2.26.

Task RCSs steps actions faults check plan
ex1 1 5 5 2 1.01 4.74
ex2 2 3 6 0 0.66 2.14
ex3 2 4 4 2 0.83 2.61
ex4 2 4 8 2 0.82 5.9
ex5 3 8 20 10 1.57 98.74

Table 1: Results of plan checking and planning on sample
tasks without malfunctioning circuits.

Conclusion
In this paper we described a medium size decision support
system written in A-Prolog. This application requires mod-
eling of the operation of a fairly complex subsystem of the
Space Shuttle at a level suitable for use by shuttle flight con-
trollers. Currently, details are being worked out for future
deployment of this system for use in the space program. The
system, while based on previous work, represents a substan-
tial advance over its predecessor.

From the scientific standpoint, this work can be of interest
to at least two groups of people, those interested in answer
set programming and those interested in planning. We hope
both groups will be glad to learn about the existence of a
comparatively big and practical software system written in
A-Prolog. The former group can also learn about advantages
of A-Prolog and SMODELS with respect to standard Prolog,
evident even in the case of plan checking. It is especially
worth noticing how constraints and choice rules of SMOD-
ELS are used to reduce planning to finding answer sets of
our program.

An important methodological lesson we learned from this
exercise is the importance of careful initial design. For in-
stance, introduction of junction nodes in the model of the
Plumbing Module of the RCS substantially simplified the
resulting program. We are also satisfied with our use of the
Java interface for selecting modules necessary for solving a
given problem, and integrating these modules into a final A-
Prolog program. Structuring most modules as lp-functions
contributed to the reusability and proof of correctness of the
integration3. Such proof is especially important due to the
critical nature of the RCS.

The people from planning may find it interesting to see a sys-
tem of substantial size built on theory of actions and change.
In particular, we were somewhat surprised by the impor-
tance of static causal laws in our model. We are not sure
that the use of STRIPS-like languages containing only dy-
namic causal laws is sufficient for a concise representation
of the RCS, and especially of the extended � �� .

The use of A-Prolog allowed us to deal with recursive causal
laws, which may pose a problem to more classical planning
methods. (Partial solution to this problem is suggested in
(Erdem & Lifschitz 2000), where the authors use CCALC
((McCain & Turner 1997)) to reduce the computation of
answer sets to the computation of models of some propo-
sitional formula. They give a sufficient condition of the
correctness of such transformation. Unfortunately, the idea
does not apply here, since the corresponding graph is not
acyclic.)

It was understood long ago that effective planning required
the use of heuristics. Recent work in planning drew atten-
tion to the problem of finding a language which would al-
low a declarative and efficient representation of such infor-
mation (Bacchus & Kabanza 1998; Kautz & Selman 1998;
Huang, Kautz & Selman 1999; Finzi, Pirri & Reiter 2000).
We believe that this paper demonstrates that a large amount
of such information can be naturally expressed in A-Prolog.
Moreover, its use dramatically improves efficiency of the
planner (which is not always the case for satisfiability based
planners.) Finally, it may be interesting to see how modular-
ity allows planning to be performed at different levels. It is
easy, for instance, to modify our planning module to search
for manual plans, i.e., those not including computer com-
mands. The new planner will be much more efficient and, in
many cases, sufficient for the flight controllers’ needs. We
have plans of applying these techniques to modeling other
systems of the shuttle.

3To give an example of what we learned here, let us consider
the following situation: suppose you have lp-functions � and � cor-
rectly implementing the plumbing and basic � 	
 modules of the
system; integration of these modules leads to the creation of new
lp-function � � � Æ�. It is known that, due to non-monotonicity of
A-Prolog, logic programming representation of this function can-
not always be obtained by combining together rules of � and �. In
our case, however, a general theorem (Gelfond & Gabaldon 1997)
can be used to check if this is indeed the case. We are currently
working on formulating and proving the correctness of the com-
plete integration.

Acknowledgments
This work was partially supported by United Space Al-
liance under Research Grant 26-3502-21 and Contract
COC6771311.

References
F. Bacchus and F. Kabanza. 1998. Planning for Temporally
Extended Goals. Annals of Mathematics and Artificial In-
telligence, 22:1-2, 5-27.

M. Balduccini, G. Brignoli, G. Lanzarone, F. Magni and
A. Provetti. 2000. Experiments in Answer Sets Planning
(extended abstract). Proc. of MICAI’2000, LNAI 1793.

M. Balduccini, M. Gelfond and M. Nogueira. 2000a. A-
Prolog as a tool for declarative programming. Proc. of the
12th International Conference on Software Engineering
and Knowledge Engineering (SEKE’2000).

M. Balduccini, M. Gelfond and M. Nogueira. 2000b. Dig-
ital Circuits in #-Prolog. Technical Report, University of
Texas at El Paso.

M. Barry and R. Watson. 1999. Reasoning about actions
for spacecraft redundancy management. Procs of the 1999
IEEE Aerospace Conference, 5:101–112.

P. Cholewinski, W. Marek and M. Truszczyński. 1996.
Default Reasoning System DeReS. In Int’l Conf. on Prin-
ciples of Knowledge Representation and Reasoning, 518-
528. Morgan Kauffman.

S. Citrigno, T. Eiter, W. Faber, G. Gottlob, C. Koch, N.
Leone, C. Mateis., G. Pfeifer and F. Scarcello. 1997. The
dlv system: Model generator and application frontends.
Procs of the 12th Workshop on Logic Programming, 128–
137.

Y. Dimopoulos, B. Nebel, and J. Koehler. 1997. Encoding
planning problems in nonmonotonic logic programs. Lec-
ture Notes in Artificial Intelligence - Recent Advances in AI
Planning, Procs of the 4th European Conference on Plan-
ning, ECP’97, 1348:169–181.

E. Erdem and V. Lifschitz. 2000. Transitive Closure, An-
swer Sets and Predicate Completion. In Working Notes of
the AAAI Spring Symposium on Answer Set Programming.

M. Gelfond and A. Gabaldon. 1997. From Functional
Specifications to Logic Programs. Procs. of ILPS’97.

M. Gelfond and V. Lifschitz. 1988. The Stable Model Se-
mantics for Logic Programs. In Proc. of the 5th Int’l Conf.
on Logic Programming, 1070-1080.

M. Gelfond and V. Lifschitz. 1993. Representing Ac-
tions and Change by Logic Programs. Journal of Logic
Programming, 17:301–323.

M. Gelfond and V. Lifschitz. 1991. Classical Negation in
Logic Programs and Disjunctive Databases. New Genera-
tion Computing, 9(3/4):365-386.

M. Gelfond, and R. Watson. 1999. On methodology for
representing knowledge in dynamic domains. Proc. of the
1998 ARO/ONR/NSF/DARPA Monterey Workshop on En-
gineering Automation for Computer Based Systems, 57–66.

H. Kautz and B. Selman. 1998. The Role of Domain-
Specific Knowledge in the Planning as Satisfiability
Framework. Proc. AIPS-98.
Y. Huang, H. Kautz and B. Selman. 1999. Control Knowl-
edge in Planning: Benefits and Tradeoffs. 16th National
Conference of Artificial Intelligence (AAAI’99), 511–517.
V. Lifschitz. 1999. Action languages, Answer Sets, and
Planning. In The Logic Programming Paradigm: a 25-Year
Perspective. Spring-Verlag.
N. McCain and H. Turner. 1995. A causal theory of rami-
fications and qualifications. Proc. of IJCAI 95, 1978-1984.
N. McCain and H. Turner. 1997. Causal theories of ac-
tion and change. In 14th National Conference of Artificial
Intelligence (AAAI’97), 460–465.
R. Moore. 1985. Semantical considerations on nonmono-
tonic logic. Artificial Intelligence, 25(1):75-94.
I. Niemelä, and P. Simons. 1997. Smodels - an implemen-
tation of the stable model and well-founded semantics for
normal logic programs. Procs of the 4th International Con-
ference on Logic Programming and Non-Monotonic Rea-
soning, 420–429.
A. Finzi, F. Pirri and R. Reiter. 2000. Open World Plan-
ning in the Situation Calculus. 17th National Conference
of Artificial Intelligence (AAAI’00), 754–760.
R. Reiter. 1980. A logic for default reasoning. Artificial
Intelligence, 13(1,2):81-132.
H. Turner. 1997. Representing actions in logic programs
and default theories: A situation calculus approach. Jour-
nal of Logic Programming, Vol. 31, No. 1-3, 245-298.
R. Watson. 1999. An application of action theory to
the space shuttle. Lecture Notes in Computer Science -
Procs of Practical Aspects of Declarative Languages ’99,
1551:290–304.

