
Exploiting Vertical Parallelism from Answer Set Programs

Enrico Pontelli and Omar EI-Khatib
Department of Computer Science

New Mexico State University
epontell@cs, nmsu. edu

Introduction
In the last ten years we witnessed a rapid development
of alternative logical systems, called non-monotonic logics
(Baral & Gelfond 1994; Apt & Bol 1994; Minker 1993)---
which allow new axioms to retract existing theorems, and
result to be more adequate for common-sense reasoning and
modeling dynamic knowledge bases. One of the outcomes
of research in the field of non-monotonic logics is repre-
sented by the development of a number of languages for
knowledge modeling and manipulation. In particular, in
the last couple of years a novelprogrammingparadigrn has
arisen, called Answer Sets Programming (ASP) (Marek
Truszczynski 1999; Niemela to appear), which builds on the
mathematical foundations of logic programming and non-
monotonic reasoning. ASP offers novel and highly declara-
tive solutions in a number of well-defined application areas,
including intelligent agents, planning, and software model-
ing & verification. ASP currently benefits from solid and
well-developed mathematical foundations, but its program-
ruing aspects still require considerable research. In panic-
ular, there is the need to (1) develop efficient implementa-
tions of inference engines for ASP, and (2) develop method-
ologies for software development in the ASP framework--
i.e., methodologies for representing knowledge using the
constructs offered by ASP. Indeed, many of the research
teams involved in the development of ASP are currently in-
vesting considerable effort in these directions (Cholewin-
ski, Marek, & Truszczynski 1996; Eiter et al. 1998;
Niemela & Simons 1997; Lifschitz 1999). The goal of this
project is to tackle some of these issues, using constraint
solving and parallel processing technology. In particular, in
this paper we present some preliminary ideas that have been
used to address the first issue--i.e., improving performance
of ASP engines--through the use parallelism.

A Sequential Execution Model for ASP

Various execution models have been proposed in the lit-
erature to support computation of answer sets and some
of them have been applied as inference engines to support
ASP systems (Bell et al. 1993; Chert & Warren 1996;

Cholewinski, Marek, & Truszczynski 1996; Niemela to ap-
pear; Eiter et al. 1998).

In this project we propose to adopt an execution model
which is built on the ideas presented in (Niemela to appear)
and effectively implemented in the popular ~rnodels system
(Niemela & Simons 1997). The choice is dictated by the
relatively simplicity of this execution model and its appar-
ent suitability to exploitation of parallelism. The system
consists of two parts, a compiler--we are currently using
the Iparse compiler (Syrjanen 1998)--which is in charge
of creating atom tables and performing program grounding,
and an engine, which is in charge of computing the answer
sets of the program. Our interest is focused on the engine
component. A detailed presentation of the structure of the
Smodels executionmodel (Niemela & Simons 1997) is out-
side the scope of this paper. In the rest of this section we
propose an intuitive overview of the basic execution algo-
rithm,t Figure 1 presents the overall execution cycle for the
computation of stable models.

As from Figure 1, the computation of answer sets can
be described as a non-determimstic process--needed since,
in general, each program H may admit multiple distinct an-
swer sets. The computation is an alternation of two opera-
tions, expand and choose_literal. The expand op-
eration is in charge of computing the U’uth value of all those
atoms that have a determined value in the current answer set
(i.e., there is no ambiguity on whether they are u’ue or false).
The choose_literal is in charge of arbitrarily choosing
one of the atoms not present in the current answer set (i.e.,
atoms which do not have a determined value) and "guess-
ing" a truth value for it.

Non-determinism originates from the execution of
choose_literal(H, B), which selects an atom 1 satis-
fying the following properties: the atom I appears negated
in the program l’I, and neither I nor its negation are currently
present in B. The chosen atom is added to the partial answer
set and the expansion process is restarted.

Each non-deterministic computation can terminate in
three different ways:

1. successfully when B assigns a truth value to all the
atoms and B is an answer set off,i;

2. unsuccessfully when a conflict is detected--i.e., B as-

~The presentation does not have any pretense of completeness.

174

From: AAAI Technical Report SS-01-01. Compilation copyright © 2001, AAAI (www.aaai.org). All rights reserved.

fun~ion compute (H:Program, A:Litem~Set)
begin

B := expand(H, A)
while ((B is consistent)

(B is not complete)
1 := choose_litera1(~, B);
B := expand(~ , A U { 1 })

endwhile
if (B stable model of H) then

return B;
end

fun~ion expand (H : Program, A : Litera~Set)
begin

B := A ;
while (B ~ B’)

B’ := B;
B := apply_rule(R, B);

endwhile
return B ;

end

Figure 1: Basic Execution Model for ASP

signs both values true and false to an atom a;
3. unsuccessfully when B assigns a truth value to each

atom without any conflict, but B does not represent an
answer set of II. This situation typically occurs when a
positive literal 2 a is introduced in B (e.g., it is guessed by
choose_literal) but the rules of the program do not
provide a "support" for the truth of a in this answer set.

As in traditional execution of logic programming, non-
determinism is handled via backtracking to the choice points
generated by choose_l i teral. Observe that each choice
point produced by choose_literal has only two alter-
natives: one assigns the value true to the chosen literal, and
one assigns the value false to it.

The expand procedure mentioned in the algorithm in
Figure 1 is intuitively described in Figure 2. This procedure
repeatedly applies expansion rules to the given set of liter-
,Is until no more changes are possible. The expansion rules
are derived from the program II and allow to determine the
truth status of literals; the rules used in this procedure are
derived from the work of Niemela and Simons (Niemela
Simons 1997) and Warren and Chen (Chen & Warren 1996).
Efficient implementation of this procedure requires consid-
erable care to avoid unnecessary steps, e.g., by dynamically
removing invalid rules and by using smart heuristics in the
choose_literal procedure (Niemela & Simons 1997).

Parallelism in ASP

The structure of the computation of answer sets illustrated
previously can be easily seen as an instance of a constraint-
based computation (Bell et al. 1993; Subrahmanian, Nau, &
¯ .tgo 1995), where

¯ the application of the expansion rules (in the expand
procedure) represents the propagation step in the con-
straint computation

¯ the selection of a literal in the choose_literal proce-
dure represents a labeling step

From this perspective, it is possible to identify two sources
of non-determinism in the computation:
¯ horizontal non-determinism: which arises from the

choice of the next expansion rule to apply (in expand);
¯ vertical non-determinism: which arises from the choice

of the literal to add to the partial answer set (in

21f atom a is added to B, then a receives the value true in B; if
not a is added to B, then a receives the value false in B.

Figure 2: Expand procedure

choose_literal)
These two forms of non-determinism bear strong similari-
ties respectively with the don "t care and don’t know non-
determinism traditionally recognized in constraint and logic
programming (Gupta et al. 2000; Van Hentenryck 1989).

The goal of this project is to explore avenues for the
exploitation of parallelism from these two sources of non-
determinism. In particular, we will use the terms
¯ verticalparallelism to indicate a situation where separate

threads of computation are employed to explore alterna-
tives arising from vertical non-determinism

¯ horizontal parallelism to indicate the use of separate
threads of computation to concurrently apply different ex-
pansion rules to a given set of I/terals

Preliminary experimental considerations have underlined
the difficulty of exploiting parallelism from ASP computa-
tions. In particular
¯ considerable research has been invested in the design of

algorithms and heuristics to provide fast computation of
answer sets; realistically, we desire to maintain as much
as possible of such technology;

¯ the structure of the computation (seen as a search
tree where nodes correspond to the the points of non-
determinism) can be extremely irregular and ill-balanced.
Size of the branches can become very small--thus impos-
ing severe requirements for granularity control;

¯ neither form of non-determinism dominates on the
other--i.e., certain ASP programs perform very few
choices of literals (i.e., calls to choose_literal),
while spending most of the time in doing expansions,
while other programs explore a large number of choices.
The structure of the computation is heavily dependent on
the nature of the program. There are programs which lead
directly to answer sets with little or no choices (e.g., pos-
itive programs), other which invest most of their time in
searching through a large set of literals for answer sets.

This leads to the following conclusions:
¯ ASP does not allow the immediate reuse of similar tech-

nology developed in the context of parallel logic program-
ruing (Gupta et al. 2000);

¯ granularity control is a serious issue--techniques have to
be adopted to collapse branches of the search tree and pro-
duce parallel computations of adequate grain size;

¯ both vertical and horizontal parallelism need to co-exist
within the same system; although it is unclear whether we

175

need to exploit them at the same time, it is instead clear
that both forms of parallelism may need to be (alterna-
tively) employed during the execution of a program.

In the rest of this work we will focus on the exploitation of
vertical parallelism. Exploitation of horizontal parallelism
is currently under study (EbKhatib & Pontelli 2000).

Exploiting Vertical Parallefism in ASP

Alternative choices of literals during the derivation of an-
swer sets (choose_literal in Figure 1) are indepen-
dent and can be concurrently explored, generating separate
threads of computation, each potentially leading to a distinct
answer set. Thus, verticalparallelism parallelizes the com-
putation of distinct answer sets.

As ensues from research on parallelization of search tree
applications and non-deterministic programming languages
(Ranjan, Pontelli, & Gupta 1999; Clocksin & Alshawi 1988;
Gupta et al. 2000), the issue of designing the appropriate
data structures to maintain the correct state in the different
concurrent branches, is essential to achieve efficient parallel
behavior. Observe that straightforward solutions to similar
problems have been proved to be ineffective, leading to un-
acceptable overheads (Ranjan, Pontelli, & Gupta 1999).

The architecture for vertical parallel ASP that we en-
vision is based on the use of a number of ASP engines
(agents) which are concurrently exploring the search tree
generated by the search for answer sets--specifically the
search tree whose nodes are generated by the execution of
the choose_literal procedure. Each agent explores a
distinct branch of the tree; idle agents are allowed to acquire
unexplored alternatives generated by other agents.

The major issue in the design of such architecture is to
provide efficient mechanisms to support this sharing of un-
explored alternatives between agents. Each node P of the
tree is associated to a partial answer set B(P)--the partial
answer set computed in the part of the branch preceding P.
An agent acquiring an unexplored alternative from P needs
to continue the execution by expanding B(P) together with
the literal selected by choose_literal in node P. Ef-
ficient computation of B(P) for the nodes in the tree is a
known complex problem (Ranjan, Pontelli, & Gupta 1999).

Since ASP computations can be very ill-balanced and
irregular, we opt to adopt a dynamic scheduling scheme,
where idle agents navigate through the system in search
of available tasks. Thus, the partitioning of the available
tasks between agents is performed dynamically and is ini-
tiated by the idle agents. This justifies the choice of a de-
sign where different agents are capable of traversing a shared
representation of the search tree to detect and acquire unex-
plored alternatives. We will explore a number of optimiza-
tion schemes to improve efficiency of these mechanisms, via
run-time transformations of the search tree.

Implementation Overview

As mentioned earlier, the system is organized as a collec-
tion of agents which are cooperating in computing the an-
swer sets of a program. Each agent is a separate ASP en-
gine, which owns a set of private data structures employed

for the computation of answer sets. Additionally, a number
of global data structures, i.e., accessible by all the agents,
are introduced to support cooperation between agents. This
structuring of the system implies that we rely on a shared-
memory architecture.

The different agents share a common representation of
the ASP program to be executed. This representation is
stored in one of the global data structures. Program repre-
sentation has been implemented following the general data
structure originally proposed in (Dowling & Gallier 1984)--
proved to guarantee very effici.ent computation of standard
models. This representation is summarized in Figure 3.
Each rules is represented by a descriptor; all rules descrip-
tors are collected in a single array, which allows for fast scan
of the set of rules. Each rule deseriptor contain% between the
other things, pointers to the descriptors for all atoms which
appear in the rule--the head atom, the atoms which appear
positive in the body of the rule, and the atoms which ap-
pear negated in the body of the rule. Each atom descrip-
tor contains information such as (i) pointers to the rules in
which the atom appears as head, (ii) pointers to the rules in
which the atom appears as positive body element, (iiO point-
ers to the rules in which the atom appears as negative body
element, and (iv) an atom array index. Differently from
the schemes adopted in sequential ASP engines (Dowling
& Gallier 1984; Niemela & Simons 1997), our atom de-
scriptors do not contain the truth value of the atom. Truth
values of atoms are instead stored in a separate data struc-
ture, called atom array. Each agent maintains a separate
atom array, as shown in Figure 3; this allows each agent to
have an independent view of the current (partial) answer set
constructed, allowing atoms to have different truth values in
different agents. E.g., in Figure 3, the atom of index i is true
in the answer set of one agent, and false in the answer set
computed by another agent.

Each agent acts as a separate ASP engine. Each agent
maintains a local stack strficture (the trail) which keeps track
of the atoms whose truth value has already been determined.
Each time the truth value of an atom is determined (i.e., the
appropriate entry in the atom array is set to store the atom’s
truth value), a pointer to the atom’s descriptor is pushed in
the trail stack. The trail stack is used for two purposes. Dur-
ing expand, the agent uses the elements newly placed on
the trail to determine which program rules may be triggered
for execution. Additionally, a simple test on the current size
of the trail stack allows each agent to determine whether all
atoms have been assigned a truth value or not. The use of a
trail structure provides also convenient support for exploita-
tion of horizontal parallelism (E1-Khatib & Pontelli 2000).

To support the exploitation of vertical parallelism, we
have also introduced an additional simple data structure: a
choice point stack. The elements of the choice point stack
are pointers to the trail stack. These pointers are used to
identify those atoms whose truth value has been "guessed"
by the choose_literal function. The choice points are i
used during backtracking: they are used to determine which
atoms should be removed from the answer set during back-
tracking, as well as which alternatives can be explored to
compute other answer sets. This is akin tO the mechanisms

176

A~Am~ ^~ .~mf Arm Am~y
Pmmmor ! l~mmmmr 2 Pm~t~mr n

Figure 3: Representation of Rules and Atoms

used in trail-based constraint systems (Schulte 1997).
The open issue which remains to be discussed is

how agents interact in order to exchange unexplored
alternatives---i.e., how agents share work. Each idle agent
attempts to obtain unexplored alternatives from other active
agents. In our context, an unexplored alternative is repre-
sented by a partial answer set together with a new literal to
be added to it. In this project we have explored two alterna-
tive approaches to tackle this problem. In Recomputation-
based Work Sharing, agents share work by exchanging the
list of chosen literals which had been used in the construc-
tion of an answer set; the receiving agent will use these to re-
construct the answer set and then perform local backtracking
to explore a new alternative. In Copy-based Work Sharing
instead, agents share work by exchanging a complete copy
of the current answer set (both chosen aa well as determined
literals) and then performing local backtracking. The two
schemes provide a different balance between amount of data
copied and mount of time needed to restart the computation
with a new alternative in a different agent.

Another important aspect that has to be considered in
dealing with this sort of systems is termination detection.
The overall computation needs to determine when a global
fixpoint has been reached--i.e., all the answer sets have been
produced and no agent is performing active computation any
longer. In the system proposed we have adopted a cen-
tralized termination detection algorithm. One of the agents
plays the role of controller and at given intervals polls the
other agents to verify global termination. Details of this al-
gorithm are omitted for lack of space.

Recomputation Based Approach
The idea of Recomputation-based sharing is derived
from similar schemes adopted in or-parallel execution
of logic programs (Clocksin & Alshawi 1988). In the
Recomputation-based scheme, an idle agent obtains a par-
tial answer set from another agent in an implicit fashion. Let
us assume that agent .A wants to send its partial answer set
B to agent B. To avoid copying the whole partial answer
set B, the agents exchange only a list containing the literals

which have been chosen by ,4 during the construction of B.
These literals represent the "core" of the partial answer set;
in particular, we are guaranteed that an expand operation
applied to this list ofliterals will correctly produce the whole
partial answer set B. This is illustrated in Fig. 4.

The core of the current answer set is represented by the
set ofliterals which are pointed to by the choice points in the
choice point stack. In particular, to make the process of shar-
ing work more efficient, we have modified the choice point
stack so that each choice point not only points to the trail,
but also contains the corresponding chosen literal (the literal
it is pointing to in the trail stack). As a result, when shar-
ing of work takes place between agent ,,4 and agent/3, the
only required activity is to transfer the content of the choice
point stack from ,4 to B. Once B receives the chosen liter-
als, it will proceed to install their truth values (in its atom
array) and perform an expand operation to reconstruct the
partial answer set. The last chosen literal will be automati-
cally complemented to obtain the effect of backtracking and
to start construction of the "next" partial answer set.

i
Tmn

Processor i

Corn Trail

Processorj

Figure 4: Recomputation-based Sharing of Work
This copying process can be made more efficient by mak-

ing it incremental: agents exchange only the difference be-
tween the content of their choice point stacks. This reduces
the amount of data exchanged and allows to reuse part of the
answer set already existing in the idle agent.

Performance Results: In this section we present perfor-
mance results for a prototype which implements an ASP
engine with Recomputation-based vertical parallelism. The
prototype has been developed in C and the performance re-
sults have been obtained on a Sun Enterprise. The prototype
is capable of computing the answer sets of standard ASP
programs, pre-processed by the Iparso grounding program
(Syrjanen 1998). The prototype is largely unoptimized (e.g.,
it does not include many of the heuristics adopted in similar
ASP engines (Niemela & Simons 1997)) but its sequential
speed is reasonably close to that of Smodels3.

All figures are in milliseconds and have been achieved
as average execution times over 10 runs on a lightly loaded
machine. The benchmarks adopted are programs obtained
from various sources (all written by other researchers); they
include some large scheduling applications (sjss, tops4),
planners (logistics 1,2, strategic), graph problems (color),
as well various synthetic benchmarks (’1"4, T5, T15, 1"8,

3Comparisons made with the Iookahead feature turned off.
4These two programs have been modified from their original

version to reduce the size of the ground program---to accommodate
some current limitations in our memory allocation scheme.

177

P7). These benchmarks range in size from few tens of rules
(e.g., T4, T5) to hundreds of roles (e.g., rcps).

As can be seen from the figures in Table 1, the system
is capable of producing good speedups from most of the se-
lected benchmarks. On the scheduling (sjss, rcps), graph
coloring, and planning (strategic, logistics) benchmarks
the speedups are very high (mostly between 6 and 8 using 10
agents). This is quite a remarkable result, considering that
these benchmarks are very large and some produce highly
unbalanced computation trees, with tasks having very differ-
ent sizes. The apparently low speedup observed on the lo-
gistics with the first plan (logistics 1), is actually still a pos-
itive result, since the number of choices performed across
the computation is just 4 (thus we cannot expect a speedup
higher than 4). On the very fine-grained benchmarks T4
and T5 the system does not behave as well; in particular
we can observe a degradation of speedup for a large number
of agents--in this case the increased number of interactions
between agents overcome the advantages of parallelization,
as the different agents attempt to exchange very small tasks.
In T4 we even observe a slow-down when using more than
8 agents. Two sfightly disappointing results are in T8 and
P7. T8 is a benchmark which produces a very large number
of average-to-small size tasks; the top speedup is below 5
and denotes some difficulty in maintaining good efficiency
in presence of frequent task switching. P7 on the other hand
has a very low number of task switching, but generates ex-
tremely large answer sets. The speedup tends to decrease
with large number of agents because some agents end up
obtaining choice points created very late in the computation,
and thus waste considerable time in rebuilding large answer
sets during the recomputation phase.

Note that the sequential overhead observed in all cases
(the ratio between the sequential engine and the parallel en-
gine running on a single processor) is extremely low, i.e.,
within 5% for most of the benchmarks.

Copy-Based Approach

The Copy-based approach to work sharing adopts a simpler
approach than recomputation. During work sharing from
agent A to B, the entire partial answer set existing in A is
directly copied to agent/3. The use of copying has been fre-
quently adopted to support computation in constraint pro-
gramming systems (Schulte 1999) as well as to support or-
parallel execution of logic and constraint programs (Gupta
et al. 2000; Van Hentem-yck 1989).

The partial answer set owned by ,4 has an explicit repre-
sentation within the agent ,4: it is completely described by
the content of the trail stack. Thus, copying the partial an-
swer set from ,4 to B can be simply reduced to the copying
of the trail stack of,4 to B. This is illustrated in Figure 5.

Once this copying has been completed,/3 needs to install
the m~th value of the atoms in the partial answer set--i.e.,
store the correct truth values in the atom array. Computation
of the "next" answer set is obtained by identifying the most
recent literal in the trail whose value has been "guessed",
and performing local backtracking to it. The receiving agent
/3 maintains also a register (bottom_trail) which is set to the

top of the copied trail: backtracking is not allowed to pro-
ceed below the value of this register. This allows avoidance
of duplicated work by different agents.

Troll Atom Array
~OCSSsor l Procossor j

Figure 5: Copy-based Sharing of Work

As in the recomputation case, we can improve perfor-
mance by performing incremental copying, i.e., by copying
not the complete answer set but only the difference between
the answer set in ‘4 and/3. A design to perform incremental
copying has been completed but not implemented yet.

Performance Results: We have modified our implementa-
tion to support Copy-based work sharing, and we have tested
its performance on the same pool of benchmarks.

The results reported in Figure 6 are remarkable. The
large benchmarks (e.g., the two scheduling applications) re-
port speedups in the range 8.5 - 10 for 10 agents, main-
mining linear speedups for small number of agents (from
2 to 5 agents). The fine grained benchmarks (such as 1"4
and T5) provide speedups similar (usually slightly better)
to those observed earlier. In both cases we note a slight
degradation of speedup for large number of agents. As in the
case of recomputation, this indicates that if the tasks are too
fine grained, additional steps are needed in order to achieve
performance improvements. We have experimented with a
simple optimization, which semi-automatically unfolds se-
lected predicates a constant number of times, in order to
create larger grain tasks (by effectively combining together
consecutive tasks). The simple optimization has produced
improvements in the speedups, as show in Table 2.

Name J 2 Agents 4 Agents I 8 Agents 10 Agents

T4T5 [1.99/1.91
1.97/1.85 1.95/1.68 1.93/1.60

1.92/1.60 1.95/1.50 1.93/1.51 1.91/1.49

Table 2: Improvement using Task-collapsing (new/old)

The Copy-based scheme behaves quite well in presence
of a large number of average-to-small tasks, as seen in the
T8 benchmark. The speedups reported in this case are ex-
cellent. This is partly due to the lower cost, in this particular
case, of copying w.r.t, recomputation, as well as the adop-
tion of a smarter scheduling strategy, made possible by the
use of copying, as discussed in the next section.

For what concerns the benchmark P7, the situation is
sub-optimal. In this case the need of copying large answer
sets during sharing operations penalizes the overall perfor-
mance. We expect this case to become less of a problem with
the introduction of incremental copying techniques--i.e., in-
stead of copying the whole answer set, the agents compute

178

Name 1 Agent 2 Agents 3 Agents 4 Agents 8 Agents 10 Agents
Scheduling (sjss) 131823.88 66146.75 44536.16 34740.25 19132.63 16214.49
Scheduling (rcps) 72868.48 36436.24 28923.33 18040.35 13169.61 10859.68
Color (Random) 1198917.24599658.62 389737.88 300729.31 178942.87 158796.98
Color (Ladder) 1092.81 610.73 441.61 353.80 325.00 306.67
Logistics (l 10054.68 10053.78 10054.71 4545.3 ! 3695.67 3295.23
Logistics (2) 6024.67 3340.44 2763.14 2380.36 1407.53 1371.47
Strategic 13783.51 7317.02 5018.43 4005.83 2278.18 1992.51

T5 128.21 67.32 69.97 72.11 76.55 77.62
T4 103.01 78.14 78.33 84.11 91.79 118.21

T8 3234.69 1679.29 1164.25 905.21 761.69 710.37
P7 3159.11 1679.86 1266.91 981.75 445.33 452.19
TI5 415.73 221.70 178.94 132.10 135.99 137.11
T23 3844.41 1991.76 1595.75 1433.56 1341.79 1431.70

Table 1: Recomputation-based Sharing: Execution Times (msec.)

the difference between the answer sets currently present in
their stacks, and transfer only such difference. Our current
prototype does not include this optlmiTation.

Comparison: Figure 7 illustrates the differences in
speedups observed by using recomputation vs. copying on
some of the benchmarks. In most benchmarks the two ap-
proaches do not show relevant differences--the speedups
observed differ only of a few decimal points. On the other
hand, we have observed more substantial differences on the
larger benchmarks (e.g., the sjss and rcps scheduling appli-
cations). In these cases the performance of the Copy-based
scheme is substantially better than the Recomputation-based
scheme. These differences arise because:
¯ the copied answer sets in these cases are very large; the

cost of performing a memory copying operation of a large
block of memory is substantially smaller than the cost of
recomputing the answer set starting from its core. Experi-
mental results have indicated that for answer sets with less
than 350 elements recomputation provides better results
than copying, while for larger answer sets copying is bet-
ter. In benchmarks such as sjss and rcps the answer sets
exchanged have an average size of 2500 elements. This
observation is also confirmed by the behavior observed in
benchmark P7: in this case, the answer sets exchanged
have sizes in the order of 300 elements, and, as from Fig-
ure 7, recomputation indeed performs better than copying.

¯ another justification for the difference in performance is
related to the style of scheduling adopted; this is discussed
in detail in the next section.

To take advantage of the positive aspects of both method-
ologies, we have adopted an hybrid scheme, where sharing
strategy is selected based on the size of the answer set.

Conclusions and Future Work
The problem tackled in this paper is the efficient execu-
tion of Answer Set Programs. Answer Set Programming
is an emerging programming paradigm which has its roots
in logic programming, non-monotonic reasoning, and con-
straint programming. This blend has lead to a paradigm

which provides for very declarative programs (more declar-
ative, e.g., then traditional Prolog programs). ASP has been
proved to be very effective for specific application areas,
such as planning and design of common-sense reasoning en-
gines for intelligent agents.

The goal of this work is to explore the use of parallelism
to improve execution performance of ASP engines. We have
dete,ained two forms of parallelism which can be suitably
exploited from a constraint-based ASP engine. We have fo-
cused on the exploitation of one of these two forms of par-
allelism (what we called vertical parallelism) and presented
an efficient parallel engine based on this idea. Alternative
approaches to perform work sharing and scheduling are cur-
rently under investigation, in order to provide a more consis-
tent and efficient exploitation of parallelism. Performance
results for our prototype running on a Sun Enterprise system
have been presented and discussed.

The project is currently focusing on integrating the sec-
ond form of parallelism, horizontal parallelism, in our en-
gine. It is clear from our experiments that a number of appli-
cations will take considerable advantage from the exploita-
tion of this alternative form of parallelism.

Acknowledgments
The authors wish to thank A. Provetti, M. Gelfond, G.
Gupta, and S. Tran for their help. The authors are par-
tially supported by NSF grants CCR_9875279, CCR9900320,
CDA9729848, EIA9810732, and HRD9906130.

References
Apt, IC, and Bol, R. 1994. Logic Programming and Negation: A
Survey. Journal of Logic Programming 19/20.
Baral, C. and Gelfond, M. 1994. Logic Programming and Knowl-
edge Representation. J. Logic Programming 19/20:73-148.
Bell, C.; Nerode, A.; Ng, R.; and Subrahmanian, V. 1993. Im-
plementing Stable Semantics by Linear Programming. In Logic
Programming and Non-monotonic Reasoning, 23-42. MIT Press.
Chert, W., and Warren, D. 1996. Computation of Stable Models
and its Integration with Logical Query Processing. Transactions
on Knowledge and Data Engineering 8(5): 742-757.

179

Speedups using Copying

.......... RCPS I

.---= Color (Random)
- - " Color (Ladder)
: : Logistics (1) "

Number of Agents

lO

Speedups using Copying

i ,
00 2 4 6 8 10

Number of Agents

10

8

¯ 2

Figure 6: Speedups using Copying

Copying vs. Recomputation

,;_L_<: :) , I ’ " ’
I s, ss (cow) l ,
l’--" ~cPs<.,=~o)I
IRCPS (copy) r ..-. .--
I-- -- + (m> I i:::.. :’~ I

/"~
. i ,

2 4 15 8 10
Number of Agents

10.0

&0

~. &o

i
4.0

2.0

0.0

Copying vs. Recomputation

T8 (remmp)
* - - -* TO (¢x~y) .’"" ""o ’~ I=7 (recomp) -"’, - --v I:)7 (cooy)~-------.~’+""" """ ""

/?i;ii...-

i ,
2 4 6 8 10

Number of Agents

Figure 7: Comparison between Recomputation and Copying

Cholewinski, P.; Marek, V.; and Truszczynski, M. 1996. Default
Reasoning System DeReS. In Int. Conf. on Principles of Knowl-
edge Repr. and Reasoning, 518-528. Morgan Kauffman.
Ciocksin, W., and Alshawi, H. 1988. A Method for Effi-
ciently Executing Horn Clause Programs Using Multiple Proces-
sors. New Generation Computing 5:361-376.
Dowling, W., and Gailier, J. 1984. Linear-time Algorithms for
Testing the Satisfiability of Propositional Horn Formulae. Journal
of Logic Programming 3:267-289.
Eiter, T.; Leone, N.; Mateis, C.; Pfeifer, G.; and Scarcello, E
1998. The KR System dlv: Progress Report, Comparisons,
and Benchmarks. In International Conference on Principles of
Knowledge Representation and Reasoning, 406--417.
EI-Khatib, O., and Pontelli, E. 2000. Parallel Evaluation of An-
swer Sets Programs Preliminary Results. In Workshop on Paral-
lelism and Implementation of Logic Programming.
Gupta, G.; Pontelli, E.; Ali, K.; Carlsson, M.; and Hermenegiido,
M. 2000. Parallel Execution of Prolog Programs: a Survey. Tech-
nical report, New Mexico State University.
Lifschitz, V. 1999. Action Languages, Answer Sets, and Plan-
ning. In The Logic Programming Paradigm. Springer Verlag.
Marek, V., and Truszczynski, M. 1999. Stable Models and an
Alternative Logic Programming Paradigm. In Apt, K.; Marek, V.;

Truszczinski, M.; and Warren, D., eds., The Logic Programming
Paradigm. Springer Verlag.
Minker, J. 1993. An Overview of Nonmonotonic Reasoning and
Logic Programming. Journal of Logic Programming 17(2/3/4).
Niemcla, 1., and Simons, P. 1997. Smodels - An Implementation
of the Stable Model and Well-Founded Semantics for Normal LP.
In Logic Progr. and Non-monotonic Reasoning, Springer Verlag.
Niemela, I. (to appear). Logic Programs with Stable Model Se-
mantics as a Constraint Progr. Paradigm. Annals ofMatlt & AL
Ranjan, D.; Pontelli, E.; and Gupta, G. 1999. On the Complexi~,
of Or-Parallelism. New Generation Computing 17(3):285-308.
Schulte, C. 1997. Programming Constraint Inference Engines. In
Principles and Practice of Constraint Prog~., Springer Vetlag.
Schulte, C. 1999. Comparing Trailing and Copying for Constraint
Programming. In Int. Conf. on Logic Programming, MIT Press.
Subrahmanian, V.; Nau, D.; and Vago, C. 1995. WFS + Branch
and Bound = Stable Models. Transactions on Knowledge and
Data Engineering 7(3):362-377.
Syrjanen, T. 1998. Implementation of Local Grounding for Logic
Programs with Stable Model Semantics. Technical Report, HUT.
Van Hentenryek, P. 1989. Parallel Constraint Satisfaction in
Logic Programming. In Proc. of the Sixth International Confer-
ence on Logic Programming. MIT Press.

180

