
Playing "Invisible Chess" with Information-Theoretic Advisors

A.E. Bud, D.W. Albrecht, A.E. Nicholson and I. Zukerman
{bud,dwa,annn,ingrid}@csse. monash, edu. au

School of Computer Science and Software Engineering, Monash University
Clayton, Victoria 3800, AUSTRALIA

phone: +61 3 9905-5225 fax: +61 3 9905-5146

Abstract

Making decisions under uncertainty remains one of the cen-
tral problems in AI research. Unfortunately, most uncertain
real-world problems are so complex that any progress in them
is extremely dif cult. Games model some elements of the real
world, and offer a more controlled environment for exploring
methods for dealing with uncertainty. Chess and chess-like
games have long been used as a strategically complex test-
bed for general AI research, and we extend that tradition by
introducing an imperfect information variant of chess with
some useful properties such as the ability to scale the amount
of uncertainty in the game. We discuss the complexity of this
game which we call invisible chess, and present results outlin-
ing the basic values of invisible pieces in this game. We mo-
tivate and describe the implementation and application of two
information-theoretic advisors that assist a player of invisible
chess to control the uncertainty in the game. We describe our
decision-theoretic approach to combining these information-
theoretic advisors with a basic strategic advisor. Finally we
discuss promising preliminary results that we have obtained
with these advisors.

1 Introduction
Making decisions under uncertainty remains one of the cen-
tral problems in AI research. An agent in an uncertain world
needs to select actions from the action search space -- the
set of all possible actions in that world. As the uncertain-
ty increases, this task can become increasingly dif cult. The
number of possible actions may increase, the number of pos-
sible situations in which those actions may be applied may
increase, or both. The effects of these growing search spaces
are ampli ed as the agent tries to search further ahead. Each
action on each possible world state requires more possible
world states to be evaluated for future moves. This property
of imperfect information domains makes tackling real-world
problems extremely dif cult.

Games and game theory model some of these properties
of real-world situations in a more controlled environment
and thereby allow analysis and empirical testing of decision-
making strategies in these domains. In this capacity, games
have long been used as a testbed for general arti cial intel-
ligence research and ideas. In particular, chess has a long
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history of use in the AI community because of its strategic
complexity, and well-studied and understood properties.

Despite these advantages, chess has two signi cant draw-
backs as a general AI testbed: the rst is the success of
computer chess players that use hard-coded, domain specif-
ic rules and strategies to play; and the second is the fact that
standard chess is a perfect information domain.

A number of researchers have tackled the rst of these draw-
backs. For example (Berliner 1974) investigated generalised
strategies used in chess play as a model for problem solving,
and (Pell 1993) introduced metagame. Metagame is a sys-
tem for generating new games arbitrarily generated from a
set of games known as Symmetric Chess-Like games (SCL
Games). Thus there is no point hand-training a computer
program to play one particular game, as each game requires
different strategic planning and position evaluation. A good
computer metagame player has to somehow encapsulate a
higher level of "strategic knowledge" than is possible in a
single game such as chess.

In this paper, we address the second drawback of chess as
a general AI testbed -- that of perfect information. We de-
scribe a missing (or imperfect) information variant of stan-
dard chess which we call invisible chess (Bud et al. 1999).1
Invisible chess involves a con gurable number of invisible
pieces, i.e., pieces that a player’s opponent cannot see. In-
visible chess is thus a representative of the general class
of strategically complex, imperfect information, two play-
er, zero-sum games.

Many researchers have investigated games with missing in-
formation including poker ((Findler 1977), (Korb, Nichol-
son, & Jitnah 1999), (Koller & Pfeffer 1997)), bridge ((Gam-
biick, Rayner, & Pell 1991), (Ginsberg 1999), (Smith, 
& Throop 1996)), and multi-user domains (Albrecht et al.
1997). With the exception of Albrecht et al., who use a large
uncontrollable domain, all of these domains are strategically
simple given perfect information.

On the other hand, invisible chess retains all of the strategic
complexity of standard chess with the addition of a con-
trollable element of missing information. Invisible chess

1Invisible chess is in the set of Invisible SCL Games, an exten-
sion to the set of SCL Games introduced by Pell. We have chosen
invisible chess as the rst game to explore because of the availabil-
ity of standard chess programs.
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is related to kriegspiel ((Li 1994) and (Ciancarini, Dalla-
Libera, & Maran 1997)), a chess variant in which all the
opponent’s pieces are invisible and a third party referee de-
termines whether or not each move is valid.
In addition to the complexity of playing standard chess, a
player of invisible chess must maintain the possible posit-
ions of the opponent’s invisible pieces. These positions may
be represented as a probability distribution over the possible
squares on the chess board. Section 4 describes our design
that enables a central module to maintain approximations to
the invisible piece probability distributions for both players.
Section 5 presents a brief analysis of the advantages of play-
ing with various invisible pieces. Interestingly, we show
that the relative value of the minor invisible pieces differs
from the standard chess piece ranking. We report on the
uncertainty caused by the different invisible pieces and the
effect that those pieces have on the opponent’s ability to
play strategically. Section 6 discusses the relationship be-
tween uncertainty and the information-theoretic concept of
entropy, and the application of entropy to our results. It also
motivates the design of information-theoretic advisors, de-
scribes these advisors and presents results that demonstrate
the ef cac y of our approach. Section 7 contains conclusions
and ideas for further work.

2 Related Work

Since the 1950s, when Shannon and Turing designed the
rst chess playing programs (Russell & Norvig 1995),
computers have become better at playing certain games such
as chess using large amounts of hand-coded domain specif-
ic information. Continuing the tradition of using games as
a testbed for general AI investigation, (Berliner 1974) pro-
posed a tactical analyser for chess which used strategies and
tactics, but did not play as well as the existing hard-coded
systems.
In answer to the success of hard-coded algorithms,
(Pell 1993) introduced a class of games known as Symmetric
Chess Like (SCL) Games, and a system called Metagamer
that plays games arbitrarily generated from this class using a
set of advisors representing strategies in the class of games.
Peli did not consider imperfect information games. Howev-
er, his class of SCL Games is easily extended to the class
of Invisible SCL Games, where one or more of a player’s
pieces is hidden from their opponent.
(Koller & Pfeffer 1995) investigated simple imperfect infor-
mation games with an initial goal of solving them. Howev-
er, their approach does not scale up to more complex games
such as invisible chess.
(Smith, Nan, & Throop 1996) wrote a bridge playing pro-
gram using a modi ed form of game tree with enumerated
strategies rather than actions, effecting a form of forward
pruning of the game tree. Smith et al. stated that forward
pruning works well for bridge, but not for chess. (Ginsberg
1996) introduced partition search to reduce the effective size
of the game tree. He showed that this approach works well
for bridge and other games with a high degree of symmetry.
Partly because in chess pawns only move forward, and partly
because of the strategic nature of the game, the same posit-

ions do not tend to occur in a signi cant number of nodes
in the game tree,2 and therefore partition search is not like-
ly to be very effective on any variants of chess. More re-
cently (Ginsberg 1999) included Monte Carlo methods 
his bridge playing program to simulate many possible out-
comes, choosing the action with the highest expected utility
over the simulations. Ginsberg claims that trying to glean
or hide information from an opponent is probably not use-
ful for bridge. In contrast, we present results that show that
both information hiding and gleaning can be useful in invis-
ible chess.

(Frank & Basin 1998) and (Frank & Basin 2000) have 
formed a detailed investigation of search in imperfect infor-
mation games. They have concentrated almost exclusive-
ly on bridge. Frank & Basin focus on a number of search
techniques including attening the game tree which they
have shown to be an NP-Complete problem, and Monte Car-
lo methods. Their investigation suggests that Monte Car-
lo methods are not appropriate for imperfect information
games. This problem is exacerbated in invisible chess given
the relative lack of symmetry and the size of the game tree.

In the closest work to that presented here, (Ciancarini, Dalla-
Libera, & Maran 1997) considered king and pawn end
games in the game of kriegspiel. Kriegspiel is an existing
chess variant where neither player can see the opponent’s
pieces or moves. They used a game-theoretic approach in-
volving substantive rationality and have shown promising
results in this trivial version of kriegspiel. Thus far they have
not applied their approach to a complete game of kriegspiel.

Kriegspiel differs from invisible chess in a number of impor-
tant areas. All the opponent’s pieces are invisible to a player
of kriegspiel. Thus there is no way to reduce the uncertainty
in the domain without reducing the strategic complexity. By
contrast, in invisible chess, the number and types of invisi-
ble pieces is con gurable. As all pieces are invisible, every
move involves substantial increases in uncertainty. In invis-
ible chess, a player may choose whether to move a visible
or invisible piece. Finally, in kriegspiel, a player attempts
moves until a legal move is performed. A third party arbitra-
tor indicates whether or not each move is legal. In invisible
chess, the player is given specie information when a move
is impossible or illegal, and may miss a turn as a result of
attempting an impossible move (see Section 3).

These differences make kriegspiel a substantially more com-
plex and less controllable domain than invisible chess.
Speci cally, exploring the relationship between uncertainty
and strategic play would be more dif cult in kriegspiel. Ul-
timately, the pathological case of invisible chess where all
pieces are invisible approaches the complexity of kriegspiel.
Thus invisible chess provides a convenient stepping stone to
a much more difcult problem.

To our knowledge there exist no computer kriegspiel players
that are able to play a full game of kriegspiel with which to
compare our system.

2In fact if the same position occurs three times in a game of
chess, the game is declared a draw.
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3 Domain: Invisible Chess

Invisible chess is based on standard chess with the following
difference. In invisible chess we differentiate between visi-
ble and invisible pieces and de ne them as follows: a visible
piece is one that both players can see; an invisible piece is
one that a player’s opponent cannot see. Thus, every time a
visible piece is moved, the board is updated as per standard
chess. However, when a player moves an invisible piece,
their opponent is informed which invisible piece has moved,
but not where it has moved from or to. This information
enables each player to maintain a probability distribution of
their opponent’s invisible pieces across the squares on the
board. In this paper, we frame invisible chess pieces ~ to
distinguish them from visible chess pieces (~).
We de ne three terms for referring to moves in invisible
chess: A possible move is any legal chess move given com-
plete information about the board. That is, no invisible
pieces are in the way of the move, and the piece can move to
the desired position. An impossible move is an attempted
move that violates the laws of chess because of an incor-
rect assumption as to the whereabouts of an invisible piece.
For example, a player attempts to move a piece "through"
an invisible piece, or attempts to use a pawn to capture an
invisible piece that is not diagonally in front of it. See Fig-
ure 1. An illegal move is an impossible move that would
not allow the game to continue. For example, a player is not
allowed to move their king into check by an invisible piece.
See Figure 3.
The rules of invisible chess are based on the rules of chess.
The only modi cations pertain directly to invisible pieces
and their impact on the game. In general if a move is pos-
sible then it is accepted; if a move is impossible then it is
rejected and the player’s turn is forfeited; and if a move is
illegal, some information regarding the reason the move is
illegal is revealed to the player attempting the move, and the
player must supply another move. Note that we do not allow
invisible kings in this basic invisible chess, as a version of
invisible chess with invisible kings would drastically modify
the goal of the original game.
(Bud et al. 2000) gives details of all scenarios where new
rules come into effect, but in summary, only the rules for the
following scenarios differ from those of standard chess.

1: Impossible moves are disallowed, the position of the rst
invisible piece that caused the move to be impossible
is revealed, and the player’s turn is forfeited. Figure 1
shows an example of an impossible move.

2: If a player’s king is threatened, the invisible piece caus-
ing the check is revealed, and the threatened player moves
normally. Additionally, the player can infer that there
are no invisible pieces between the threatening piece
and their king (unless the king is being threatened by
a knight). Figure 2 shows an example of this scenario.
Black is told that the invisible white bishop is on g5.

3: If a player is in check, and attempts to move into check
again or does not move out of check, any invisible pieces
causing the check are revealed, and the player must sup-
ply another move. In Figure 3, white is in check and at-
tempts to capture the invisible black knight on fl. Conse-

quently the invisible black bishop on c4 is revealed, and
white must supply another move.

4: If a player is not in check, and attempts to move into
check, the invisible piece causing the check is revealed,
and the player’s tum is forfeited. In standard chess, the
move would be disallowed and the player would provide
an alternate move. In Figure 4, white attempts to move
their king from dl to d2. However, black’s invisible bish-
op on a5 is threatening d2; consequently the invisible
black bishop on a5 is revealed, and white forfeits their
turn.

5: Ifa player attempts to castle through check from an invis-
ible piece or through an invisible piece itself, the invisible
piece is revealed and the turn is forfeited.

3.1 Domain Complexity

The complexity of standard chess is well understood. Chess
has an average branching factor of around 35. A typical
game lasts approximately 50 moves per player so the en-
tire game tree has approximately 351°° nodes ((Russell 
Norvig 1995), p 123).
In the trivial case where the opponent has no invisible pieces,
the game tree for invisible chess is exactly as large as that for
standard chess. Once invisible pieces are introduced into the
game, each node of the game tree must be expanded for each
possible move for each possible combination of positions of
the opponent’s invisible pieces. In a game of invisible chess
the player and opponent each have m invisible pieces. If
each invisible piece has a positive probability of occupying
n~ squares, then the branching factor is approximately the
branching factor of chess multiplied by the combination of
invisible squares that could be occupied as shown by the fol-
lowing formula:

Branching Factor = 35 x nl x n2 x ... x nra (1)

If each player has two invisible pieces, and each of those
pieces has an average of only four squares with a posi-
tive probability of occupation, then the average approxi-
mate branching factor of that game of invisible chess is
35 x 16 = 560. For three invisible pieces each, the branching
factor is around 35 × 64 = 2240. Assuming that the invis-
ible pieces are on the board and moving for approximately
half the game, then the complete expanded game tree for
three invisible pieces each is in the order of 22405° which is
around 1015° nodes.
To make the domain even more complex, chess has virtually
no axes of symmetry that allow the size of the game tree
to be reduced as in highly symmetrical games such as tic-
tac-toe, and Smith and Nan (Smith & Nan 1993) claim that
forward pruning to reduce the branching factor of chess has
been shown to be relatively ineffective.
In addition to the combinatorially expansive nature of the
invisible chess game tree, in order to play invisible chess, a
player must maintain beliefs about the positions of the op-
ponent’s invisible pieces.
A player using a simplistic belief updating scheme such as
assuming the most likely destination will ignore many prob-
able squares. Further, a player that uses any belief updating
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Figure 1: An impossible move. The black
bishop on b2 is invisible. White attempts
an impossible move by trying to move the
bishop on cl to a3.

scheme that does not take into account every possible des-
tination square when an invisible piece is moved, will lose
important information about the o w of the game. Suppose
a player incorrectly assumes that the opponent’s invisible
piece is on a certain square; if the opponent then moves a
visible piece to that square, the player now has no Way of
backtracking, and has no information about the location of
the invisible piece.
Assuming no strategic knowledge (i.e., each square that an
invisible piece can move to is as likely to be visited as any
other), and only one invisible piece, a player can easily
maintain the precise distribution for that piece (see (Bud et
al. 2000)). In addition, whenever any piece (other than 
knight) moves, the probability distribution for each invisible
piece may be updated to re ect the fact that other squares
in the moving piece’s path are vacant. Similarly, whenever
a player’s king is threatened by any piece (except a knight),
visible or invisible, the probability distributions for all invis-
ible pieces may be updated to re ect the known vacancies
between the piece causing check, and the threatened king.

However, for multiple invisible pieces, the positions of in-
visible pieces are not conditionally independent with respect
to each other, so the probability of one invisible piece oc-
cupying any particular square affects the probability of an-
other invisible piece occupying that square. Maintaining the
probability distributions of multiple invisible pieces involves
combinatorial calculations in the number of invisible pieces
or the storage of combinatorially large amounts of data in
order to maintain the complete joint distributions of all in-
visible pieces over the entire chess board.

We address this problem by utilising a central module to ob-
tain an approximation of the distribution that can be calcu-
lated quickly enough to use in real time (Section 4). The
GCDMM calculates the distributions for both players, and
has access to the true positions of all invisible pieces at all
times. We use the true positions of other invisible pieces

L ......Y/_//~ ....~ .,,.’//////,~ ......
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2
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a b c d e f g h

Figure 2: An invisible piece is revealed to
warn of the check. Black is in check be-
cause of the invisible white bishop on g5.

as an approximation to the joint distribution of all invisible
pieces across all squares. Thus, the calculation of each in-
visible piece’s move is reduced to the calculation to be per-
formed when there is only one invisible piece. Because the
resulting approximation is more accurate than the distribu-
tion that could be calculated by a real player of invisible
chess, our results slightly underestimate the advantages of
playing chess with invisible pieces. For the purposes of this
research, using this method to maintain probability distribu-
tions allows us to focus our efforts on the effects of manip-
ulating the amount of uncertainty inherent in these distribu-
tions.

4 Basic Design
In Section 3.1 we estimate the branching factor of the game
tree for invisible chess with 2 invisible pieces to be around
560, and for 3 invisible pieces to be in the order of 2000,
compared to the branching factor of standard chess which is
about 35 ((Russell & Norvig 1995), p. 123). To cope 
this combinatorial explosion, and the strategic complexity
of invisible chess, we employ a "divide and conquer" ap-
proach. We split the problem of choosing the next move into
a number of simpler sub-problems, and then use utility the-
ory (Raiffa 1968) to recombine the calculations performed
for these sub-problems into a move. We use information-
theoretic ideas (R6nyi 1984) to deal with the uncertainty 
the domain, and standard chess reasoning to deal with the
strategic elements.
This modular, hybrid approach is implemented with advi-
sors or experts connected and controlled by a Game Con-
troller and Distribution Maintenance Module (GCDMM). 
the current implementation, we include three advisors: (1)
the strategic advisor; (2) the move hide advisor; and (3)
the move seek advisor. The GCDMM controls the game
state, has knowledge of the positions of all invisible pieces
and maintains distributions of invisible pieces on behalf of
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Figure 3: An illegal move. White is in
check from the black bishop on a5, and at-
tempts to capture the invisible black knight
on fl where it would be in check from the
invisible black bishop on c4.
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Figure 5: An invisible bishop each. White
believes the invisible black bishop on b4 is
on one of a3, b4, c5 or d6. Black believes
the invisible white bishop on e2 has possi-
ble squares e2, d3, c4, b5 and a6.

the two players. The GCDMM is responsible for deciding
whether a move is legal, impossible or illegal and ensuring
that the game progresses correctly. When it is a player’s
turn to move, the GCDMM requests the next move from the
Maximiser for that player. The Maximiser, responsible for
choosing the best move suggested by the available advisors,
generates all possible boards and all possible moves, and re-
quests utility values from each of the advisors for each move.
Each advisor evaluates the possible moves, across as many
boards as possible in the available time, according to an in-
ternal evaluation function. The strategic advisor, a modi-
ed version of GNU Chess which returns all possible moves

67 ,/,.A~ ~ ~

........ t
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a b c d e f g h

Figure 4: Attempting to move into check.
White attempts to move the king from dl to
d2. This is impossible because it results in
the king being in check from the invisible
black bishop on a5.

Strat (W1:1) - [[~]{Pos Hide Seek TotalI
Move b4 a3 c5 d6 EU W2:5 Ws:5

d~5’ 4 -32 378 -24 81.50 0 0.56 84,30

b2a3I
4 399 -28 -24 87.75 0 0.56~ 90.55

a2a4 25 -32 376 61 107.50 0 0 107150

a2a3l 21 -32 376 64 107,25 0 0.77 111.10
e2h5 -24 386 374 21 189.25 0.77 0 193,10

c3o41 4 397 363 29 198.25 0 0 198,25

e2fl 24 384 376 54 209.50 0.77 0 213.35

b263I
30,395 374 55 213.50 0 O, 213.50

albl , 26 395 376 58 213.75 0 0 213.75

glh3I 33 397 374 52 214.00 0 0~ 214,00
e2e4t 24 387 376 54 210.25 0.77 0 214,10

dld3[ 31~395 377 62 216.25 -0.22 O! 215,15

h2h3 31 395 376 63 216.25 0 0 216.25

e2a6l 241 397 376 54 212.75 0.77~
0l 216.60

glf3

e2d3 I

34 394 376 64 217.00 0 0 217.00

32 395 377 63 216.75 0.77 0 ] 220.60

Figure 6: Possible Moves sorted by their
relative total scores.

and their utilities (evaluated to a speci ed depth), gives the
Expected Utility (EU) of each move from a strategic per-
spective.3 The EU for each move or action (A) is calculat-
ed by multiplying its utility value by the probability of the
game state (X) for which the utility value was calculated,

3Note that GNU Chess has no knowledge of invisible pieces.
The modi cations to GNU Chess are to perform x ed depth search-
ing, and to return all moves and utilities rather than only the best
move. In standard chess, a poor move may be discounted early in
the search so that the search on the game tree can focus on more
promising moves. However, in invisible chess, a move that is poor
in one board position may be good in other positions.

No license: PDF produced by PSIJll (c) F. Siegert http:llwww, this.netl-franldpstill.html

10



and summing this across all possible game states (G) as per
Equation 2.

EU(A) = ~ (Utility(AlX) x Prob(X)) (2)
VX6 G

The move seek advisor scores moves according to how much
they reduce the player’s uncertainty. For example, a move
that fails because it "collides" with an invisible piece re-
moves the uncertainty as to the position of that piece. Simi-
laxly, the move hide advisor scores moves according to how
much they increase the opponent’s uncertainty. For example,
moving a previously revealed invisible piece will greatly in-
crease the opponent’s uncertainty. The move hide and seek
advisors are described in Section 6.
Each advisor has a weight associated with it that re ects the
relative value of its advice. The Maximiser multiplies the
value returned from each of the advisors by its weight (W0
and sums these values. The move with the highest overall
value is passed back to the GCDMM which implements that
move and requests a move from the other player. If there are
multiple moves with equal highest score, one of these moves
is chosen at random by the Maximiser.

4.1 Example

Figure 5 shows a typical position in a game of invisible
chess with each player playing with one invisible bishop;
it is white’s turn to move. Black’s belief about the position
of white’s invisible bishop is represented by the probability
distribution: e2 0.2, d3 0.2, c4 0.2, ]35 0.2,
a6 0.2, and white believes that black’s invisible bishop
has the probability distribution: a3 0.25, b4 0.25,
c5 0.25, d6 0.25. White knows that the invisible
black bishop cannot be on e7 as the black queen traversed
e7 to get to its current position at h4. The GCDMM asks the
white Maximiser for its next move. The white Maximiser
passes each possible board position, i.e., the current board
with black’s invisible black bishop in each of b4, a3, c5
and d6 to the strategic advisor. Figure 6 shows some possi-
ble moves across the four possible boards together with their
utilities and the EU of each move from the strategic advisor’s
perspective. Notice that the move glf3 has the highest strat-
egic EU of 217. However, moving the knight on gl has no
effect on either player’s information. If there were no other
advisors present, the Maximiser would choose this move.
Some moves do assist in discovering the location of the in-
visible black bishop, e.g. d4c5, a2a3 and b2a3, howev-
er, none of these moves is strategically strong. For this rea-
son, and because of the small number of squares in the invis-
ible black bishop’s distribution, the move seek advisor has
little effect at this point in the game. Later in the game, once
the invisible black bishop has moved several times, many
squares will have a probability of being occupied by the in-
visible black bishop, and the move seek advisor will have
more effect.
The move hide advisor evaluates each move based on the
increase in the opponent’s uncertainty. When the invisible
white bishop moves, its destination from the opponent’s per-
spective, may be any square accessible from any square cur-
rently in the invisible white bishop’s distribution. Thus all

1B X 61.0 65.0 35.0 17.2 41.5 43.6 89.8
IN 39.0 X 53.4 39.2 13.2 37.4 27.6 89.0
1R 35.0 46.6 X 38.2 25.4 34.4 27.4 93.0
1Q 65.0 60.8 61.8 X 43.8 41.4 47.6 93.0
2B 82.8 86.8 74.6 56.2 X 72.0 57.6 95.6
2N 58.5 62.6 65.6 58.6 28.0 X 45.8 96.2
2R 56.4 72.4 72.6 52.4 42.4 54.2 X 98.2
Y.I. 10.2 11.0 7.0 7.0 4.4 3.8 1.8 X

Table 1: Win percentages for different combinations of in-
visible pieces.

possible destination squares need to be added to its distri-
bution, and regardless of where the invisible white bishop
moves to (unless it causes check), the opponent’s uncertain-
ty is increased. On the other hand, when a visible piece
traverses a square that has a positive probability of occu-
pation by an invisible piece, the opponent’s uncertainty de-
creases as they can infer that the traversed square is actually
vacant. For example, the move dld3 tells the opponent that
the square d3 is empty.
The Maximiser multiplies each move value from each advi-
sor by the advisor’s weight (Wi) and sums over all the advi-
sors, giving the "Total" column in Figure 6. Notice that the
move with the highest overall value is now e2d3 (220.60).
The extra added uncertainty has been enough in this case to
make this move better than the strategic choice of glf3.

5 The Strategic Advisor

In this section we present results for playing invisible chess
with a single strategic advisor for each player. Each player
played with a different con guration of invisible pieces, us-
ing only a strategic advisor to decide the next move. Each
result is obtained from 500 games run with a particular con-
guration of invisible pieces that ended with a win.4 White
has a slight advantage in standard chess, and the strategic
advisor moves pieces differently depending on whether it is
playing white or black. To remove colour biases from the re-
suits, each set of 500 games was broken into two runs of 250
games each, the invisible piece con gurations were swapped
between white and black for each run, and the results were
averaged between the two runs.
Table 1 shows results for games played with major (non-
pawn) invisible pieces against each other and against no in-
visible pieces (N.I.). Reading across a row, it shows the per-
centage of games won by the combination of invisible pieces
in the row heading against the invisible piece combination of
a particular column. For example, one invisible bishop (1B)
won 65% of the time against one invisible rook (1R), but
only 43.6% of the time against two invisible rooks (2R).
These results show that the values of several invisible piece
combinations differ between invisible chess and standard
chess. For example, in standard chess, a rook is considered
more valuable than a bishop. However, in invisible chess,

4Drawn games are largely the result of repeating moves contin-
uously. Consisting of less than 10% of games played, draws are
not counted in these results.

No license: PDF produced by PStill (¢) F. Siegert - http:flwww.this.net/~frank/pstill.html

11



one bishop beat one rook, and two bishops beat every other
combination of invisible pieces considered including rooks.
This apparent anomaly is due to the bishop’s early involve-
ment in the game, while rooks tend to come into play lat-
er. By causing uncertainty early in the game, a player with
two invisible bishops has an early advantage against a player
with two invisible rooks. Further analysis of these results is
presented in (Bud et aL 2000).

6 Building Information Theoretic Advisors

A reasonable inference from the results shown above is that
players with more information about the game tend to win
more often; i.e., the closer a player’s belief about a board po-
sition is to the true board position, the more likely the player
is to play well strategically. In this section, we describe our
use of information theory (R6nyi 1984) to quantify a play-
er’s uncertainty about the positions of an opponent’s invis-
ible pieces (Section 6.1), present two information-theoretic
advisors (Section 6.2), and discuss some preliminary results
obtained with these advisors (Section 6.3).

6.1 Uncertainty and Entropy

Information theory provides a measure for quantifying in-
formation represented by a sequence of symbols. That is,
using information theory we can determine the minimum
number of bits required to transmit the sequence of symbols
to someone else. This number represents a measure of the
amount of information intrinsic to the sequence of symbols.
The calculation of this number requires a distribution of the
probability that any particular symbol to be transmitted will
occur. Thus any probability distribution can be said to have
an entropy or information measure associated with it. This
entropy measure is bounded from below by zero, when there
is only one possibility and therefore no uncertainty, and in-
creases as the distribution spreads.
In invisible chess, given a probability distribution of each
of the opponent’s invisible pieces, it is possible to derive a
probability distribution across all possible board positions.5
Thus we can calculate the entropy (H) of a set of board
states together with their associated probabilities as follows:

H = - E Prob(X) × log2(Prob(X)) (3)
YXEG

where X represents a single game state, from the set of pos-
sible game states (G), which is one possible combination 
positions of the opponent’s invisible pieces, and Prob(X)
represents the probability of that game state.
As invisible pieces move, the number of squares they may
occupy increases. This leads to an increase in the number of
possible board states, and therefore the entropy of the distri-
bution of those board states, i.e., it increases the opponent’s
uncertainty.

5Assuming that the piece distributions are independent, this
can be calculated by combinatorially cycling through the invisible
piece positions. In our implementation, these distributions of invis-
ible pieces are independent because of the way they are maintained
(Bud et al. 2000).

Further examination of our results shows that the more a
player moves their invisible pieces, the more impossible
moves their opponent attempts (see (Bud et aL 2000) for
details). This movement of invisible pieces and the corre-
sponding opponent uncertainty can be summarised using en-
tropy to quantify each player’s uncertainty in a game. Fig-
ures 7 and 8 show the uncertainty of each player regarding
the positions of the opponent’s invisible pieces for games
played with one invisible bishop against two invisible bish-
ops.6 For each game, the entropy of each player’s distribu-
tion of invisible pieces is summed across all moves. Thus the
graphs show the total amount of uncertainty each player had
to deal with over the course of each game. Figure 7 shows
each player’s uncertainty in the 190 games that were won by
white; the solid line shows black’s uncertainty, sorted by en-
tropy, while the dashed line shows white’s uncertainty in the
corresponding game. Figure 8 shows each player’s uncer-
tainty in the 60 games that were won by black; the dashed
line shows white’s uncertainty, sorted by entropy, while the
solid line shows black’s uncertainty in the corresponding
game. As can be seen from Figure 7, all the games won by
white, except for one (game number 86) show greater un-
certainty for black. The games won by black (Figure 8) are
much closer in uncertainty and there are many games where
white had greater uncertainty than black.7 This example cor-
roborates our intuition that players with less uncertainty are
more likely to win, and underpins our information-theoretic
advisors.

6.2 Information-Theoretic Advisors

Following an analysis of the results in Section 5, we have
implemented two information-theoretic advisors. These ad-
visors are move hide and move seek.

Move Hide Advisor. Working on the premise that the
more uncertain the opponent is, the worse they will play,
the move hide advisor advises a player to perform moves
that hide information from the opponent. That is, each move
is scored according to its expected effect on the opponent’s
perceived uncertainty about the positions of the player’s in-
visible pieces. This effect may be an increase, a decrease
or no change in the opponent’s uncertainty. Moves by in-
visible pieces that do not cause check result in an increase
in the opponent’s uncertainty. Moves that cause check or
moves by visible pieces may cause a decrease in the oppo-
nent’s uncertainty by revealing vacant squares or invisible
pieces themselves. As discussed in Section 6.1, we use the
entropy of the distribution of the positions of the opponent’s
invisible pieces as a measure of the opponent’s uncertainty.
In order to calculate this entropy, the move hide advisor
needs to model the opponent’s distribution update strategy.
Of course a player can use the real positions of each non-
moving invisible piece and thereby avoid the cost of storing

6The many games with zero entropy for white are generally due
to the invisible bishop (queen’s bishop) capturing a piece on its rst
move and subsequently being captured without moving again.

7Note that the same relationship between entropy and win can
be seen for games between more evenly matched invisible pieces
(Bud et al. 2000).
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Figure 7: Uncertainty (as entropy) in games with one in-
visible black bishop against two invisible white bishops
that were won by white.

or calculating the complete joint distribution of the posit-
ions of all invisible pieces. This method provides a model of
the best distribution the opponent could have without taking
strategic information into account. To incorporate strategic
information into the model, a player could use the combined
expected utility for each possible destination square that an
invisible piece could move to.
For a proposed move, the move hide advisor uses Equation 3
to calculate the entropy of the opponent model of the distri-
bution of the player’s invisible pieces prior to and following
the move. The exponential of the perceived change in en-
tropy is returned as the move hide utility. The exponential is
taken in order to allow a comparison between the log based
utilities returned by the move hide and move seek advisors,
and the utility returned by the strategic advisor which scores
moves on a linear scale.
Move Seek Advisor. The move seek advisor suggests that
a player perform moves that are more likely to discover in-
formation about the positions of the opponent’s invisible
pieces. That is, each move is scored according to the expect-
ed decrease in the entropy of the opponent’s invisible pieces
following the move. This expected decrease in entropy must
be greater than or equal to zero as no move can make a play-
er less certain about the position of the opponent’s invisible
pieces.
A move that covers a large number of squares with a positive
probability of occupation by the opponent’s invisible pieces
will yield a certain amount of information whether it is suc-
cessful or not. Clearly this type of move will yield more
information if it is successful, as the player now knows that
all of those squares are vacant. On failure, a player can only
conclude that at least one of those squares is occupied. On
the other hand, a move that traverses only one square with a
positive probability of occupation by the opponent’s invisi-
ble pieces will yield more information if unsuccessful. That
is, the player now knows that an invisible piece is on that
square. Thus, the move seek advisor multiplies the project-
ed decrease in entropy for each outcome by the probability
of that outcome to get an expected utility. The exponential

Figure 8: Uncertainty (as entropy) in games with one in-
visible black bishop against two invisible white bishops
that were won by black.

]Weight] Hide ] Seek J
QvsQ B vsB Qvs Q BvsB

0.5 57.2 77.2 47.2 51.0
5.0 43.6 54.6 45.0 71.6
50.0 13.6 30.3 47.6 67.0

Table 2: The effect of the move hide and move seek advisors.

of this expected change in entropy is returned as the move
seek utility.

6.3 Advisor Results

This section presents and discusses some preliminary re-
sults that show the individual effects of the move hide and
move seek advisors with varying weights. Each result was
obtained by playing 500 games separated into runs of 250
games as before, with one player using the strategic advi-
sor only, against an opponent using one of the information-
theoretic advisors and the strategic advisor. The invisi-
ble piece con gurations in this section were chosen be-
cause their results are typical of those obtained using our
information-theoretic advisors.
The move hide column of Table 2 shows the results of
adding the move hide advisor to an invisible queen each (Q
vs Q) and an invisible white bishop versus an invisible black
bishop (B vs B). The move seek column shows the results
of adding the move seek advisor to an invisible queen each
and and one invisible white bishop versus one invisible black
bishop (B vs B). The rst column headed "Weight" shows
the weight of the information-theoretic advisor relative to
the strategic advisor.Thus, with a weight of 0.5, in games
played with an invisible queen each, the player playing with
the move hide advisor won 57.2% of the games.

Move Hide Results. With a weight of 0.5, the move hide
advisor signi cantly assists, increasing the win rate to 57.2%
and 72.2% for queen versus queen and bishop versus bish-
op respectively. However, as the move hide advisor weight
increases past 0.5, the win rate decreases quite rapidly. This
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behaviour is typical of all observed move hide runs, and re-
sults from the player taking less notice of the strategic advi-
sor’s advice. Although the opponent may be slightly more
uncertain when the move hide advisor is weighted highly,
the player is making enough strategically poor moves to
counter that advantage. Nonetheless, the move hide advi-
sor is de nitely helpful with small weight, and the results
shown for a weight of 0.5 are statistically signi cantly dif-
ferent from the base case of 50%.
Figure 9 shows the difference in entropy between white and
black, each playing with an invisible queen, averaged over
the entire game for each of 250 games. To make the trends
clearer, the data points are sorted by entropy. The mid-
die curve represents games played between invisible queens
with no information-theoretic advisors present, and shows
that the entropy difference is fairly even. In approximately
half the games it is negative, and in the other half it is pos-
itive, and it ranges between around -1 and +1. The bottom
curve represents games where white played with the move
hide advisor. This represents an entropy advantage to white.
The difference between white and black’s uncertainty ranges
from under -2 to around +1. The rest of the curve is also
shifted downwards indicating the relative increase in black’s
uncertainty. This increase in black’s uncertainty leads to
more wins for white while using the move hide advisor.
When an invisible piece moves, the uncertainty increases in
the same manner regardless of the nal destination of the
invisible piece. Thus the move hide advisor is most valuable
when any strategically advantageous move by an invisible
piece is possible.

Move Seek Results. Table 2 (column 5) shows the move
seek advisor’s effectiveness against an opponent’s invisible
bishop. As the weight increases to around 5.0, the percent-
age of wins increases up to 71.6%. This is largely a result of
the move seek advisor assisting the player to nd and cap-
ture the opponent’s invisible bishop early in the game. The
player then has an information advantage equivalent to an in-
visible bishop versus no invisible pieces and is very likely to
win. Figure 10 shows the entropy advantage of playing with
the move seek advisor. The data points are sorted by entropy
to clarify the trends. The top curve shows the entropy differ-
ence with no move seek advisor, and the bottom curve shows
that the entropy is signi cantly lower when playing with a
move seek advisor. In this example, the move seek advi-
sor assists white to reduce uncertainty over the course of the
game and therefore play strategically better than black.
Table 2 (column 4) shows the move seek advisor as applied
to a game between two invisible queens. In this situation,
the move seek advisor is much less effective and would ap-
pear to probably be detrimental in some cases. It seems like-
ly that the large number of squares an invisible queen may
have a positive probability of occupying, and the frequen-
cy of queen movement, make it dif cult for the opponent
to nd an invisible queen. The top curve in Figure 9 repre-
sents games where white played with the move seek advisor.
An examination of the entropy difference slightly favours
black compared to the base case. This is almost certainly
because white is spending moves trying to nd black’s in-

visible queen rather than moving their own invisible queen.
Only moves that traverse squares that have a positive prob-
ability of occupation by the opponent’s invisible pieces are
valued by the move seek advisor. These moves may or may
not correspond to good strategic moves. The more a play-
er listens to the move seek advisor, the fewer good strategic
moves they are able to perform. The difference between the
bishop-seeking behaviour and the queen-seeking behaviour
depends on the difculty of nding the opponent’s invisible
piece. An invisible bishop can have a positive probability of
occupying at most half the available squares on the board,
while an invisible queen can have a positive probability of
occupying all the available squares. Thus, the advice provid-
ed by the move seek advisor often aids in the early capture of
the invisible bishop, thereby removing the uncertainty from
the game. In contrast, following this advice when the in-
visible piece is an invisible queen leads to wasted moves.
Thus the move seek advisor assists when the uncertainty in
the game is low, but may be useless or detrimental when the
uncertainty is high.

7 Conclusion and Future Work
The results presented in this paper are preliminary and fur-
ther exploration of the domain is required. There are a num-
ber of areas that require more in depth investigation. Specif-
ically, more accurate prediction of the likely positioning of
the opponent’s invisible pieces is needed. This prediction
could take the form of using strategic information about the
likely destination of a moving invisible piece, or involve
evaluating the complete search tree for more ply. Improv-
ing this distribution would reduce its entropy and therefore
improve strategic performance. A side effect of this type of
distribution improvement is the possibility of incorporating
blufng into invisible chess. That is, moving an invisible
piece to an unlikely position in order to confuse an oppo-
nent.
As indicated above, one way to improve the prediction of
the positions of the opponent’s invisible pieces would be to
model the uncertainty regarding a player’s pieces from the
opponent’s perspective for more ply. However, the problem
of the combinatorial expansion in the search required as a
result of this prediction needs to be resolved. The most ob-
vious way to manage this explosion is to nd effective ways
to prune the game tree.
As our system currently stands, a non-integrated player of
invisible chess (whether human or machine) could not have
the bene t of our GCDMM which maintains the approxi-
mation to the distribution of the positions of the opponent’s
invisible pieces by using the true positions of all other in-
visible pieces when updating the distribution. Such a player
would need to nd other ways of approximating that distri-
bution.
In summary, we have presented and discussed a complex,
but controlled domain for exploring automated reasoning in
an uncertain environment with a high degree of strategic
complexity. We have motivated and introduced the use of
information-theoretic advisors in the strategically complex
imperfect information domain of invisible chess. We have
shown that our distributed-advisor approach using a combi-
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Figure 9: Entropy difference between white and black
for a base case, move seek (weight 1.0) and move hide
(weight 0.5), sorted by entropy.

nation of information-theoretic and strategic aspects of the
domain lead to performance advantages compared to using
strategic expertise alone. Given the simplicity and general-
ity of this approach, our results point towards the potential
applicability to a range of strategically complex imperfect
information domains.
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