
Verification of Process Plant Models

Claire Palmer and Paul W.H. Chung

Department of Chemical Engineering
Loughborough University

Ashby Road
Loughborough

Leicestershire, LE11 3TU, U.K.
C.Palmer @lboro.ac.uk

P.W.H.Chung@lboro.ac.uk

Abstract
The motivation for creating and verifying process plant
models is briefly described. Verification is defined.
Verification techniques for signed directed graphs models of
process plants are detailed. Two case studies are presented
to evaluate the verification techniques. A limitation with
the verification is detailed.

Motivation

The identification of possible hazards in chemical plants is
a very important part of the design process. This is
because of the potential danger that large chemical
installations pose to the public. One possible route for
speeding up the identification of hazards in chemical plants
is to use computers to identify hazards automatically. This
will facilitate safe plant design and will avoid late design
changes which can be very costly to implement.
 Previous research at Loughborough has concentrated on
developing a model-based approach and a fault
propagation analysis algorithm for automating hazard
identification, resulting in the expert system QUEEN
(Qualitative Effects Engine) (Chung, 1993). The results
generated have demonstrated the technical feasibility of the
approach. QUEEN uses unit-based signed directed graph
models to perform qualitative analysis of the effects of
process deviations in process plants.
 A signed directed graph (Iri et al., 1979; Oyeleye and
Kramer, 1988; Wilcox and Himmelblau, 1994; Chung,
1993; Larkin et al., 1997) consists of an influence graph
with labelled arcs. An influence graph contains the
variables in a physical system which are depicted as nodes.
These are connected by arcs to reflect the influence the
variables have on one another. An arc from a node X, to
another node Y, indicates that a change in the variable X
will cause a change in the variable Y. An influence is
defined as a causal relation between two variables or
simply how one variable affects the other. Several

Copyright © 2000, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

variations of signed directed graph exist in which the arcs
may be labelled differently. In the format used here each
arc of the graph is labelled with a sign "+" or "-". The sign
" +" indicates a positive influence, i.e. Y will increase if X
is increased and Y will decrease if X is decreased. The
sign "-" indicates a negative influence, i.e. Y will decrease
if X is increased and Y will increase if X is decreased.
 To model fault propagation the basic SDG
representation is extended by the addition of causes (of
deviations) and adverse consequences. The cause and
consequence nodes are linked into the deviation network.
Cause nodes represent the faults (failure modes) of units.
Consequence nodes represent potentially hazardous events
arising from causes or deviations. Using this extended
representation the node ‘X’ could be a process variable
deviation or a fault. The node ‘Y’ could be a process
variable deviation or a consequence.
 To construct an SDG for a whole plant can be very time
consuming. However, process plants are built by
connecting together a set of smaller units to carry out the
required functions. The behaviour of each of these types
of units can be modelled generically so that it will apply to
any plant in which the unit is used. By combining the unit
models the behaviour of the whole plant can be analysed.
This unit-based approach is widely used (Chung, 1993;
Vaidhyanathan and Ventkatasubramanian, 1995; Catino,
Grantham and Ungar, 1991). For the SDG representation
each unit model consists of a mini-SDG. The mini-SDG
shows how a change in one process variable affects
another variable in the same unit. Deviations occurring in
the unit can be propagated to other units via inport and
outport connections. A SDG for a complete plant is
created by joining together the appropriate mini-SDG’s
based on the plant topology.
 A tool, Equipment Model Builder, has been created to
build unit-based SDG models (Palmer and Chung 1997;
1998). Applications such as QUEEN require a good
library of unit models. All forms of modelling errors occur
due to omissions and mistakes. Verification is necessary to
detect modelling errors which may give rise to the wrong
result when the models are utilised by QUEEN.

From: AAAI Technical Report SS-01-04. Compilation copyright © 2001, AAAI (www.aaai.org). All rights reserved.

Verification

Verification will be defined here as ensuring that the
internal structure of each model is complete, correct and
consistent. Verification should also ensure that the
model’s behaviour is plausible. This means that the model
should function correctly. This overlaps with some
definitions of validation. For example, Gupta (1993)

defines validation as “the functional accuracy or
correctness of the system’s performance.” Ensuring that
the internal structure of the model is correct will go some
way towards ensuring that the model functions correctly.
Some of the techniques used for verification may also be
applicable to validation. There is an overlap between
verification of a model and validation. However complete
validation may only be achieved by testing the model in
the environment in which it is going to be used.
 The aim of verification is to ensure as far as possible
that the model is complete, correct and consistent. In order
for a model to be consistent it must be correct and concise.
• A complete model has no missing information. It will

contain sufficient information to be able to function in
all possible situations that arise in the application. All
the information that ought to be in the model is
contained in the model structure.

• A correct model is an accurate representation and
contains no wrong information. It has no conflicting
information or illegitimate attributes. An illegitimate
attribute is one which does not occur within the set of
attribute values allowed for the model. A correct
model will function correctly.

• A concise model has no redundant or duplicated
information. It has no information which is superfluous
or unnecessary. A model which is not concise will lead
to additional processing and may be ambiguous.

Completeness Techniques

Incompleteness can occur for a number of reasons. The
main causes of incompleteness result from:
• unreferenced attributes;
• missing propagation paths.

Unreferenced Attributes
The term ‘unreferenced attributes’ has been taken from the
body of work describing verification of rule-based systems.
Two types of incompleteness check for unreferenced
attributes are relevent to this work: the dead-end
conclusion check and the unreachable condition check.
The dead-end conclusion check identifies rules with
conclusions that can never be utilised. The unreachable
condition check identifies rules with conclusions whose
conditions can never be met.
 An SDG may be compared to a rule. Consider the arc
shown below.

The node ‘X’ may be compared to the conditions or left
hand side of a rule. The node ‘Y’ may be compared to the
conclusions or right hand side of a rule. The completeness
checks for rule-based systems are also applicable to
systems constructing SDG models.
 How unreferenced attributes may occur in the unit
models created by Equipment Model Builder is illustrated
using a simple model.

frame(tank isa unit,
 [inports info [in],
 outports info [out],
 unitports info [liquid,vapour],
 propLinks info [

 %propagation
 arc([in,flow],+,[liquid,level]),
 arc([liquid,level],+,[out,flow]),
 arc([in,temp],+,[liquid,temp]),
 arc([liquid,temp],+,[out,temp]),
 arc([vapour,temp],+,[liquid,temp]),

 %faults
 arc([fault,'external fire'],+,[vapour,temp]),

 %consequences resulting from faults
 arc([fault,'leak to environment'],+,
 [consequence, 'loss of material']),

 %consequences resulting from deviations
 arc([deviation,[lessLevel,liquid]],+,
 [consequence,'vessel emptying']),
 arc([deviation,[moreFlow,out]],+,
 [consequence,'vessel emptying']),
 arc([deviation,[moreTemperature,liquid]],+,
 [consequence,'crystallisation'])
]
]
).

It can be seen from the example that there are four types of
SDG arc within a unit model:
(i) deviations linked to deviations, e.g.
 ([in,temp],+,[liquid,temp]);
(ii) faults linked to deviations, e.g.
 ([fault,'external fire'],+,[vapour,temp]);
(iii) faults linked to consequences, e.g.
 ([fault,'leak to environment'],+,
[consequence, 'loss of material']);
(iv) deviations linked to consequences, e.g.
 ([deviation,[moreTemperature,liquid]],+,
[consequence,'crystallisation'])
 The initiating node ‘X’ of the arc shown could be a
deviation or a fault. The influenced node ‘Y’ could be a
deviation or consequence. A consequence may occur
directly as a result of a fault (arc type iii). It may also
occur as a result of a fault propagating through a deviation
or series of deviations. For example, the following fault

X Y
 +/-

propagation might occur within the tank model, leading to
the consequence shown:

([tank,fault,external fire],+,[tank,vapour,temp])
([tank,vapour,temp], +, [tank,liquid,temp])
([tank,deviation,[moreTemperature,liquid]],
+,[tank,consequence,crystallisation]).

The nodes in the path are of the types ii, i and iv
respectively. The fault (failure mode) initiating a
propagation path need not be present in the same unit as
the resulting consequence. The fault may occur in a unit
upstream in a plant and cause a deviation which propagates
into another unit via its inports, or in a downstream unit
and cause a deviation which propagates into another unit
via its outports, to result in a consequence. For example, a
pipe model linked upstream of the tank model could cause
the following consequence in the tank model:

([pipe,fault,partly blocked], -,[pipe,out,flow])
([pipe,out,flow], +,[tank,in,flow])
([tank,in,flow], +,[tank,liquid,level])
([tank,deviation,[lessLevel,liquid]],
+,[tank,consequence,vessel emptying])

 Thus in order for a fault to have the potential to cause a
consequence it must fall into one of the following
categories:
1. The fault must be directly linked to the consequence.
2. The fault must cause a deviation which propagates

within the unit model to cause a consequence.
3. The fault must cause a deviation which propagates out

of the unit model via its inports or outports resulting in
a consequence in another unit.

Any fault that does not fall into one of more of these
categories is an unreferenced attribute as it has no overall
effect. An unreferenced fault (failure mode) causes a
deviation with no effect.
 Deviations with no effect may be present in fault linked
to deviation arcs as described above. They may also be
present in deviation linked to deviation arcs in which the
deviation does not propagate to a boundary port.
Deviations propagating from model boundary ports (ie. in
and out ports) are assumed to have an effect as they may
propagate out of the unit model resulting in a consequence
in another unit. For example, the deviation ‘out,flow’ in
the arc ‘([tank,liquid,level],+,[tank,out,flow])’ could
propagate out of the pipe unit to cause a potential effect in
a downstream unit in a plant.
 In order for a consequence to occur it must either:
1. be directly linked to a fault.
2. result from a fault causing a deviation to propagate

within a unit model.
3. be linked to the inports or outports of the unit model.

This is so that deviations may propagate in to the unit
to cause the consequence. An example of this last case
for a tank model would be:

([tank,deviation,[moreFlow,out]],+,
[tank,consequence,vessel emptying])

Any consequences not fulfilling these criteria are
unreferenced attributes as they will never occur. An
unreferenced consequence is linked to a deviation without
a cause.
 Deviations without causes may be present in deviation
linked to consequence arcs (described above). They may
also be present in deviation linked to deviation arcs in
which the deviation does not initiate at a boundary port.
Deviations initiating at boundary ports are assumed to
have a cause. The cause may propagate into the unit via its
boundary ports from elsewhere in the plant. For example,
the deviation ‘in1,flow’ in the arc “([tank,in,flow], +,
[tank,liquid,level])” may be caused by a fault propagating
into the tank unit from an upstream unit when the tank unit
is present in a plant description.
 For a given model, Equipment Model Builder maintains
lists of deviations with no effect and deviations without
causes. Each new arc added or deleted is checked to see if
it causes these lists to require updating. A user may access
these lists from a drop-down menu.

Missing Propagation Paths
In order for unit models to function correctly within a plant
model deviations in process variables will need to be able
to propagate through them. This means that process
variable deviations need to be able to propagate from a
units inports to its outports and from its outports to its
inports. Exceptions to this are models for the source and
outlet of the plant. Some unit models may not propagate
all deviations. For example, an open tank will not
propagate an increase in flow from its outport to its inport.
However most units will propagate most deviations.
 Equipment Model Builder identifies process variables
with no propagation path through a unit model and
provides the user with a list. This does not mean that the
model is not complete if there are process variables with
no propagation path. For example, in the case of the open
tank there is no propagation path for flow from the tanks
outports to its inports. It only means that the model might
be not be complete. The list is intended to act as a memory
aid for a user. This list of process variables with no
propagation paths will help to ensure that the unit models
behaviour is plausible.

Correctness Techniques

Correctness is checked for by identifying wrong
information, looking for conflicting information within the
model and preventing the entry of illegitimate attributes
into the model. Deviations with no effect and deviations
without causes may also occur because they contain wrong
information.
 Conflict may occur within the component model when

there is more than one possible path through the SDG and
the paths have contradictory effects. The following SDG
will be used to illustrate this:

From this SDG two propagation paths may be traced
between the fault ‘leak’ and ‘out,flow’. The two paths are:

For the first path the effect of a leak is a decrease of
‘out,flow’. For the second path the effect is an increase of
‘out,flow’. The qualitative analysis results in two
contradictory paths with the first path having the correct
influence.
 In order to deal with ambiguities a heuristic that is
commonly used is that when there is more than one acyclic
path through the SDG the shortest path is used. A
technique has been devised which allows the user to check
that the shortest path within the component model leads to
correct model behaviour. To avoid duplication of work
this method utilises the QUEEN system (Chung 1993). A
file of queries to test the effects of the shortest paths within
the model is prepared. This file and the component model
are given to the QUEEN system. The user checks the
output from QUEEN to ensure that the model functions
correctly.
 Within the unit model, deviations may propagate to
cause effects along four different types of path. The
deviation may propagate:

1. from a boundary port to a boundary port;
2. from a fault to cause a consequence;
3. from a fault to a boundary port;
4. from a boundary port to cause a consequence.

Equipment Model Builder prepares an exhaustive list of
queries to test for shortest paths between all the two node
combinations which might occur within the model. The
tool tests all possible paths. Not all of the paths tested for
may exist. To provide a base for describing these queries
a simple model is given below (in text). It is intended for
illustration only.

frame(pipe isa unit,
 [inports info [in],
 outports info [out],
 propLinks info [

 %propagation

 arc([in,pressure],+,[out,pressure]),
 arc([out,pressure],+,[in,pressure]),
 arc([in,temperature],+,[out,temperature]),
 arc([in,flow],+,[out,flow]),
 arc([out,flow],+,[in,flow]),

 %faults
 arc([fault,'partly blocked'],-,[out,flow]),
 arc([fault,['leak into vacuum system',
 vacuum]],+,[in,pressure]),

 %consequences resulting from faults
 arc([fault,'leak to environment'],+,[
 consequence,['contaminate environment', toxic]]),
 arc([fault,'leak to environment'],+,[consequence,
 loss of material’]),

 %consequences resulting from deviations
 arc([deviation,[morePressure,in]],+,
 [consequence,'possible rupture'])
]
]
).

 To verify type (1) paths a complete list of process
variable deviations is prepared for every boundary port.
Queries are prepared to test for shortest paths between each
of the process variable deviations at a boundary port and
each of the process variable deviations at the other
boundary ports within the model. Examples of some of the
paths queried for the pipe model shown are ‘in,pressure’
propagating to ‘out,pressure’, ‘in,pressure’ propagating to
‘out,temperature’ and ‘out,pressure’ propagating to
‘in,pressure’. Queries are also prepared to test for shortest
paths for deviations propagating from a boundary port back
to the same port but a different process variable, e.g.
‘in,flow’ propagating to ‘in,temperature’. Queries are not
set up for deviations propagating from a boundary port
back to the same variable at the same port, e.g. ‘in,flow’
propagating to ‘in flow’.
 To verify type (2) shortest paths Equipment Model
Builder compiles a list of faults from the fault linked to
deviation arcs within the model. Equipment Model
Builder also creates a list of consequences contained in the
deviation linked to consequence arcs within the model.
Consequences contained in the fault linked to consequence
arcs are not added to the list as the shortest paths
propagating to these consequences are known. Queries are
prepared to test for the shortest paths between each of the
faults in the fault list and each of the consequences in the
consequence list. The paths queried for the pipe model
would be ‘partly blocked’ propagating to ‘possible rupture’
and ‘leak into vacuum system’ propagating to ‘possible
rupture’.
 For type (3) paths queries are written to test for shortest
paths from each of the faults in the fault list to each of

 out,flow fault,leak
 -

 fault,leak in,flow out,flow
 + +

 - +
in,flow out,flow +

Fault, leak

process variable deviations at each of the boundary ports.
Examples of some of the paths queried for the pipe model
are ‘partly blocked’ propagating to ‘in,pressure’, ‘leak into
vacuum system’ propagating to ‘in,pressure’ and ‘leak into
vacuum system’ propagating to ‘out,temperature’.
 To test type (4) paths queries are prepared to test for
shortest paths between each of the process variable
deviations at each of the boundary ports and each of the
consequences in the consequence list. Examples of paths
queried for the pipe model would be ‘in,pressure’
propagating to ‘possible rupture’, ‘in,temperature’
propagating to ‘possible rupture’ and ‘out,pressure’
propagating to ‘possible rupture’.
 As all possible shortest paths within the model are tested
for, the user is able to see where paths do not exist as well
as where they do. The omission of an arc may mean that a
path does not exist where the user might expect to find one.
QUEEN returns the shortest path and (where relevant) the
effect of this path. The effect is not relevant for type (4)
paths. The value of the deviations propagating into the
unit’s boundary ports in these paths is not known.
Therefore it is not known whether these deviations will
have an effect (i.e. cause a consequence) or not. QUEEN’s
output enables the user to check that both the shortest path
and the effect are correct.
 The technique for verifying the shortest path is intended
to be the final verification procedure performed upon the
model. Errors which could result in missing or incorrect
shortest paths such as deviations with no effect and
deviations without causes are detected prior to this test to
reduce the number of problems found. The model at this
stage should be complete and correct to the best of the
user’s knowledge. The user tests the unit model using the
technique for verifying the shortest path. If any errors are
found within the model the user will correct them and test
the model again. A cycle of testing and correcting the
model is carried out until the user is satisfied with it.
 The layout of Equipment Model Builders front end
interface prevents the user from entering illegitimate
attributes. For example, the user is prevented from
entering an arc containing a deviation which propagates
through a port to influence itself at the same port, e.g.
([in,flow], +, [in,flow]).

Conciseness Techniques

Equipment Model Builder checks for conciseness by
testing for redundant information and preventing the
addition of duplicated information to the model.
Deviations with no effect and deviations without causes
might be present because the information they contain is
redundant. Equipment Model Builders user interface
prevents the addition of duplicate arcs to the model.

Case Studies

Two case studies are presented to assess whether the

verification techniques are effective. The application
QUEEN (Chung, 1993) was employed to demonstrate the
use of the models created by using Equipment Model
Builder. For each test case models of the plant units were
built and verified using Equipment Model Builder. These
models plus a description of the plant topology were
supplied to QUEEN.

Plant Descriptions
The test cases are public domain examples of plant
systems. The first case consists of the purification section
of a plant producing benzene (Wells and Seagrave, 1976).
The second case is an olefin dimerisation plant (Lawley,
1974).

Benzene Purification System. This purification system
forms part of a plant producing benzene by the catalytic
dehydroalkylation of toluene (Wells and Seagrave, 1976).
The test case was restricted to the purification section of
this plant in order to provide a relatively small example.
The plant description used is given in figure 1. The
distillation column (T101) separates the toluene and
benzene components in its feed. The benzene is produced
as the top product and the toluene as the bottom product.
The top product is condensed by cooling water in
exchanger E104 and then collected in reflux drum D103.
The benzene is pumped by pump P101a from the reflux
drum and is divided into a reflux stream and a product
stream. The product stream is cooled by cooling water in
exchanger E105 before going to storage.
 Pump P101b is spare. All the valves in the system have
open apertures. Figure 1 differs from the Wells and
Seagrave plant in that there is no kick-back line from the
P101 pumps and control facilities are omitted. The control
facilities are omitted as Equipment Model Builder is
currently unable to create unit models that have control
structures.

Figure 1. Benzene Purification System

Olefin Dimerisation Plant. The plant description of this
test case is given in figure 2 and is based on figure 1 from
Lawley (1974). Pumps J1a and J2a are working, pumps
J1b and J2b are spare. Valves 5, 6, 9, 13 and 14 have
closed apertures. All other valves in the plant have open

apertures. Notable differences between this plant
description and Lawley’s example are the omission of
kickback lines from the J2 pumps, the pressure relief
valve on the heat exchanger and of control facilities for
the plant.

Figure 2. Olefin Dimerisation Plant

Evaluation of the Verification Techniques
Verification of the models was found to be useful. The
techniques found to be of greatest benefit were those used
to check for deviations with no effect, deviations without
causes and the technique for verifying the shortest path.
The presence of deviations with no effect or deviations
without causes provided a clear indication that the model
created was faulty. It was found most useful to check for
the presence of deviations with no effect and deviations
without causes when the model was considered to be
complete to check that it was not faulty.
 Verifying the shortest path presented a different view of
the model, thus allowing mistakes to be detected. This
technique detected the following types of errors:
• simple mistakes;
• unexpected paths;
• missing arcs.
Simple mistakes caused paths to be present where they
were not expected. An example of a simple mistake
located in the models created for the case studies is:

‘arc([in,level],+,[out,flow])’, should be
 ‘arc([in,flow],+,[out,flow])’.

This is an entry error caused by the user selecting the
wrong variable from a menu.
 Unexpected pathways occur when arcs the user has
entered into the model interact in a way which the user did
not expect. For example when creating a divider model for
the case studies, assume the user has entered the following
arcs:
‘arc([out2,flow],+,[in,flow])’
‘arc([in,flow],+,[out1,flow])’

The divider model is instantiated as ‘divider1’ and
‘divider2’ in both the benzene purification system and
olefin dimerisation plant. The arcs shown are both
individually correct but lead to the path:

The effect of this path would be for an increase in ‘out2,

 out2,flow in,flow out1,flow
 + +

flow’ to increase ‘out1,flow’. This may be not intended to
occur within the model.
 Missing arcs may be detected when expected
propagation paths in the model are not found or when
unexpected propagation paths are found. For example, if
‘arc([out2,flow],-,[in,flow])’ were missing from the divider
model the unexpected propagation path shown above
might result.
 A limitation with the technique for verifying the shortest
path is that it is exhaustive. All possible paths within the
model are tested for. This results in a large numbers of
queries generated and a large amount of information for
checking. Possible ways of simplifying the results would
be:
• to list positive output (where paths exist) in a separate

file to negative output;
• to allow the user a choice of which results to view.

 The user may not wish to view all of the results
generated. The user may only wish to look at paths which
contain more than two arcs or those containing a certain
process variable deviation. Looking at paths containing
two or more arcs would detect errors caused by the
unforeseen interaction of arcs, which the user may feel to
be the most likely source of error.
 The user may feel it is only necessary to view paths
containing a certain process variable. For example, if a
heatexchanger were being modeled the user might decide
that only the shortest paths containing the process variable
deviation temperature were of interest. The other paths
might be assumed to be correct. If a blanketedvessel
model were being created by extending a closedvessel
model the user might wish to limit the results to those
shortest paths containing pressure. These paths would be
present as a result of new arcs added when the closed
vessel model was extended. Other shortest paths within
the blanketedvessel model would already have been
verified as the arcs containing these paths would have been
copied from the closedvessel model. The closedvessel
model would have been verified when it was created. The
user may also wish to condense the results viewed in other
ways. Providing a choice would allow the user to restrict
the output to those results of interest.

Conclusions

Verification is necessary to detect modelling errors which
may give rise to wrong results when the models are
utilised. The aim of verification is to ensure as far as
possible that a model is complete, correct and consistent.
In order for a model to be consistent it must be correct and
concise.
 A series of verification techniques for signed directed
graph models has been described. Case studies have
demonstrated these techniques to be of use. However,
some modelling errors may still remain as a user may be
unaware what information is missing or incorrect.

References

Catino, C.A.; Grantham S.D.; and Ungar L.H. 1991.
Automatic Generation of Qualitative Models of Process
Computers and Chemical Engineering, 15: (8) 583-599.
Chung, P.W.H. 1993. Qualitative Analysis of Process
Plant Behaviour, The Proceedings of the Sixth
International Conference on Industrial and Engineering
Applications of Artificial Intelligence and Expert Systems:
277-283.
Gupta, U.M. 1993. Validation and Verification of
Knowledge-Based Systems: A Survey. Journal of Applied
Intelligence, 3: 343-363.
Iri, M.; Aoki, K.; O'Shima, E.; and Matsuyama, H. 1979.
Algorithm for Diagnosis of System Failures in the
Chemical Process. Computers and Chemical Engineering,
3 (1-4): 489-49.
Larkin, F. D.; Rushton, A. G.; Chung, P. W. H.;Lees, F. P.,
McCoy, S. A. and Wakeman, S. J. 1997. Computer-Aided
Hazard Identification: Methodology and System
Architecture, IChemE Symposium Series Hazards XIII
Process Safety - The Future, 141: 337-348, IChemE,
Rugby, UK.
Lawley, H.G. 1974. Operability Studies and Hazard
Analysis. Chemical Engineering Progress, 70 (4): 45-56.
Oyeleye, O. O.; and Kramer, M.A. 1988. Qualitative
Simulation of Chemical Process Systems: Steady State
Analysis, AIChE Journal, 34: 1441-1454.
Palmer, C.; and Chung, P.W.H. 1997. Constructing
Qualitative Models, IChemE Jubilee Research Event, 2:
725-728, IChemE, Rugby, U.K.
Palmer, C.; and Chung, P.W.H. 1998. Eliminating
Ambiguities in Qualitative Models, Computers and
Chemical Engineering, (Suppl) 22: S843-S846.
Schut, C.; and Bredeweg, B. 1994. Supporting
Qualitative Model Specification, Proceedings of the
Second International Conference on Intelligent Systems
Engineering: 37-42.
Wells, G.L. and Seagrave, C.J. 1976. Flowsheeting for
Safety, a guide on safety measures to consider during the
design of chemical plant, IChemE.
Wilcox, N.A.; and Himmelblau, D.M. 1994. The Possible
Cause and Effect Graphs (PCEG) Model for Fault
Diagnosis -I. Methodology, Computers and Chemical
Engineering, 18: 103-116.
Vaidhyanathan, R.; and Ventkatasubramanian, V. 1995.
Digraph-Based Models for Automated HAZOP Analysis,
Reliability Engineering and System Safety, 50, 33-49.

