
A Comparative Study of Logic Programs with Preference:
Preliminary Report

Torsten Schaub� and Kewen Wang�
Institut für Informatik
Universität Potsdam

Postfach 60 15 53, D–14415 Potsdam
Germany

�torsten,kewen�@cs.uni-potsdam.de

Abstract

We are interested in semantical underpinnings for existing ap-
proaches to preference handling in extended logic program-
ming (within the framework of answer set programming). As
a starting point, we explore three different approaches that
have been recently proposed in the literature. Because these
approaches use rather different formal means, we furnish a
series of uniform characterizations that allow us to gain in-
sights into the relationships among these approaches. To be
more precise, we provide different characterizations in terms
of (i) fixpoints, (ii) order preservation, and (iii) translations
into standard logic programs. While the two former provide
semantics for logic programming with preference informa-
tion, the latter furnishes implementation techniques for these
approaches.

Introduction
Numerous approaches to logic programming with prefer-
ence information have been proposed in the literature. So
far, however, there is no systematic account on their struc-
tural differences, finally leading to solid semantical under-
pinnings. We address this shortcoming by a comparative
study of a distinguished class of approaches to preference
handling. This class consists of selective approaches re-
maining within the complexity class of extended logic pro-
gramming (with answer sets). These approaches are selec-
tive insofar as they use preferences to distinguish certain
“models” of the original program.
As a starting point, we explore three different approaches

that have been recently proposed in the literature, namely
the ones in (Brewka and Eiter 1999; Delgrande et al. 2000;
Wang et al. 2000). Our investigation adopts characteriza-
tion techniques found in the same literature in order to shed
light on the relationships among these approaches. This
provides us with different characterizations in terms of (i)
fixpoints, (ii) order preservation, and (iii) translations into
standard logic programs. While the two former provide se-
mantics for logic programmingwith preference information,

� Affiliated with the School of Computing Science at Simon
Fraser University, Burnaby, Canada.

� On leave from Tsinghua University, Beijing, China.
Copyright c� 2001, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

the latter furnishes implementation techniques for these ap-
proaches. From another perspective, one can view (iii) as an
axiomatization of the underlying strategy within the object
language, while (i) may be regarded as a meta-level descrip-
tion of the corresponding construction process. One may
view (ii) as the most semantical characterization because it
tells us which “models” of the original program are selected
by the respective preference handling strategy.
We limit (also in view of (iii)) our investigation to ap-

proaches to preference handling that remain within NP.
This excludes approach like the ones in (Rintanen 1995;
Zhang and Foo 1997) that step outside the complexity class
of the underlying reasoning method. This applies also to the
approach in (Sakama and Inoue 1996), where preferences
on literals are investigated. While the approach of (Gelfond
and Son 1997) remains within NP, it advocates strategies
that are non-selective. Approaches that can be addressed
within this framework include (Baader and Hollunder 1993;
Brewka 1994) that were originally proposed for default
logic.
Proofs can be found in the full version of this paper.

Definitions and notation
We assume a basic familiarity with logic programming un-
der answer set semantics (Gelfond and Lifschitz 1991). An
extended logic program is a finite set of rules of the form

�� � ��� � � � � ������ ����� � � � ���� ��� (1)

where � � � � �, and each �� �� � � � �� is a lit-
eral, ie. either an atom � or the negation �� of �. The set
of all literals is denoted by ���. Given a rule 	 as in (1),
we let ���� �	� denote the head, ��, of 	 and 	��
�	� the
body, ���� � � � � ��� ��� ����� � � � ���� ���, of 	. Fur-
ther, let 	��
��	� � ���� � � � � � ��� and 	��
��	� �
������ � � � � ���. A program is called basic if 	��

��	� �
� for all its rules.
We define the reduct of a rule 	 as 	� � ���� �	� �

	��
��	�. The reduct, �� , of a program � relative to a set

 of literals is defined by

�� � �	� � 	 	 � and 	��
��	�

 � ���

A set of literals
 is closed under a basic program � iff for
any 	 	 �, �����	� 	
 whenever 	��
��	� �
 . We

From: AAAI Technical Report SS-01-01. Compilation copyright © 2001, AAAI (www.aaai.org). All rights reserved.

say that
 is logically closed iff it is either consistent (ie.
it does not contain both a literal � and its negation ��) or
equals ���. The smallest set of literals which is both logi-
cally closed and closed under a basic program � is denoted
by �����. Finally, a set
 of literals is an answer set of a
program� iff ������ �
 .
The set ��� of all generating rules of an answer set

from � is given by

��� � �	 	 � � 	��
��	� �
 and 	��
��	�

 � ���

As van Gelder in (1993), we define ���
� � ������.
Note that the operator �� is anti-monotonic, which implies
that the operator ���
� � ������
�� is monotonic.
A fixpoint of �� is called an alternating fixpoint for �.
Different semantics are captured by distinguishing different
groups of fixpoints of ��.
A (statically) ordered logic program1 is a pair ��� ��,

where � is an extended logic program and � � ��� is
an irreflexive and transitive relation. Given, 	�� 	� 	 �, the
relation 	� � 	� expresses that 	� has higher priority than
	�.2

Preferred alternating fixpoints
The notion of answer sets (without preference) is based on
a reduction of extended logic programs to basic programs
(without default negation). Such a reduction is inapplicable
when addressing conflicts by means of preference informa-
tion since all conflicts between rules are simultaneously re-
solved when turning � into �� . Rather conflict resolution
must be characterized among the original rules in order to
account for blockage between rules. That is, once the neg-
ative body 	��
��	� is eliminated there is no way to detect
whether ���� �	�� 	 	��
��	� holds in case of 	 � 	�.
Such an approach is pursued in (Wang et al. 2000) for

characterizing “preferred” answer sets. Following earlier
approaches based on default logic (Baader and Hollunder
1993; Brewka 1994), this approach is based on the concept
of activeness: Let
� � ��� be two sets of literals in an
ordered logic program ��� ��. A rule 	 in � is active wrt
the pair �
� �, if 	��
��	� �
 and 	��
��	�
 � �.

Definition 1 (Wang et al.,2000) Let ��� �� be an ordered
logic program and let
 be a set of literals. We define

� � � and for � � �

��� �
� ����� �	� �

� � 	 	 � is active wrt �
��
� and
�� � there is no rule 	� 	 � with 	 � 	�

such that
��� 	� is active wrt �
�
�� and
��� ���� �	�� �	
�

�����
����

Then, �������
� �
�
���
� if

�
���
� is consistent. Oth-

erwise, �������
� � ���.

1Also called prioritized logic program by some authors, as eg.
in (Brewka and Eiter 1999).

2As opposed to (Brewka and Eiter 1999) that attribute relation
� the inverse meaning.

The idea is to apply a rule 	 only if the question of appli-
cation has been settled for all higher-ranked rules 	 �. That
is, if either its prerequisites will never be derivable, viz.
	��
��	�� ��
 , or 	� is defeated by what has been derived
so far, viz. 	��
��	�

� �� �, or 	� or another rule with the
same head have already applied, viz. ���� �	 �� 	
�.
As its original ��, the operator ������ is anti-monotonic.

Accordingly, we may define for any set
 � ���, the
alternating transformation of ��� �� as �������
� �
��������������
��� A fixpoint of ������ is called an alter-
nating fixpoint of ��� ��. Note that ������ is monotonic.
Now, in analogy to Van Gelder (1993), a semantical

framework for ordered logic programs in terms of sets of
alternating fixpoints can be defined. Three different types
of semantics are investigated in (Wang et al. 2000): (i)
Preferred3 answer sets, viz. alternating fixpoints being also
fixpoints of ������. (ii) Preferred regular extensions, viz.
maximal normal4 alternating fixpoints of ��� ��. (iii) Pre-
ferred well-foundedmodel, viz. the least alternating fixpoint
of ��� ��.
We put the prefix ‘W-’ whenever a distinction to other ap-

proaches is necessary.
For illustration, consider the following ordered logic pro-

gram ���� �� due to (Baader and Hollunder 1993):

	� � �� � ����� �
	� � � � ����� ��
	� � � � ����� ��
		 � � � �
	
 � � �

	� � 	� (2)

Observe that �� admits two answer sets:
 � ��� ����� ��
and
 � � ��� �� �� ��. As argued in (Baader and Hollunder
1993),
 is the unique W-preferred answer set. To see this,
observe that

� � �
 �
� � �

� � ���
 �
� � ���

� � ��� �����
 �
� � ��� ��

� � ��� ����� ��
 �
� �
 �

� ��
 �

	 �
� �

Note that � cannot be included into
 �
� because 	� is active

wrt �
 ��
 �
�� and 	� is preferred to 	�.

Compiling order preservation
A translation of ordered logic programs ��� �� to standard
ones �� is developed in (Delgrande et al. 2000). The spe-
cific strategy used there ensures that the resulting program
�� admits only those answer sets of the original program �
that are order preserving:

Definition 2 Let ��� �� be a statically ordered program
and let
 be an answer set of �.
Then,
 is called �-preserving, if
 is either inconsis-

tent, or there exists an enumeration �	����� of ��� such that
for every �� � 	 � we have that:

0. 	��
��	�� � ����� �	�� � � � ��; and
3Originally called prioritized.
4An alternating fixpoint � is normal if � � ���������.

1. if 	� � 	� , then � � �; and

2. if 	� � 	� and 	� 	 � � ��� � then

(a) 	��
��	�� ��
 or

(b) 	��
��	��
 ����� �	�� � � � �� �� �.

Condition 0 makes the property of groundedness 5 ex-
plicit. Although any standard answer set is generated by
a grounded sequence of rules, we will see in the sequel
that this property is weakened when preferences are at is-
sue. Condition 1 stipulates that �	����� is compatible with
�, a property invariant to all of the considered approaches.
Lastly, Condition 2 is comparable with Condition II in Def-
inition 1; it guarantees that rules can never be blocked by
lower-ranked rules.
As above,
 � ��� ����� �� is the only �-preserving

answer set of ��; it can be generated by the grounded se-
quences �	
� 		� 	�� 	�� and �	
� 	�� 		� 	�� both of which sat-
isfy conditions 1 and 2. The only grounded sequence gen-
erating
 � � ��� �� �� ��, namely �	
� 		� 	�� 	��, violates
2b.
The corresponding translation integrates ordering infor-

mation into the logic program via a special-purpose pred-
icate symbol �. This allows also for treating ordering in-
formation in a dynamic fashion. A logic program over a
propositional language � is said to be dynamically ordered
iff � contains the following pairwise disjoint categories: (i)
a set � of terms serving as names for rules; (ii) a set �
of (propositional) atoms of a program; and (iii) a set �� of
preference atoms � � �, where �� � 	 � are names. For each
such program�, we assume furthermore a bijective function
���� assigning to each rule 	 	 � a name ��	� 	 � . To sim-
plify notation, we usually write �	 instead of ��	� (and we
sometimes abbreviate �	� by ��).
An atom �	 � �	� 	 �� amounts to asserting that

	 � 	� holds. A statically ordered program ��� �� can
thus be captured by programs containing preference atoms
only among their facts; it is then expressed by the program
� ���	 � �	�� � � 	 � 	��.
Given 	 � 	�, one wants to ensure that 	 � is considered

before 	, in the sense that, for a given answer set
 , rule 	 �

is known to be applied or defeated ahead of 	 (cf. Condi-
tion II or 2 above, respectively). This is done by translating
rules so that the order of rule application can be explicitly
controlled. For this purpose, one needs to be able to detect
when a rule has been applied or when a rule is defeated. For
a rule 	, there are two cases for it not to be applied: it may
be that some literal in 	��
��	� does not appear in the an-
swer set, or it may be that a literal in 	��
��	� is in the an-
swer set. For detecting non-applicability (i.e., blockage), for
each rule 	 in the given program �, a new, special-purpose
atom ����	� is introduced. Similarly, a special-purpose atom
����	� is introduced to detect the case where a rule has
been applied. For controlling application of rule 	 the atom
����	� is introduced. Informally, one concludes that it is ��
to apply a rule just if it is �� with respect to every�-greater
rule; for such a �-greater rule 	 �, this will be the case just
when 	� is known to be blocked or applied.

5This term is borrowed from the literature on default logic.

More formally, given a dynamically ordered program �
over �, let �� be the language obtained from � by adding,
for each 	� 	� 	 �, new pairwise distinct propositional atoms
����	�, ����	�, ����	�, and �����	��	��. Then, the transla-
tion � maps an ordered program � over � into a standard
program � ��� over �� in the following way.

Definition 3 (Delgrande et al.,2000) Let � �
�	�� � � � � 	
� be a dynamically ordered logic program
over �.
Then, the logic program � ��� over �� is defined as

� ��� �
�
	����	� � where ��	� consists of the follow-

ing rules, for �� 	 	��
��	�, �� 	 	��
��	�, and
	�� 	�� 	 � :

���	� � ���� �	� � ����	�
���	� � ����	� � ����	�� 	��
�	�

���	� �
�� � ����	� � ����	����� �

�

���	� �
�� � ����	� � ����	�� �

�

���	� � ����	� � ��
���	��	��� � � � � ��

���	��	��
���	� 	

�� � ��
���	��	�� � ��� ��	 � �	��

���	� 	
�� � �����	��	�� � ��	 � �	��� ����	��

�	�	� 	
�� � �����	��	�� � ��	 � �	��� ����	��

��	� 	�� 	��� � �	 � �	�� � �	 � �	� ��	� � �	��

���	� 	�� � ���	� � �	� � �	 � �	�

We write � ��� �� rather than � ����, whenever �� is the
dynamically ordered program capturing ��� ��.
The first four rules of ��	� express applicability and

blocking conditions of the original rules. The second group
of rules encodes the strategy for handling preferences. The
first of these rules, ���	�, “quantifies” over the rules in �.
This is necessary when dealing with dynamic preferences
since preferences may vary depending on the corresponding
answer set. The three rules ���	� 	��, ���	� 	��, and �	�	� 	��
specify the pairwise dependency of rules in view of the
given preference ordering: For any pair of rules 	, 	 � with
�	 � �	� , we derive �����	��	�� whenever �	 � �	� fails
to hold, or whenever either ����	�� or ����	�� is true. This
allows us to derive ����	�, indicating that 	 may potentially
be applied whenever we have for all 	 � with �	 � �	� that
	� has been applied or cannot be applied. It is important to
note that this is only one of many strategies for dealing with
preferences: different strategies are obtainable by changing
the specification of ����� and ������ ��, as we will see below.
As shown in (Delgrande et al. 2000), a set of literals

is a �-preserving answer set of � iff
 �
 � for some
answer set of � ��� ��. In the sequel, we refer to such
answer sets as being D-preferred.

Synthesis
The last two sections have exposed three rather different
ways of characterizing preferred answer sets. Despite their
different characterizations, however, it turns out that the two
approaches prefer similar answer sets.

Characterizing D-preference
We start by providing a fixpoint definition for D-preference.
For this purpose, we assume a bijective mapping ������

from rule heads to rules, that is, �������� �	�� � 	; ac-
cordingly, ��������� �	� � 	 	 ��� � �. Such mappings
can be defined in a bijective way by distinguishing different
occurrences of literals.

Definition 4 Let ��� �� be a statically ordered logic pro-
gram and let
 be a set of literals. We define

� � � and for � � �

��� �
� ����� �	� �

� � 	 	 � is active wrt �
��
� and
�� � there is no rule 	� 	 � with 	 � 	�

such that
��� 	� is active wrt �
�
�� and
��� 	� �	 ����
��

�����
����

Then, �D������
� �
�
���
� if

�
���
� is consistent. Oth-

erwise, �D������
� � ���.

The difference between this definition and Definition 1 man-
ifests itself in IIb. While D-preference requires that a higher-
ranked rule has effectively applied, W-preference contents
itself with the presence of the head of the rule, no matter
whether this was supplied by the rule itself.
This difference is nicely illustrated by program ���� ��:

	� � � � ��� �
	� � � �
	� � � �

	� � 	� (3)

While the only answer set ��� �� is W-preferred set, there is
no D-preferred answer set. This is the same with program
����� �� obtained by replacing 	� with 	

�
� � �� �.

We have the following result providing three alternative
characterizations of D-preferred answer sets.

Theorem 1 Let ��� �� be a statically ordered logic pro-
gram over � and let
 be a set of literals. Then, the fol-
lowing propositions are equivalent.

1. �D������
� �
;

2.
 �
 � for some answer set of � ��� ��;

3.
 is a �-preserving answer set of �.

While the last result dealt with effective answer sets, the next
one shows that applying operator � D

����� is equivalent to the
application of van Gelder’s operator ��� to the translated
program � ��� �� .

Theorem 2 Let ��� �� be a statically ordered logic pro-
gram over � and let
 be a set of literals over �.
Then, we have that �D������
� � �� ������ �
 � for

some set of literals over �� such that
 �
 �.

This result is important because it allows us to use the trans-
lation � ��� �� for implementing further semantics by ap-
peal to the alternating fixpoint idea.

Characterizing W-preference
We start by showing how W-preference can be characterized
in terms of order preservation.

Definition 5 Let ��� �� be a statically ordered program
and let
 be an answer set of �.
Then,
 is called �W-preserving, if
 is either inconsis-

tent, or there exists an enumeration �	����� of ��� such that
for every �� � 	 � we have that:

0.(a) 	��
��	�� � ����� �	�� � � � �� or

(b) �����	�� 	 ������	�� � � � ��; and

1. if 	� � 	� , then � � �; and

2. if 	� � 	� and 	� 	 � � ��� � then

(a) 	��
��	�� ��
 or

(b) 	��
��	��
 ������	�� � � � �� �� � or

(c) �����	�� 	 ����� �	�� � � � ��.

The primary difference of this concept of order preservation
to the original one is clearly the weaker notion of ground-
edness. This involves the rules in ��� (via Condition 0b) as
well as those in � � ��� (via Condition 2c). The rest of the
definition is the same as in Definition 2. For instance, an-
swer set ��� �� of�� is generated by the�W-preserving rule
sequence �	�� 	��. Note that 	� satisfies 2c but neither 2a
nor 2b. For a complement, in �� �

�� ��, 	
�
� is dealt with via

Condition 0b.
Interestingly, the notion of weak groundedness can be eas-

ily integrated into the translation given in the last section.

Definition 6 Given the same prerequisites as in Defini-
tion 3.
Then, the logic program � W��� over �� is defined as

� W��� �
�
	����	� ��
�	� 	

�� � 	� 	� 	 ��, where

�
�	� 	
�� � �����	��	�� � ��	 � �	��� ���� �	��

The purpose of �
�	� 	�� is to eliminate rules from the pref-
erence handling process once their head has been derived.
We have the following result, showing in particular, how

W-preference is implementable via off-the-shelf logic pro-
gramming systems.

Theorem 3 Let ��� �� be a statically ordered logic pro-
gram over � and let
 be a set of literals. Then, the fol-
lowing propositions are equivalent.

1. �������
� �
;

2.
 �
 � for some answer set of � W��� ��;

3.
 is a �W-preserving answer set of �.

Another immediate consequence of this result is that W-
preference does not lead to higher complexity, it remains
within NP.
In analogy to what we have shown above, we have the fol-

lowing stronger result, opening the avenue for implementing
more semantics based on W-preference:.

Theorem 4 Let ��� �� be a statically ordered logic pro-
gram over � and let
 be a set of literals over �.
Then, we have that �������
� � �� W������ �
 � for

some set of literals over �� such that
 �
 �.

Brewka and Eiter’s concept of preference
Another approach to preference was proposed by Brewka
and Eiter in (1999). For brevity, we omit technical details
and simply say that an answer set is B-preferred; the reader
is referred to (Brewka and Eiter 1999; 2000) for details.
This approach differs in two significant ways from the

two approaches given above. First, the construction of an-
swer sets is separated from verifying whether they respect
the given preferences. Interestingly, this verification is done
on the basis of the prerequisite-free program obtained from
the original one by “evaluating” 	��
��	� for each rule 	
wrt the separately constructed (standard) answer set. Sec-
ond, rules that putatively lead to counter-intuitive results are
explicitly removed from the inference process. This is made
explicit in (Brewka and Eiter 2000), where the following fil-
tering transformation is defined:6

����� � � � �	 	 � � ���� �	� 	
� 	��
��	�

 �� ��
(4)

Then, by definition, an answer set of � is B-preferred iff it
is a B-preferred answer set of �����.
The distinguishing example of this approach is given by

program ��
� ��:

	� � � � ����� ��
	� � �� � ��� �
	� � � � ��� ��

	� � 	� � 	� (5)

Program �
 has two standard answer sets, ��� �� and
������. While the former is B-preferred, neither of them
is W- or D-preferred (see below). Also, we note that both
answer sets of program ���� �� are B-preferred, while only
��� ����� �� is W- and D-preferred.
In order to shed some light on these differences, we start

by providing a fixpoint characterization of B-preference:

Definition 7 Let ��� �� be an ordered logic program and
let
 be a set of literals. We define

� � � and for � � �

��� �
� ����� �	� �

� � 	 	 � is active wrt �
�
� and
�� � there is no rule 	� 	 � with 	 � 	�

such that
��� 	� is active wrt �
�
�� and
��� ���� �	�� �	
�

�����
����

Then, �B������
� �
�
���
� if

�
���
� is consistent. Oth-

erwise, �������
� � ���.

The difference between this definition7 and its predecessors
manifests itself in Condition I, where activeness is tested wrt
�
�
� instead of �
��
� as in Definition 1 and 4. In fact,
in Example (5) it is the (unprovability of the) prerequisite �
of the highest-ranked rule 	� that makes the construction of

6While this is integrated into (Brewka and Eiter 1999, Def. 4.4),
it is made explicit in (Brewka and Eiter 2000, Def. 6).

7We have refrained from integrating (4) in order to keep the
fixpoint operator comparable to its predecessors, given in the pre-
vious section. This is taken care of in the second proposition of
Theorem 5.

W- or D-preferred answer sets break down (cf. Definition 1
and 4). This is avoided with B-preference because once
answer set ��� �� is provided, its preference-compatibility
is tested wrt the program obtained by replacing 	� with
�� ��� ��.
B-preference can be captured by means of the following

notion of order preservation:

Definition 8 Let ��� �� be a statically ordered program
and let
 be an answer set of �.
Then,
 is called �B-preserving, if
 is either inconsis-

tent, or there exists an enumeration �	����� of ��� such that,
for every �� � 	 � , we have that:

1. if 	� � 	� , then � � �; and

2. if 	� � 	� and 	� 	 � � ��� � then

(a) 	��

��	�� ��
 or

(b) 	��
��	��
 ������	�� � � � �� �� � or
(c) �����	�� 	
 .

This definition differs in two ways from its predecessors.
First, it drops any requirement on groundedness, expressed
by Condition 0 above. This corresponds to using �
�
�
instead of �
��
� in Definition 7. Hence, groundedness
is fully disconnected from order preservation. In fact, ob-
serve that the B-preferred answer set ��� �� of ��
� �� is
associated with the �B-preserving sequence �	�� 	��, while
the standard answer set itself is generated by the grounded
sequence �	�� 	��.
Second, Condition 2c is more relaxed than in Definition 5.

That is, any rule 	� whose head is in
 (as opposed to
�)
is taken as “applied”. Apart from this, Condition 2c also
integrates the filter-conditions from (4).8 For illustration,
consider Example (3) extended by 	� � 	�:

	� � � � ��� �
	� � � �
	� � � �

	� � 	� � 	� (6)

While this program has no D- or W-preferred answer set,
it has a B-preferred one: ��� �� generated by �	�� 	��. The
critical rule 	� is handled by 2c. As a net result, Condition 2
is weaker than its counterpart in Definition 5.
We have the following results.

Theorem 5 Let ��� �� be a statically ordered logic pro-
gram over � and let
 be an answer set of �.
Then, the following propositions are equivalent.

1.
 is B-preferred;
2. �B����������
� �
;

3.
 �
 � for some answer set of � B��� ��
(where � B is defined in (Delgrande et al. 2000));

4.
 is a �B-preserving answer set of �.

Unlike theorems 1 and 3, the last result stipulates that

must be an answer set of �. This requirement can only be
dropped in case 3, while all other cases rely on this property.

8Condition ��������� �� �� � from (4) is obsolete because
�
� �� ��� .

Relationships

Up to now, we have tried to clarify the structural differences
between the respective approaches. This has led to homo-
geneous characterizations that allow us to compare the ex-
amined approaches in a uniform way. As a result, we obtain
insights into the relationships among these approaches.
First of all, we observe that all three approaches treat the

blockage of (higher-ranked) rules in the same way. That
is, a rule 	� is found to be blocked if either its prerequi-
sites in 	��
��	�� are never derivable or if some member of
	��
��	�� has been derived by higher-ranked or unrelated
rules. This is reflected by the identity of conditions Ia and
2a/b in all three approaches, respectively. Although this is
arguably a sensible strategy, it leads to the loss of preferred
answer sets on programs like

	� � � � ��� �
	� � � � �

	� � 	�

Let us now discuss the differences among the approaches.
The difference between D- and W-preference can be directly
read off Definition 1 and 4; it manifests itself in Condi-
tion IIb and leads to the following relationship.

Theorem 6 Every D-preferred answer set is W-preferred.

Example (3) shows that the converse does not hold.
Interestingly, a similar relationship is obtained between

W- and B-preference. In fact, Definition 8 can be interpreted
as a weakening of Definition 5 by dropping Condition 0 and
weakening Condition 2 (via 2c). We thus obtain the follow-
ing result.

Theorem 7 Every W-preferred answer set is B-preferred.

Example (5) shows that the converse does not hold.
Let ����� � �
 � ���
� �
� and ��� ��� �� �

�
 � ��������
� �
� for � � W� D� B. Then, we obtain
the following summarizing result.

Theorem 8 Let ��� �� be a statically ordered logic pro-
gram.
Then, we have:

��D��� �� � ��W��� �� � ��B��� �� � �����

(The full paper gives further results on sufficient conditions
for the coincidence of these approaches.) In principle, this
hierarchy is induced by a decreasing interaction between
groundedness and preference. While D-preference requires
the full compatibility of both concepts, this interaction is
already weakened in W-preference, before it is fully aban-
doned in B-preference. This is nicely reflected by the evolu-
tion of Condition 0 in definitions 2, 5, and 8.
Notably, groundedness as such is not the ultimate

distinguishing factor, as demonstrated by the fact that
prerequisite-free programs do not necessarily lead to the
same preferred answer sets, as witnessed in (3) and (6).
Rather it is the degree of interaction between groundedness
and preferences that makes the difference.

Conclusion
The notion of preference seems to be pervasive in logic pro-
gramming when it comes to knowledge representation. This
is reflected by numerous approaches that aim at enhanc-
ing logic programming with preferences in order to improve
knowledge representation capacities. Despite the large va-
riety of approaches, however, only very little attention has
been paid to their structural differences and sameness, fi-
nally leading to solid semantical underpinnings.
This work is a first step towards a systematic account to

logic programming with preferences. We elaborated upon
three different approaches that were originally defined in
rather heterogenous ways. We obtained three alternative
yet uniform ways of characterizing preferred answer sets (in
terms of fixpoints, order preservation, and an axiomatic ac-
count). The underlying uniformity provided us with a deeper
understanding of how and which answer sets are preferred in
each approach. This has led to a clarification of their rela-
tionships and subtle differences. In particular, we revealed
that the investigated approaches yield an increasing number
of answer sets depending on how tight they connect prefer-
ence to groundedness.
An interesting technical result of this paper is given by the

equivalences between the fixpoint operators and the standard
logic programming operators applied to the correspondingly
transformed programs (cf. Theorem 2 and 4). This opens
the avenue for further concepts of preference handling on
the basis of the alternating fixpoint theory and its issuing
semantics. Further research includes dynamic preferences
and more efficient algorithms for different semantics in a
unifying way.

Acknowledgements We would like to thank Ph. Besnard,
Th. Linke and the anonymous referees for useful comments
on this paper.
This work was supported by the German Science Foun-

dation (DFG) within Project “Nichtmonotone Inferenzsys-
teme zur Verarbeitung konfligierender Regeln” under grant
FOR 375/1-1, TP C.

References
F. Baader and B. Hollunder. How to prefer more specific
defaults in terminological default logic. In Proc. IJCAI’93,
p 669–674, 1993.

G. Brewka and T. Eiter. Preferred answer sets for extended
logic programs. Artificial Intelligence, 109(1-2):297–356,
1999.

G. Brewka and T. Eiter. Prioritizing default logic. In
St. Hölldobler, ed, Intellectics and Computational Logic.
Kluwer, 2000. To appear.

G. Brewka. Adding priorities and specificity to default
logic. In L. Pereira and D. Pearce, eds, Proc. JELIA’94,
p 247–260. Springer, 1994.

J. Delgrande, T. Schaub, and H. Tompits. Logic programs
with compiled preferences. In Proc. ECAI 2000, p 392–
398. IOS Press, 2000.

M. Gelfond and V. Lifschitz. Classical negation in logic
programs and deductive databases. New Generation Com-
puting, 9:365–385, 1991.
M. Gelfond and T. Son. Reasoning with prioritized de-
faults. In J. Dix, L. Pereira, and T. Przymusinski, eds,
Workshop on Logic Programming and Knowledge Repre-
sentation, p 164–223. Springer, 1997.
J. Rintanen. On specificity in default logic. In Proc. IJ-
CAI’95, p 1474–1479. Morgan Kaufmann, 1995.
C. Sakama and K. Inoue. Representing priorities in logic
programs. InM.Maher, ed, Proc. JCSLP’96, p 82–96.MIT
Press, 1996.
A. van Gelder. The alternating fixpoint of logic programs
with negation. J. Computer and System Science, 47:185–
120, 1993.
K. Wang, L. Zhou, and F. Lin. Alternating fixpoint the-
ory for logic programs with priority. In Proc. Int’l Conf.
Computational Logic, p 164-178. Springer, 2000.
Y. Zhang and N. Foo. Answer sets for prioritized logic
programs. In J. Maluszynski, ed, Proc. ISLP’97, p 69–84.
MIT Press, 1997.

