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Abstract

We consider the design of multi-agent sys-
tems (MAS) so as to optimize an overall world
utility function when each agent in the sys-
tem runs a Reinforcement Learning (RL) al-
gorithm based on own its private utility func-
tion. Traditional game theory deals with the
“forward problem” of determining the state of
a MAS that will ensue from a specified set of
private utilities of the individual agents. Ac-
cordingly, it can be used to predict what world
utility would be induced by any such set of
private utilities if each agent tried to optimize
its utility by using RL algorithms (under ap-
propriate assumptions concerning rationality
of those algorithms, information sets, etc.)

In this work we are interested instead in the
inverse problem, of how to design the private
utilities to induce as high a value of world
utility as possible. To ground the analysis
in the real world, we investigate this prob-
lem in the context of minimizing the loss
of importance-weighted communication data
traversing a constellation of communication
satellites. In our scenario the actions taken
by the agents are the introduction of virtual
“ghost” traffic into the decision-making of a
(pre-fixed, non-learning) distributed routing
algorithm. The idea is that judiciously chosen,
such ghost traffic can “mislead” the routing al-
gorithm in a way that overcomes deficiencies
in that algorithm and thereby improves global
performance. The associated design problem
is to determine private utilities for the agents
that will lead them to introduce precisely that
desired ghost traffic. We show in a set of com-
puter experiments that by using inverse game
theory it is possible to solve this design prob-
lem, i.e., to assign private utilties that lead
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the agents to introduce ghost traffic that does
indeed improve global performance.

1 Introduction

In this paper we are interested in multi-agent systems
(MAS’s [15; 19; 20]) having the following characteristics:
e the agents each run reinforcement learning (RL) algo-
rithms;

e there is little to no centralized communication or con-
trol;

¢ there is a provided world utility function that rates the
possible histories of the full system.

These kinds of problems may well be most readily ad-
dressed by having each agent run a Reinforcement Learn-
ing (RL) algorithm. In such a system, we are confronted
with the inverse problem of how to initialize/update the
agents’ individual utility functions to ensure that the
agents do not “work at cross-purposes”, so that their
collective behavior maximizes the provided global util-
ity function. Intuitively, we need to provide the agents
with utility functions they can learn well, while ensuring
that their doing so won'’t result in economics phenomena
like the Tragedy of The Commons (TOC; [12]), liquidity
trap or Braess’ paradox [21].

This problem is related to work in many other fields,
including computational economics, mechanism design,
reinforcement learning for adaptive control, statistical
mechanics, computational ecologies, and game theory, in
particular, evolutionary game theory. However none of
these fields directly addresses the inverse problem. (This
is even true for the field of mechanism design; see [24]
for a detailed discussion of the relationship between these
fields, involving several hundred references.)

Other previous work involves MAS’s where agents use
reinforcement learning [3; 9], and/or where agents model
the behavior of other agents [13]. Typically this work
simply elects to provide each agent with the global util-
ity function as its private utility function, in a so-called



“exact potential” or “team” game. Unfortunately, as ex-
pounded below, this can result in very poor global per-
formance in large problems. Intuitively, the difficulty is
that each agent can have a hard time discerning the echo
of its behavior on the global utility when the system is
large.

In previous work we used the COIN framework to de-
rive the alternative “Wonderful Life Utility” (WLU) [24],
a utility that generically avoids the pitfalls of the team
game utility. In some of that work we used the WLU for
distributed control of network packet routing [25]. Con-
ventional approaches to packet routing have each router
run a shortest path algorithm (SPA), i.e., each router
routes its packets in the way that it expects will get
those packets to their destinations most quickly. Un-
like with a COIN, with SPA-based routing the routers
have no concern for the possible deleterious side-effects
of their routing decisions on the global goal (e.g., they
have no concern for whether they induce bottlenecks).
We ran simulations that demonstrated that a COIN-
based routing system has substantially better through-
puts than does the best possible SPA-based system [25],
even though that SPA-based system has information de-
nied the COIN system. In related work we have shown
that use of the WLU automatically avoids the infamous
Braess’ paradox, in which adding new links can actually
decrease throughput — a situation that readily ensnares
SPA’s.

Finally, in [26] we considered the pared-down problem
domain of a congestion game, in particular a more chal-
lenging variant of Arthur’s El Farol bar attendance prob-
lem [1], sometimes also known as the “minority game”
[8]. In this problem, agents have to determine which
night in the week to attend a bar. The problem is set up
so that if either too few people attend (boring evening)
or too many people attend (crowded evening), the total
enjoyment of the attendees drops. Our goal is to de-
sign the reward functions of the attendees so that the
total enjoyment across all nights is maximized. In this
previous work of ours we showed that use of the WLU
can result in performance orders of magnitude superior
to that of team game utilities.

The WLU has a free parameter (the “clamping param-
eter”), which we simply set to 0 in our previous work. To
determine the optimal value of that parameter we must
employ some of the mathematics of COINs, whose rele-
vant concepts we review in the next section. We next use
those concepts to sketch the calculation deriving the op-
timal clamping parameter. To facilitate comparison with
previous work, we chose to conduct our experimental in-
vestigations of the performance with this optimal clamp-
ing parameter in variations of the Bar Problem. We
present those variations in Section 3. Finally we present
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the results of the experiments in Section 4. Those results
corroborate the predicted improvement in performance
when using our theoretically derived clamping parame-
ter. This extends the superiority of the COIN-based ap-
proach above conventional team-game approaches even
further than had been done previously.

2 Theory of COINs

In this section we summarize that part of the theory of
COINs presented in [25; 24; 26] that is relevant to the
study in this article. We consider the state of the sys-
tem across a set of consecutive time steps, t € {0,1,...}.
Without loss of generality, all relevant characteristics of
agent 7 at time ¢ — including its internal parameters
at that time as well as its externally visible actions —
are encapsulated by a Euclidean vector C , the state of
agent 7 at time ¢. ( is the set of the states of all agents
at t, and ¢ is the system s worldline, i.e., the state of all
agents across all time.

World utility is G({), and when 7 is an ML algo-
rithm “striving to increase” its private utility, we write
that utility as v,(¢). (The mathematics can readily be
generalized beyond such ML-based agents; see [23] for
details.) Here we restrict attention to utilities of the
form 37, Ri( ,) for reward functions R;.

We are interested in systems whose dynamics is deter-
ministic. (This covers in particular any system run on a
digital computer, even one using a pseudo-random num-
ber generator to generate apparent stochasticity.) We
indicate that dynamics by writing ¢ = C’(( ). So all
characteristics of an agent  at ¢ = 0 that affects the
ensuing dynamics of the system, including its private
utility, must be included in Cn

Definition: A system is factored if for each agent 7
individually,

MO ) 2 M(C(E)

for all pairs C and C that differ only for node 7.

For a factored system the side effects of changes to
n’s t = 0 state that increase its private utility cannot
decrease world utility. If the separate agents have high
values of their private utilities, by luck or by design,
then they have not frustrated each other, as far as G is
concerned. (We arbitrarily phrase this paper in terms of
changes at time 0; the formalism is easily extended to
deal with arbitrary times.)

The definition of factored is carefully crafted. In par-
ticular, it does not concern changes in the value of the
utility of agents other than the one whose state is varied.
Nor does it concern changes to the states of more than
one agent at once. Indeed, consider the following al-
ternative desideratum to having the system be factored:

& G(C(()) =G,



any change to C that simultaneously improves the en-

suing values of all the agents’ utilities must also improve
world utility. Although it seems quite reasonable, there
are systems that obey this desideratum and yet quickly
evolve to a minimum of world utility ([26]).

For a factored system, when every agents’ private util-
ity is optimized (given the other agents’ behavior), world
utility is at a critical point [24]. In game-theoretic terms,
optimal global behavior occurs when the agents’ are at a
private utility Nash equilibrium [11]. Accordingly, there
can be no TOC for a factored system.

As a trivial example, if v, = G Vn, then the system
is factored, regardless of C. However there exist other,
often preferable sets of {7, }, as we now discuss.

Definition: The (¢t = 0) effect set of node 7 at ¢

C’ef f (€), is the set of all components ¢ , ,, for which the

I tl
gradients V( JCE Ny # 0. et w1th no specifica-
tion of ¢ is deﬁned as UcecCh ff(()
Intuitively, the effect set of 7 is the set of all node-time
pairs affected by changes to n’s t = 0 state.
Definition: Let o be a set of agent-time pairs.
CL;(¢) is ¢ modified by “clamping” the states corre-
sponding to all elements of ¢ to some arbitrary pre-fixed
value, here taken to be 0. The wonderful life utility
(WLU) for o at ¢ is defined as:

WLU,(¢) = G(¢) — G(CLs(¢)) - (1)
In particular, the WLU for the effect set of node 7 is
G(¢) - G(CLC;H Q).

A node n’s effect set WLU is analogous to the change
world utility would undergo had node 5 “never existed”.
(Hence the name of this utility - cf. the Frank Capra
movie.) However CL(.) is a purely “fictional”, counter-
factual mapping, in that it produces a new ¢ without tak-
ing into account the system’s dynamics. The sequence
of states produced by the clamping operation in the def-
inition of the WLU need not be consistent with the dy-
namical laws embodied in C. This is a crucial strength
of effect set WLU. It means that to evaluate that WLU
we do not try to infer how the system would have evolved
if node 7’s state were set to 0 at time 0 and the system
re-evolved. So long as we know G and the full ¢, and
can accurately estimate what agent -time pairs comprise
Cef !, we know the value of n’s effect set WLU — even
1f we know nothing of the details of the dynamics of the
system.

Theorem 1: A COIN is factored if v, = WLUcen Vn
(proof in [24]).

If our system is factored with respect to some {v,},
then each ( should be in a state with as high a value of

1a(C €N as possxble So for such systems, our problem
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is determining what {+,} the agents will best be able to
maximize while also causing dynamics that is factored
with respect to those {-,}.

Now regardless of C(.), both v, = G V5 and Yy =
WLUCm Vn are factored systems. However since each
agent is operating in a large system, it may experience
difficulty discerning the effects of its actions on G when
G sensitively depends on all components of the system.
Therefore each n may have difficulty learning how to
achieve high v, when v, = G. This problem can be
obviated by using effect set WLU, since the subtraction
of the clamped term removes some of the “noise” of the
activity of other agents, leaving only the underlying “sig-
nal” of how agent 7 affects its utility.

We can quantify this signal/noise effect by compar-
ing the ramifications on the private utilities arising
from changes to Cn,o with the ramifications arising from
changes to ¢, o where % represents all nodes other than
7. We call thls quantification the learnability of those
utilities at the point ¢=C (C ) [24]. A linear approxi-
mation to the learnability in the vicinity of the worldline
¢ is the differential learnability ), ,, ({):

19, (@ I
-~ =m0 . ) 2
©=1%. M @

n,O’yﬂ (C(S,O
Differential learnability captures the signal-to-noise ad-
vantage of the WLU in the following theorem:

Theorem 2: Let o be a set containing Cf#. Then

LG
Ve, GCL.

l|€7<
G(C(Q,O)) -
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(proof in [24]). This ratio of gradients should be large
whenever o is a small part of the system, so that the
clamping won’t affect G’s dependence on [ much and
therefore that dependence will approx1mately cancel in
the denominator term. In such cases, WLU is factored,
just as G is, but far more learnable. The experiments
presented below illustrate the power of this fact in the
context of the bar problem, where one can readily ap-
proximate effect set WLU and therefore use a utility for
which the conditions in Thm.’s 1 and 2 should hold.

3 The Bar Problem

Arthur’s bar problem [1] can be viewed as a problem
in designing COINs. Loosely speaking, in this problem
at each time t each agent 1 decides whether to attend
a bar by predicting, based on its previous experience,
whether the bar will be too crowded to be “rewarding”
at that time, as quantified by a reward function Rg.



The greedy nature of the agents frustrates the global
goal of maximizing Rg at ¢. This is because if most
agents think the attendance will be low (and therefore
choose to attend), the attendance will actually be high,
and vice-versa. We modified Arthur’s original problem
to be more general, and since we are not interested here
in directly comparing our results to those in [1; 8], we
use a more conventional ML algorithm than the ones
investigated in [1; 7; 8].

There are N agents, each picking one of seven nights
to attend a bar in a particular week, a process that is
then repeated for the following weeks. In each week,
each agent’s pick is determined by its predictions of the
associated rewards it would receive if it made that pick.
Each such prediction in turn is based solely upon the
rewards received by the agent in those preceding weeks
in which it made that pick.

The world utility is G({) = X, RG(Q,t)’ where

RG(Q,::) = ZZ=1 Pz (¢, 1)), zx(¢,t) is the total atten-
dance on night k at week t, #(y) = yexp(~y/c); and
c is a real-valued parameter. Our choice of ¢(.) means
that when too few agents attend some night in some
week, the bar suffers from lack of activity and therefore
the world reward is low. Conversely, when there are too
many agents the bar is overcrowded and the reward is
again low.

Since we are concentrating on the choice of utilities
rather than the RL algorithms that use them, we use
simple RL algorithms. Each agent n has a 7-dimensional
vector representing its estimate of the reward it would
receive for attending each night of the week. At the
beginning of each week, to trade off exploration and ex-
ploitation, n picks the night to attend randomly using a
Boltzmann distribution over the seven components of n’s
estimated rewards vector. For simplicity, temperature
did not decay in time. However to reflect the fact that
each agent perceives an environment that is changing in
time, the reward estimates were formed using exponen-
tially aged data: in any week ¢, the estimate agent 7
makes for the reward for attending night ¢ is a weighted
average of all the rewards it has previously received when
it attended that night, with the weights given by an ex-
ponential function of how long ago each such reward was.

To form the agents’ initial training set, we had an ini-
tial training period in which all actions by all agents were
chosen uniformly randomly, and the associated rewards
recorded by all agents. After this period, the Boltzmann
scheme outlined above was “turned on”.

This simple RL algorithm works with rewards rather
than full-blown utilities. So formally speaking, to apply
the COIN framework to it it is necessary to extend that
framework to encompass rewards in addition to utilities,
and in particular to concern effect set wonderful life re-
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ward (WLR), whose value at moment ¢ for agent 7 is
RG(Q,t) - RG(CLC;H (¢ ,))- To do this one uses Thm. 1
to prove that, under some mild assumptions, if we have
a set of private rewards that are factored with respect to
world rewards, then maximizing those private rewards
also maximizes the full world utility. In terms of game
theory, a Nash equilibrium of the single-stage game in-
duces a maximum of the world utility defined over the en-
tire multi-stage game. (Intuitively, this follows from the
fact that the world utility is a sum of the world rewards.)
In addition, one can show that the WLR is factored with
respect to the world reward, and that it has the same ad-
vantageous learnability characteristics that accrue to the
WLU. Accordingly, just as the COIN framework recom-
mend we use WLU when dealing with utility-based RL
algorithms, it recommends that we use WLR in the bar
problem when dealing with reward-based RL algorithms.
See [23].

Example: It is worth illustrating how the WLR is fac-
tored with respect to the world reward in the context
of the bar problem. Say we’re comparing the action
of some particular agent going on night 1 versus that
agent going on night 2, in some pre-fixed week. Let
z} and z be the total attendances of everybody but
our agent, on nights 1 and 2 of that week, respectively.
So WLR(1), the WLR value for the agent attending
night 1, is given by ¢(z] + 1) — ¢(x} + CLy) + ¢(zh) —
d(zh + CL2) + Ei>2[¢(mi) — ¢(z; + CL;)], where “CL;"
is the 7’th component of our clamped vector. Similarly,
WLR(2) = ¢(z1) — é(21 + CL1) + é(xs + 1) — ¢ +
CLz2) + 3 isald(wi) — ¢(z: + CLj)|.

Combining, sgn(W LR(1) ~ W LR(2)) = sgn(¢(z} +1) —
#(zh) — d(zh + 1) + #(=5)). On the other hand, Rg(1),
the G value for the agent attending night 1, is ¢(z} +
1) + ¢(xh) + 3 ;55 #(2;). Similarly, Rg(2) is ¢(z]) +
P(@h+1)+2 5, ¢(x:). Therefore sgn(Rg(1)—Ra(2)) =
sgn(¢(z + 1) + ¢(z3) — ¢z + 1) — ¢(21)).

So sgn(W LR(1)—W LR(2) = sgn(Ra(1)— Rg(2)). This
is true for any pair of nights, and any attendances {z;},
and any clamping vector. This establishes the claim that
WLR is factored with respect to the world reward, for
the bar problem.

When using the WLR we are faced with the question
of setting the clamping parameter, i.e., of determining
the best values to which to clamp the components Cg//
of {. One way to do this is to solve for those values that
maximize differential learnability. An approximation to
this calculation is to solve for the clamping parameter
that minimizes the expected value of [\ w1 r,] ™%, where
the expectation is over the values ¢ . and associated re-
wards making up 7’s training set. ,

A number of approximations have to be made to



carry out this calculation. The final result is that n
should clamp to its (appropriately data-aged) empiri-
cal expected average action, where that average is over
the elements in its training set [23]. Here, for simplicity,
we ignore the data-aging stipulation of this result. Also
for simplicity, we do not actually make sure to clamp
each 7 separately to its own average action, a process
that involves  modifying what it clamps to in an online
manner. Rather we choose to clamp all agents to the
same vector, where that vector is an initial guess as to
what the average action of a typical agent will be. Here,
where the initial training period has each agent choose
its action uniformly randomly, that guess is just the uni-
form average of all actions. The experiments recounted
in the next section illustrate that even using these ap-
proximations, performance with the associated clamping
parameter is superior to that of using the WL reward
with clamping to 0, which in turn exhibits performance
significantly superior to use of team game rewards.

4 Experiments
4.1 Single Night Attendance

Our initial experiments compared three choices of the
clamping parameter: Clamping to “zero” i.e., the ac-
tion vector given by 0 = (0,0,0,0,0,0,0), as in our
original work; clamping to “ones” i.e., the action vector
1= (1,1,1,1,1,1,1); and clamping to the (ideal) “aver-
age” action vector for the agents after the initial train-
ing period, denoted by @. Intuitively, the first clamping
is equivalent to the agent “staying at home,” while the
second option corresponds to the agent attending every
night. The third option is equivalent to the agents at-
tending partially on all nights in proportions equivalent
to the overall attendance profile of all agents across the
initial training period. (If taken, this “action” would
violate the dynamics of the system, but because it is a
fictional action as described in Section 2, it is consistent
with COIN theory.)

In order to distinguish among the different clamping
operators, we will include the action vector to which the
agents are clamped as a subscript (e.g., CL® will denote
the operation where the action is clamped to the zero
vector). Because all agents have the same reward func-
tion in the experiments reported here, we will drop the
agent subscript from the reward function.

We compared performance with these three WLR’s
and the team game reward, Rg. Writing them out, those
three WLR reward functions are:

Rwis(¢,) = Ra(¢,) - Ra(CLY(C,)
= ¢a,(2q,($ ) — ba, (24, t)—1)
Rwi(¢,) = Ra(¢,) - Re(CLY(C,))
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Y ta@aG,t) — a(za(Cyt) +1)

dd,

Rwii(C,) = Ra((,)-Ra(CL3(,))

t]

7
= Y $a@alC1) — da(@a((,t) + aa)

d#d,
+ ba,(24,(6,8) — da,(24,(¢ ) — 1+ aq)

where d,, is the night picked by 5, and a4 is the compo-
nent of @ corresponding to night d.

The team game reward, Rg, results in the system
meeting the desideratum of factoredness. However, be-
cause of Theorem 2, we expect Rg to have poor learn-
ability, particularly in comparison to that of Ry Ly (see
[24] for details). Note that to evaluate Ry L5 each agent
only needs to know the total attendance on the night it
attended. In contrast, Rg and Ry, require central-
ized communication concerning all 7 nights, and Rwr,;
requires communication concerning 6 nights.
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Figure 1: Reward function comparison when agents at-

tend one night. (WLzis O ; WLgzis+; WLyisO; G

is x)

Figure 1 graphs world reward against time, averaged
over 100 runs, for 60 agents and ¢ = 3. (Throughout
this paper, error bars are too small to depict.) The two
straight lines correspond to the optimal performance,
and the “baseline” performance given by uniform oc-
cupancies across all nights. Systems using WLz and
W L; rapidly converged to optimal and to quite good
performance, respectively. This indicates that for the
bar problem the “mild assumptions” mentioned above
hold, and that the approximations in the derivation of

‘the optimal clamping parameter are valid.

In agreement with our previous results, use of the re-
ward Rg converged very poorly in spite of its being fac-
tored. The same was true for the WLz reward. This
behavior highlights the subtle interaction between fac-



toredness and learnability. Because the signal-to-noise
was higher for these reward functions, it was very dif-
ficult for individual agents to determine what actions
would improve their private utilities and therefore had
difficulties in finding good solutions.
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Figure 2: Scaling properties of the different reward func-
tion. (WLgis O; Wihgis+; WLyisO; G is Xx)

Figure 2 shows how ¢ = 500 performance scales with
N for each of the reward signals. For comparison pur-
poses the performance is normalized — for each utility
U we plot T%,,,L—R}‘%::f:’ where R,pt and Rpqse are the op-
timal performance and a canonical baseline performance
given by uniform attendance across all nights, respec-
tively. Systems using Rg perform adequately when N
is low. As N increases however, it becomes increasingly
difficult for the agents to extract the information they
need from Rg. Because of their superior learnability,
systems using the WL rewards overcome this signal-to-
noise problem to a great extent. Because the WL re-
wards are based on the difference between the actual
state and the state where one agent is clamped, they are
much less affected by the total number of agents. How-
ever, the action vector to which agents are clamped also
affects the scaling properties.

4.2 Multiple Night Attendance

In order to study the relationship between the clamping
parameter and the resulting world utility in more de-
tail, we now modify the bar problem as follows: Each
week, each agents picks three nights to attend the bar.
So each of the seven possible actions now corresponds
to a different attendance pattern. (Keeping the number
of candidate actions at 7 ensures that the complexity of
the RL problem faced by the agents is roughly the same.)
Here those seven attendance profiles were attending the
first three nights, attending nights 2 through 4, ..., at-
tending on nights 7, 1 and 2.

Figure 3 shows world reward value as a function of
time for this problem, averaged over 100 runs, for all four
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reward functions. For these simulations ¢ = 8, and there
were 60 agents. Optimal and baseline performance are
plotted as straight lines. Note that in the experiments
of the previous section CL? clames to the attendance
vector v with components v; = >~ ,_,; ‘L‘;'i, where 8q,; is
the Kronecker delta function. Now however it clamps
to v; = z;___l 241 where ug, is the ¢’th component (0
or 1) of the the d’th action vector, so that for each d it
contains three 1’s and four 0’s.
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Figure 3: Reward function comparison when agents at-

tend three nights. (WLgis O ; WLgis +; WL;isO;

G is x)

As in the previous case, the reward obtained by clamp-
ing to the average action Ry ,, performs near optimally.
Rw g on the other hand shows a slight drop-off com-
pared to the previous problem. Rwp; now performs
almost as well as Rwi;- All three WL rewards still
significantly outperform the team game reward. What
is noticeable though is that as the number of nights
to attend increases, the difference between Ry, and
Rw 1, decreases, illustrating how changing the problem
can change the relative performances of the various WL
rewards.

4.3 Sensitivity to Clamping

The results of the previous section shows that the action
vector to which agents clamp has a considerable impact
on the global performance. In this section we study how
that dependence varies with changes in the problem for-
mulation.

We considered four additional variants of the bar
problem just like the one described in the previous sub-
section, only with four new values for the number of
nights each agent attends. As in the previous section, we
keep the number of actions at seven and map those ac-
tions to correspond to attending particular sets of nights.
Also as in the previous section, we choose the attendance
profiles of each potential action so that when the actions
are selected uniformly the resultant attendance profile
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is also uniform. We also modify ¢ to keep the “conges-
tion" level of the problem at a level similar to the original
problem. (For the number of nights attended going from
one to six, ¢ = {3, 6,8, 10,12, 15} respectively.)

Normalized Performance

1 2 3 4 5 6
Number of Nights to Attend

Figure 4: Behavior of different reward function with re-
spect to number of nights to attend. (WLgis O ; Wiy
is+;WL;is O; G is x)

Figure 4 shows the normalized world reward obtained
for the different rewards as a function of the number of
nights each agent attends. Rwp, performs well across
the set of problems. Ry L, on the other hand performs
poorly when agents only attend on a few nights, but
reaches the performance of Ry, when agent need to
select six nights, a situation where the two clamped ac-
tion vectors are very similar. Ry shows a slight drop
in performance when the number of nights to attend in-
creases, while Rg shows a much more pronounced drop.
These results reinforce the conclusion obtained in the
previous section that the clamped action vector that best
matches the aggregate empirical attendance profile re-
sults in best performance.

4.4 Sensitivity to Parameter Selection

The final aspect of these reward functions we study is the
sensitivity of the associated performance to the internal
parameters of the learning algorithms. Figure 5 illus-
trates experiments in the original bar problem presented
in Figures 1 and 2, for a set of different temperatures in
the Boltzamnn distribution. Rw 1, is fairly insensitive to
the temperature, until it is so high that agents’ actions
are chosen almost randomly. Rw; depends more than
Rw_, does on having sufficient exploration and there-
fore has a narrower range of good temperatures. Both
Rwi; and Rg have more serious learnability problems,
and therefore have shallower and thinner performance
graphs.
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Figure 5: Sensitivity of reward functions to internal pa-
rameters. (Wlgzis ¢ ; WLgis +; WLy isO; G is
x)

5 Conclusion

In this article we consider how to configure large multi-
agent systems where each agent uses reinforcement learn-
ing. To that end we summarize relevant aspects of COIN
theory, focusing on how to initialize/update the agents’
private utility functions so that their collective behavior
optimizes a global utility function.

In traditional “team game” solutions to this problem,
which assign to each agent the global utility as its private
utility function, each agent has difficulty discerning the
effects of its actions on its own utility function. We con-
firmed earlier results that if the agents use the alternative
“Wonderful Life Utility” with clamping to 0, the system
converges to significantly superior world reward values
than do that associated team game systems. We then
demonstrated that this wonderful life utility also results
in faster convergence, better scaling, and less sensitiv-
ity to parameters of the agents’ learning algorithms. We
also showed that optimally choosing the action to which
agents clamp (rather than arbitrarily choosing 0) pro-
vides significant further gains in performance, according
to all of these performance measures. Future work in-
volves investigating various ways of having the agents
determine their optimal clamping vectors dynamically.
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