
Useful Transformations in Answer set programming

Mauricio Osorio and Juan Carlos Nieves
Universidad de las Américas

CENTIA
Sta Catarina Martir, Cholula
Puebla, 72820 México

josorio@mail.udlap.mx

Chris Giannella
Department of Computer Science

Indiana University
Bloomington, IN 47405 USA

cgiannel@cs.indiana.edu

Abstract
We define a reduction system �� � which preserves the stable
semantics. This system includes two types of transformation
rules. One type (which we call �� �) preserves the stable se-
mantics regardless of the EDB (extensional database). So, it
can be used at compilation time. The other (which we call
���) does not preserve the stable semantics across changes
to the EDB. Thus, it should be used at run time. Nonethe-
less ��� can reduce the program size considerably and is
quadratic time computable. Sometimes �� � can transform a
cyclic program into an acyclic one. At these times, a satisfi-
ability solver can be used to obtain the stable models.

Introduction
Recent research (Babovich, Erdem, & Lifschitz 2000), has
shown that when the stable semantics corresponds to the
supported semantics, a satisfiability solver (e.g. SATO
(Zhang. March 1993)) can be used to obtain stable mod-
els. Let sys be any system that is capable of grounding and
completing a schematic program and clausifying the com-
pletion. This process, as indicated in (Babovich, Erdem, &
Lifschitz 2000), can be viewed as “preprocessing” the in-
put program. Interestingly, some examples are presented
in (Babovich, Erdem, & Lifschitz 2000) where the running
time of SATO is approximately ten times faster than SMOD-
ELS 1.
One of the conclusions drawn in (Babovich, Erdem, &

Lifschitz 2000) is that satisfiability solvers may serve as use-
ful computational tools in answer set programming. Our pa-
per presents results along the same line. We define a poly-
nomial time reduction system �� � that includes two types
of transformation rules. One type (which we call �� �) pre-
serves the stable semantics regardless of the EDB and can
be used at compilation time. The other (which we call �� �)
does not preserve the stable semantics across changes to the
EDB, so, should be used at run time. We propose to include
��� as part of the preprocessing stage of sys.
Sometimes ��� can transform a cyclic program into an

acyclic one. This idea is illustrated with the following ex-
ample program����:

Copyright c� 2001, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

1one of the leading stable model finding systems (Simons 1997)

x � y.
x � y.
y � x.
p.
� � � � �����
c � ��
� � � � ��� ��

This program has two stable models ��� �� 	� �� and
���
� 	� ��. The supported models of the program include
the stable models but also others as well (e.g. �	� �� �� �� ��).
Reducing���� by ���, yields �

������:

x.
y.
p.
� � ��

One of our main results is that �� � preserves the stable
semantics so the set of stable models of ���� is the same as
that of �

������. Since ���� is acyclic, it has the same
supported models.
Our paper is structured as follows. In the next section, we

define the basic concepts of disjunctive logic program and
the rewriting systems ���� ���� ���. In the following sec-
tion, we describe some examples where the application of
��� helps in finding stable models by converting a cyclic
program to an acyclic one. In the section after that, we
present an algorithm for finding stable models. Finally, in
last section, we give conclusions.

Background
A signature � is a finite set of elements that we call atoms.
By �� we understand it to mean the signature of P, i.e. the
set of atoms that occurs in P. The language of propositional
logic has an alphabet consisting of

(i) proposition symbols: ��� ��� ���

(ii) connectives : ��	�����
��

(iii) auxiliary symbols : (,).

Where ��	�� are 2-place connectives, � is 1-place con-
nectives and
�� are 0-place connectives. The proposition
symbols and
 stand for the indecomposable propositions,
which we call atoms, or atomic propositions. A literal is
an atom, �, or the negation of an atom ��. Given a set of

From: AAAI Technical Report SS-01-01. Compilation copyright © 2001, AAAI (www.aaai.org). All rights reserved.

atoms ���� ���� ���, we write ����� ���� ��� to denote the set
of literals ����� ���������
A general clause, C, is denoted: �� � � � � � �� �

��� � � � � ��,2 where � � �, � � �, each �� is an atom, and
each �� a literal. When � � � and � � � the clause is an
abbreviation of �� � � � �� �� � �3, where� is �
. When
� � � the clause is an abbreviation of
 � �� 	 � � � 	 ��

4.
Clauses of theses forms are called constraints (the rest, non-
constraint clauses). Sometimes, we denote a clause C by

���� ���, where
 contains all the head atoms, ��

contains all the positive body atoms and �� contains all
the negative body atoms. We also use ��
���� to denote
�� � ���. When
 is a singleton set, the clause can be
regarded as a normal clause. A definite clause (Lloyd 1987)
is a normal clause with �� � �.
A pure disjunction is a disjunction consisting solely of

positive or solely of negative literals. A (general) program,
� , is a finite set of clauses. As in normal programs, we use
������ � to denote the set of atoms occurring in the heads
of � . Given a signature�, we write ����� to denote the set
of all programs defined over �. We use �� to denote the
consequence relation for classical first-order logic. We will
also consider interpretations and models as usual in classical
logic.
The following defines a mapping from programs to nor-

mal programs. Given a program, � , we define ��� �
��� � �� �� � � � � �� � ��� � ���������� �����
�.
Given a non-constraint clause � :=
 � ������, we
write dis-nor(C) to denote the set of normal clauses: �� �
������� � �
 � ������� �
�. We extend this definition
to programs as follows. If � is a program, let dis-nor(P)
denote the normal program:�

��������� �

��� �������

Given a normal program, � , we write �
�����
�� � to
denote the definite program that is obtained from � by re-
moving every negative literal in � . Given a definite pro-
gram, � ,���� � denotes the unique minimal model of �
(which always exist (Lloyd 1987)). Unless otherwise stated,
we work with disjunctive programs.
The following example illustrates the above definitions.

Let � be the program:

� � � � �	�
� �
����

Then ������ � � ��� ��, and
�� � ����� � consists
of the clauses:

� � �	����
� � �	����
� �
����

�
�����
�
��� ����� �� consists of the clauses:

��
��
� �
�

2��� � � � � �� represents the formula �� � � � � � ��.
3or simply �� � � � � � ��
4In fact � is used to define �� as �� �.

FinallyMM(Definite(dis-nor(P)))=��� ��.

Definition 1 (Supported model,(Brass & Dix 1997))
A two-valued model I of a (disjunctive) logic program P is
supported if and only if for every ground atom a with I �� a
there is a rule
������� in P with a�
,I �� ������,
and I ���
 � ���.

The definition of the stable semantics for disjunctive pro-
grams is well known and can be found in (Gelfond & Lifs-
chitz 1988).
The following transformations are defined in (Brass &

Dix 1997; Brewka & Dix 1996) and generalize the corre-
sponding definitions for normal programs.

Definition 2 (Basic Transformation Rules)
A transformation rule is a binary relation on �����. The
following transformation rules are called basic. Let a pro-
gram � � ����� be given.5

RED�: Replace a rule
 � ������ by
 �
������� ������� ��.

RED�: Delete a clause
 � ������ if there is a clause

� � � such that
� � ��.

SUB: Delete a clause
 � ������ if there is another
clause
� � ��

� ����� such that
� �
, ��
� � ��,

��� � ��.
TAUT: (Tautology) Suppose � contains a clause of the
form:
 ���� ��� and
 � �� �� �, then we delete
the given clause.

Failure (F): Suppose that � includes an atom � ��
������ � and a clause � !�
� such that � is a
positive literal in !�
�. Then we erase the given clause.

Contra (C): Suppose that � includes a clause where a lit-
eral appears both positively and negatively in the body of
the given clause. Then, we remove that clause.

Definition 3 (Dloop(Dp), (Arrazola, Dix, & Osorio 1999))
For a program ��, let ������� �� � �
����
�����
�
�� � ���������. The transfor-
mation Dloop(Dp) reduces a program �� to ��:=
�
 � ������ � ��� �� � ������� � ��. We assume
that the given transformation takes place only if �� �� ��.

Example 1 After applying Dp to the program Easy de-
scribed earlier, we obtain:

x � y.
x � ��
y �
�
p.
� � � � ��� ��

Let Dsuc be the natural generalization of suc (Brass et al.
2001) to disjunctive programs, formally:

Definition 4 (Dsuc, (Arrazola, Dix, & Osorio 1999))
Suppose that � is a program that includes a constant clause
� and a clause
 � !�
� such that � � !�
�. Then we
replace this clause by the clause
 � !�
� � ���.

5We use �� �
� �� to denote that we get �� from �� using the

transformation � .

Definition 5 Let P be a disjunctive logic program and a be
an atom such that � � �� . We define � � ���� as follows:

� � ���� �� �� � ���� � � � ��

where � � ���� is defined as follows:

������ ��

�

 � ��� � ������� � ���� if � �� ��

� otherwise

Definition 6 (W-N-A)
Let �� be a disjunctive logic program and a an atom such
that � � ��� . If �� � ��� ��	
� � and �� � ��� ��	
� ��,
then the transformationW-N-A transforms �� to �� �� ���
����.

By �� ��	
� � we mean that � � �� where �� relates to
�� in the reflexive and transitive closure of the transforma-
tion���� over �����.

Example 2 Let P be the following program:

� � � � ���
� � ������
� � ��

� �� ��

Applying the transformation rule W-N-A, we get the follow-
ing program:

� � ���
� � ���

Definition 7 (W-EQ)
Let �� be a disjunctive logic program and a,b be two
atoms such that �� � � ��� . If �� � ��� ��	
� � and
�� � ��� ��	
� � then we replace every atom b in �� by
the atom a and add the clause �� �.

Example 3 Considering the program of the example 1 and
applying the transformation rule W-EQ we get the following
program:

x � x.
x �
�
x �
�
y �
�
p.
� � � � ��� ��

The clause x can be substituted for x � x..

Definition 8 (���,���,���)
Let ��� be the rewriting system based on the transforma-
tions �SUB, RED�, RED�, Dp, Dsuc, Failure�. Let ��� be
�Contra, Taut, W-N-A, W-EQ �. Let ��� be ��� � ���.

We do not include the well known GPPE transformation
(defined in (Brass & Dix 1997)) in �� � because GPPE can
cause the program to grow exponentially (Brass et al. 2001).
The following results suggest that it makes sense to reduce
a program by ���, because this reduction can be computed
efficiently.

Example 4 Considering the program Easy from the intro-
duction. Applying the rewriting �� � system until we can
not apply more any transfirmation we get the following pro-
gram:

x.
y.
p.
� � ��

This program is equal to the program red(Easy) from the
introduction.

Lemma 1 (��� is quadratic time computable)
Let � be a program and �� a reduced form of � under �� �

(i.e. �� is obtained from � by a sequence of reductions from
� and �� cannot be reduced any further by �� �). Then ��

is quadratic time computable with respect to the size of � .

Proof. Dp is the most expensive reduction. Clearly
�
�����
�
��� ����� �� is obtained in linear time. Com-
puting the minimal model of a Definite program is linear
time computable and so Dp is linear time computable. Ev-
ery reduction step decreases the size of the program. So, the
entire process is quadratic time computable.

Lemma 2 (��� is cubic time computable)
Let � be a program and �� a reduced form of � under �� �.
Then �� is cubic time computable with respect to the size of
� .

Proof. Clearly W-EQ is the most expensive reduction. For
each pair of atoms we must check whether������ ��	
� �
and������ ��	
� �. This check can be carried out in linear
time. The desired result follows. Note that, in the algorithm
that apply the trasformation rule W-EQ is not necesary to
add the clause � � �. Then W-EQ keeps the size of the
program.

Lemma 3 (STABLE is closed under ���)
Let �� and �� two programs related by any transformation
in ���. Then �� and �� have the same stable models.

Proof. By definition 8, �� � � ��� � ��� and it is well
known that ��� � ���� is closed under stable models (see
(Brewka, Dix, & Konolige 1997)). Then we only have to
prove that ��� and �� are closed under stable models. But
it is also well known that ��� � � W-N-A, W-EQ� is closed
under stable models (see (Brewka, Dix, & Konolige 1997)).
Then it suffices to prove that W-N-A, W-EQ and Dp are
closed under stable models.

W-N-A: Let P be a disjunctive program, and a a atom
such that the assumptions of W-N-A are satisfied. Then
� �� � � ���� and also � � ���� �� �� � ����� �
���� �	�
��� � � ����. �� �� �� denotes that �� is
equivalent to �� in intuitionistic logic and �� �	�
��� ��

denotes that stable-models(��) = stable-models(��)

W-EQ: If �� ����� ��. Then we have to prove that
�� �	�
��� ��. By using the substitution theorem (see
5.2.5 from (van Dalen 1980)) one can prove that � � ��

������ �� (equivalent under intuitionistic logic). Then
�� �	�
��� �� � �� � �� by (van Dalen 1980). Then by
GPPE and TAUT �� � �� � �� �	�
��� ��, finally by
transitive property �� �	�
��� ��.

Dp: Let A be �������. It is easy to show that for every
stable model� of ��,��� � �. Thus ����� �	�
���

��. It is easy to prove that �� � �� �� �� � �� and by

(Pearce 1999) it follows that �� � �� �	�
��� �� � ��.
Hence, �� � �� �	�
��� ��. Since the atoms in � do not
occur in the head of ��, then ����� �	�
��� ��. Finally,
�� �	�
��� ��.

Some applications of ��� in answer set
programming

The following example illustrates how �� � can be used in
answer set programming. Consider the program �� (a
slight variant of a program in (Babovich, Erdem, & Lifschitz
2000)).

in(U,V) � out(U,V) � ������� ���
� ������� ��� ����� ���
����� ��� � � � ��
� ������� ��� ����� ���
����� ��� � � � ��

reachable(V) � 	�
������� ���
� ���
reachable(V) � ������� ���

������������ ����� ���
� 	�
�������
�
������������

This program calculates the Hamiltonian cycles of a directed
graph, where the graph is defined by the facts vertex and
edge; 0 is assumed to be one of the vertices. The authors
of (Babovich, Erdem, & Lifschitz 2000) showed that ��
with the extension database ��:=� vertex(0), ver-
tex(1), edge(0,0), edge(1,1) � does not have
any stable models, but has supported models (Babovich, Er-
dem, & Lifschitz 2000). However, instantiating6 and reduc-
ing����� using ��� we obtain the acyclic program���.

�
� �
���������
��

reachable(0) � ���
�
��
in(1,1) � out(1,1).
in(0,0) � out(0,0).

Its stable and supported semantics correspond. Since ���

has no supported models, then it has no stable models.

The rule Dp was not required in the reduction of
�� (e.g. the system ��� � ���� applied to ��
also yields ���). The following example illustrates
a situation where Dp is required. Let �� be the
extensional database � v(0), v(1), v(2), v(3),
edge(0,1), edge(2,3), edge(3,2) �. By in-
stantiating and reducing the program �� � �� with the
transformation rules ��� � ���� we get the program���:

6We are using lparse for this purpose.

� �
������������
� �
������������
� �
������������
� �
���������
��

reachable(1) � ���
� ���
reachable(2) �
������������ ����� ���
reachable(3) �
������������ ����� ���
reachable(1) �
���������
�� ���
� ���
in(3,2) � out(3,2).
in(2,3) � out(2,3).
in(0,1) � out(0,1).

Observe that ��� has no stable models but has supported
models. Moreover,��� has clauses with positive cycles.

Instantiating and reducing�� ��� with ��� we get the
program���:

�
� �
������������

in(3,2) � out(3,2).
in(2,3) � out(2,3).
in(0,1) � out(0,1).

In this case, Dp eliminates the clauses causing cycles. So
Dp removed undesirable supported models.

These examples demonstrate how the use of Dp can pro-
duce acyclic programs, and so helps in eliminating undesir-
able supported models.

Another interesting example is the shortest path problem:

const n = 30
num(0..c).
s le(X1,Y1,C) � �������� ��� ���
s le(X1,Y1,C) � ��������� ��������� ���������

num(C),num(C1),num(C2),
edge(X1,Z1,C1),
short(Z1,Y1,C2), C=C1+C2.

short(X,X,0) � ��������
short(X,Y1,C) � �������� ���������

num(C), X != Y1,
s le(X,Y1,C),
not s l(X,Y1,C).

s l(X1,Y1,S) � ��������� ���������
num(S),num(C1),
s le(X1,Y1,C1), C1<S.

������� ��� ������������� ��� ������� �� ���
� �������� ������� ������� ���
� �������� ������� ������� ���
� �������� �������� ���������
path(X,Y),path(X,Y1),
neq(Y,Y1).
� �������� �������� ���������
path(X,Y),path(X1,Y),
neq(X,X1).

r(X) � �������
r(X) � � ����� �������� ��������

r(Y),path(Y,X).
k(X) � �������� �������� ������� ���
k(Y) � �������� �������� ������� ���

� �������� !���� ���
����
� ������� ���
����

cost(X,Y,C) � �������� �������� � �����
path(X,Y), edge(X,Y,C).

cost(X,Y,C) � �������� �������� ��������
num(C),num(C1),
num(C2),path(X,Z),
edge(X,Z,C1),
cost(Z,Y,C2),
C = C1 + C2.
� � ����� � ������ �������
fin(D), cost(A,D,C),
short(A,D,C1), C > C1.

Considering the EDB :=

�������� �� ��� ������� �� ��� ������� �� ��� ������� �� ���

the size of the instantiated program is 5110 atoms, while the
size of the reduced program (after applying �� �) is 812
atoms. Moreover, the reduced program is acyclic.

Now we present some experimental results using normal
programs. In order to use SATO, it was necessary to get the
clausal form of the program after finding the Clark’s com-
pletion.7 For this, we used Wilson’s method, which has lin-
ear time complexity (Wilson 1990). We considered the well
known queens-n problem of placing n queens on a chess-
board so that none are attacked. The following program
"�

��models the problem.

7Clark’s completion is a characterization of supported models.

const n=15.
pc(1..n).
d(I,J) � ���"�� ���#�����
��"� #��
otro(I,J) � ���"�� ���#�� ���#���

����#� #��� ��"� #���
ig(X,X) � ������

� ���"�� ���#�� ���"��� ��$�"� "���
��"� #�� ��"�� #��
� ���"�� ���#�� ���"��� ���#���
��"� #�� ��"�� #��� �����"� #� "�� #���

diag(I,J,I1,J1) � ���"�� ���#�� ���"��� ���#���
���%�� "� � "� %� #� � #� %�

diag(I,J,I1,J1) � ���"�� ���#�� ���"��� ���#���
���%�� "� � "� %� #� � #� %�

This program is acyclic, so, SATO can be used (after com-
pleting the program). With n = 15 (i.e. 15 queens) the
run time of SATO was of 3.54 seconds and the run time
of SMODELS was of 11.80 seconds. With n = 17 the
run time of SATO was of 7.60 seconds and the run time of
SMODELS was of 97.80 seconds.8.

An Algorithm for finding stable models
As previously pointed out, SATO can sometimes be used to
find stable models in a much faster way than SMODELS.
Therefore it makes sense to consider an approach that first
attempts to convert a cyclic program into an acyclic one.
Moreover, it is also helpful to reduce the cyclic program as
much as possible. We are therefore interested in transfor-
mations which preserve the set of supported models. The
transformation By-Cases is useful in this respect.

Definition 9 (By-Cases (B-C),(Nieves & Cervantes 2000))
Let P be a normal logic program. �� result from � if the
following condition holds. Suppose � is an atom. Let
�� �� ���������� � ���� � �������� � �� and
�� �� ����� � ������� � �������� � ��. Let � �

�
and � �

� programs resulting from �� and �� respectively by
applying ����� and let � �� ��� � � � �

� � � �
�� Then the

transformation !� � ���
� derives � � ��� where � � �
and � �� �. In order to emphasis the role of a, b then we
write !� � ���
�
� .

9

Lemma 4
The transformation rule By-Cases is closed under supported
models.

Proof.
Straightforward.
The transformation rule By-Cases is not closed under Sta-

ble Models Semantics. Let � be the following program:
�� �� �� ��� �� ��
�� ��� �� ��� �� ���

� has only one stable model (��� �� ��). Apply By-cases,
we get � �:

a.
�� �� �� ��� �� ��
�� ��� �� ��� �� ���

� � has two stable models (��� �� ��� ��� �� ��).
8All tests were conducted on a Sun sparc station 5.
9� � denotes the reflexive and transitive closure of the relation

� .

We propose the following algorithm for computing stable
models. We first “compile” the program by applying trans-
formations that preserve the semantics regardless of the ex-
tensional database (the input in ASP). In our case, we use
��� (this transformation may be applied over a (not yet)
grounded program). Let ��������� �� ������

�� � , where
��������� is the input program to the function Stable(�).
We also obtain the dependency graph of the program. At
run time, we instantiate the program and proceed as follows:

Function Stable(�)
�� �� ������

���.
If(HEDLP(��))
�

���� := dis-nor(��).
If(ACYCLIC(����))

return(cmodels(����)).
Else

return(SMODELS(����)).
�
Else

return(Disjunctive-Stable(��)).

HEDLP(��) is a function that determineswhether the pro-
gram �� is head-cycle free (Ben-Eliyahu & Dechter 1992).
If so, Stable-models(��) = Stable-models(dis-nor(��)). The
function ACYCLIC(����) determines whether the normal
program ��� is acyclic (Ben-Eliyahu & Dechter 1992)
10. The function SMODELS computes a stable model of
a normal program or returns false if none exist (Simons
1997). The function cmodels is given below. The func-
tion Disjunctive-Stable returns the set of stable models of
a disjunctive program. We can use the system dlv for this
purpose.

Function cmodels(P)
�� := res���

� �! � ���� �.
�� := Claus-Comp(��).
return(SATO(��)).

The function Claus-Comp produces the clausal form after
completing the program. For this, Wilson’s method ((Wilson
1990)) can be used. The function SATO returns a model for
�� if one exists, otherwise returns false. It is based on the
well known Davis Putnam procedure.

Conclusion
We defined a reduction system �� � that includes several
transformation rules that are correct with respect to the sta-
ble semantics. We illustrated how sometimes �� � can trans-
form a cyclic program into an acyclic one. Our results em-
phasize that satisfiability solvers may serve as useful com-
putational tools in answer set programming.

Acknowledgments
We would like to thank Michael Gelfond for very helpful
discussions in a preliminary version of our paper.

10These programs are also called tight in (Fages 1993).

References
Arrazola, J.; Dix, J.; and Osorio, M. 1999. Confluent term
rewriting systems for non-monotonic reasoning. Computa-
cion y Sistemas II(2-3):299–324.

Babovich, Y.; Erdem, E.; and Lifschitz, V. 2000. Fages’
theorem and answer set programming. In Proceedings of
the 8th International Workshop on Non-Monotonic Rea-
soning. ?–?

Ben-Eliyahu, R., and Dechter, R. 1992. Propositional Se-
mantics for Disjunctive Logic Programs. In Apt, K. R., ed.,
LOGIC PROGRAMMING: Proceedings of the 1992 Joint
International Conference and Symposium, 813–827. Cam-
bridge, Mass.: MIT Press.

Brass, S., and Dix, J. 1997. Characterizations of the Dis-
junctive Stable Semantics by Partial Evaluation. Journal
of Logic Programming 32(3):207–228. (Extended abstract
appeared in: Characterizations of the Stable Semantics by
Partial Evaluation LPNMR, Proceedings of the Third Inter-
national Conference, Kentucky, pages 85–98, 1995. LNCS
928, Springer.).

Brass, S.; Dix, J.; Freitag, B.; and Zukowski, U. 2001.
Transformation-based bottom-up computation of the well-
founded model. Theory and Practice of Logic Program-
ming to appear.

Brewka, G., and Dix, J. 1996. Knowledge representa-
tion with logic programs. Technical report, Tutorial Notes
of the 12th European Conference on Artificial Intelligence
(ECAI ’96). Also appeared as Technical Report 15/96,
Dept. of CS of the University of Koblenz-Landau.Will ap-
pear as Chapter 6 inHandbook of Philosophical Logic, 2nd
edition (1998), Volume 6, Methodologies.

Brewka, G.; Dix, J.; and Konolige, K. 1997. Nonmono-
tonic Reasoning: An Overview. CSLI Lecture Notes 73.
Stanford, CA: CSLI Publications.

Fages, F. 1993. Consistency of Clark’s completion and
existence of stable models. Methods of Logic in Computer
Science 2.

Gelfond, M., and Lifschitz, V. 1988. The Stable Model
Semantics for Logic Programming. In Kowalski, R., and
Bowen, K., eds., 5th Conference on Logic Programming,
1070–1080. MIT Press.

Lloyd, J. W. 1987. Foundations of Logic Programming.
Berlin: Springer. 2nd edition.

Nieves, J. C., and Cervantes, G. 2000. Is the class of well-
behaved semantics so small? In Proceedings of 12th Euro-
pean Summer School in Logic, Language and Information,
189–198.

Pearce, D. 1999. Stable inference as intuitionistic validity.
Logic Programming 38:79–91.

Simons, P. 1997. Towards constraint satisfaction through
logic programs and the stable model semantics. Techni-
cal Report 47, Helsinki University of Technology, Digital
Systems Laboratory.

van Dalen, D. 1980. Logic and Structure. Berlin: Springer,
second edition.

Wilson, J. 1990. Compact normal forms in propositional
logic and integer programming formulations. Journal of
Computers and Operations Research 90:309–314.
Zhang., H. March 1993. Sato: A decision procedure for
propositional logic. Association for Automated Reasoning
Newsletter 22:1–3.

