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Abstract 
The motivation for creating and verifying process plant 
models is briefly described.   Verification is defined.  
Verification techniques for signed directed graphs models of 
process plants are detailed. Two case studies are presented 
to evaluate the verification techniques.  A limitation with 
the verification is detailed. 

Motivation   

The identification of possible hazards in chemical plants is 
a very important part of the design process.  This is 
because of the potential danger that large chemical 
installations pose to the public.  One possible route for 
speeding up the identification of hazards in chemical plants 
is to use computers to identify hazards automatically.  This 
will facilitate safe plant design and will avoid late design 
changes which can be very costly to implement.  
 Previous research at Loughborough has concentrated on 
developing a model-based approach and a fault 
propagation analysis algorithm for automating hazard 
identification, resulting in the expert system QUEEN 
(Qualitative Effects Engine) (Chung, 1993).  The results 
generated have demonstrated the technical feasibility of the 
approach.  QUEEN uses unit-based signed directed graph 
models to perform qualitative analysis of the effects of 
process deviations in process plants. 
  A signed directed graph (Iri et al., 1979; Oyeleye and 
Kramer, 1988; Wilcox and Himmelblau, 1994; Chung, 
1993; Larkin et al., 1997) consists of an influence graph 
with labelled arcs.  An influence graph contains the 
variables in a physical system which are depicted as nodes.  
These are connected by arcs to reflect the influence the 
variables have on one another. An arc from a node X, to 
another node Y, indicates that a change in the variable X 
will cause a change in the variable Y.  An influence is 
defined as a causal relation between two variables or 
simply how one variable affects the other.   Several 
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variations of signed directed graph exist in which the arcs 
may be labelled differently.  In the format used here each 
arc of the graph is labelled with a sign "+" or "-".  The sign 
" +" indicates a positive influence, i.e. Y will increase if X 
is increased and Y will decrease if X is decreased.  The 
sign "-" indicates a negative influence, i.e. Y will decrease 
if X is increased and Y will increase if X is decreased.   
 To model fault propagation the basic SDG 
representation is extended by the addition of causes (of 
deviations) and adverse consequences.  The cause and 
consequence nodes are linked into the deviation network.  
Cause nodes represent the faults (failure modes) of units.   
Consequence nodes represent potentially hazardous events 
arising from causes or deviations.  Using this extended 
representation the node ‘X’ could be a process variable 
deviation or a fault.  The node ‘Y’ could be a process 
variable deviation or a consequence.      
 To construct an SDG for a whole plant can be very time 
consuming.  However, process plants are built by 
connecting together a set of smaller units to carry out the 
required functions.  The behaviour of each of these types 
of units can be modelled generically so that it will apply to 
any plant in which the unit is used.  By combining the unit 
models the behaviour of the whole plant can be analysed.  
This unit-based approach is widely used (Chung, 1993; 
Vaidhyanathan and Ventkatasubramanian, 1995; Catino, 
Grantham and Ungar, 1991).  For the SDG representation 
each unit model consists of a mini-SDG.  The mini-SDG 
shows how a change in one process variable affects 
another variable in the same unit.   Deviations occurring in 
the unit can be propagated to other units via inport and 
outport connections.   A SDG for a complete plant is 
created by joining together the appropriate mini-SDG’s 
based on the plant topology. 
 A tool, Equipment Model Builder, has been created to 
build unit-based SDG models (Palmer and Chung 1997; 
1998).  Applications such as QUEEN require a good 
library of unit models.  All forms of modelling errors occur 
due to omissions and mistakes.  Verification is necessary to 
detect modelling errors which may give rise to the wrong 
result when the models are utilised by QUEEN. 
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Verification 

Verification will be defined here as ensuring that the 
internal structure of each model is complete, correct and 
consistent.  Verification should also ensure that the 
model’s behaviour is plausible.  This means that the model 
should function correctly. This overlaps with some 
definitions of validation. For example, Gupta (1993) 

defines validation as “the functional accuracy or 
correctness of the system’s performance.”  Ensuring that 
the internal structure of the model is correct will go some 
way towards ensuring that the model functions correctly.  
Some of the techniques used for verification may also be 
applicable to validation.  There is an overlap between 
verification of a model and validation.  However complete 
validation may only be achieved by testing the model in 
the environment in which it is going to be used.  
 The aim of verification is to ensure as far as possible 
that the model is complete, correct and consistent.  In order 
for a model to be consistent it must be correct and concise.  
• A complete model has no missing information.  It will 

contain sufficient information to be able to function in 
all possible situations that arise in the application.  All 
the information that ought to be in the model is 
contained in the model structure.  

• A correct model is an accurate representation and 
contains no wrong information.  It has no conflicting 
information or illegitimate attributes.  An illegitimate 
attribute is one which does not occur within the set of 
attribute values allowed for the model.  A correct 
model will function correctly.   

• A concise model has no redundant or duplicated 
information.  It has no information which is superfluous 
or unnecessary. A model which is not concise will lead 
to additional processing and may be ambiguous. 

Completeness Techniques 

Incompleteness can occur for a number of reasons.  The 
main causes of incompleteness result from: 
• unreferenced attributes; 
• missing propagation paths.  

Unreferenced Attributes 
The term ‘unreferenced attributes’ has been taken from the 
body of work describing verification of rule-based systems.  
Two types of incompleteness check for unreferenced 
attributes are relevent to this work:  the dead-end 
conclusion check and the unreachable condition check.  
The dead-end conclusion check identifies rules with 
conclusions that can never be utilised.  The unreachable 
condition check identifies rules with conclusions whose 
conditions can never be met.   
 An SDG may be compared to a rule.  Consider the arc 
shown below. 
 
 

The node ‘X’ may be compared to the conditions or left 
hand side of a rule.  The node ‘Y’ may be compared to the 
conclusions or right hand side of a rule.   The completeness 
checks for rule-based systems are also applicable to 
systems constructing SDG models.   
 How unreferenced attributes may occur in the unit 
models created by Equipment Model Builder is illustrated 
using a simple model. 
 
frame(tank isa unit, 
          [  inports info  [ in ], 
       outports info  [ out ], 
   unitports info [ liquid,vapour ], 
        propLinks info [ 
 
   %propagation 
   arc([in,flow],+,[liquid,level]), 
     arc([liquid,level],+,[out,flow]), 
   arc([in,temp],+,[liquid,temp]), 
   arc([liquid,temp],+,[out,temp]), 
   arc([vapour,temp],+,[liquid,temp]), 
 
   %faults 
        arc([fault,'external fire'],+,[vapour,temp]), 
 
        %consequences resulting from faults 
      arc([fault,'leak to environment'],+, 
   [consequence, 'loss of material']), 
 
   %consequences resulting from deviations 
   arc([deviation,[lessLevel,liquid]],+, 
   [consequence,'vessel emptying']), 
   arc([deviation,[moreFlow,out]],+, 
   [consequence,'vessel emptying']), 
   arc([deviation,[moreTemperature,liquid]],+, 
   [consequence,'crystallisation']) 
   ] 
  ] 
). 
 
It can be seen from the example that there are four types of  
SDG arc within a unit model: 
(i) deviations linked to deviations, e.g. 
 ([in,temp],+,[liquid,temp]); 
(ii) faults linked to deviations, e.g. 
 ([fault,'external fire'],+,[vapour,temp]); 
(iii) faults linked to consequences, e.g. 
 ([fault,'leak to environment'],+, 
[consequence, 'loss of material']); 
(iv) deviations linked to consequences, e.g. 
 ([deviation,[moreTemperature,liquid]],+, 
[consequence,'crystallisation']) 
 The initiating node ‘X’ of the arc shown could be a 
deviation or a fault.  The influenced node ‘Y’ could be a 
deviation or consequence.  A consequence may occur 
directly as a result of a fault (arc type iii).  It may also 
occur as a result of a fault propagating through a deviation 
or series of deviations. For example, the following fault 

X Y 
  +/- 



propagation might occur within the tank model,  leading to 
the consequence shown: 
 
([tank,fault,external fire],+,[tank,vapour,temp])   
([tank,vapour,temp], +, [tank,liquid,temp])  
([tank,deviation,[moreTemperature,liquid]], 
+,[tank,consequence,crystallisation]). 
 
The nodes in the path are of the types ii, i and iv 
respectively.  The fault (failure mode) initiating a 
propagation path need not be present in the same unit as 
the resulting consequence. The fault may occur in a unit 
upstream in a plant and cause a deviation which propagates 
into another unit via its inports, or in a downstream unit 
and cause a deviation which propagates into another unit 
via its outports, to result in a consequence.  For example, a  
pipe model linked upstream of the tank model could cause 
the following consequence in the tank model: 
 
([pipe,fault,partly blocked], -,[pipe,out,flow]) 
([pipe,out,flow], +,[tank,in,flow]) 
([tank,in,flow], +,[tank,liquid,level]) 
([tank,deviation,[lessLevel,liquid]], 
+,[tank,consequence,vessel emptying])  
 
 Thus in order for a fault to have the potential to cause a 
consequence it must fall into one of the following 
categories: 
1. The fault must be directly linked to the consequence. 
2. The fault must cause a deviation which propagates 

within the unit model to cause a consequence. 
3. The fault must  cause a deviation which propagates out 

of the unit model via its inports or outports resulting in 
a consequence in another unit.   

 
Any fault that does not fall into one of more of these 
categories is an unreferenced attribute as it has no overall 
effect. An unreferenced fault (failure mode) causes a 
deviation with no effect. 
 Deviations with no effect may be present in fault linked 
to deviation arcs as described above.  They may also be 
present in deviation linked to deviation arcs in which the 
deviation does not propagate to a boundary port. 
Deviations propagating from model boundary  ports (ie. in 
and out ports) are assumed to have an effect as they may 
propagate out of the unit model resulting in a consequence 
in another unit. For example, the deviation  ‘out,flow’ in 
the arc ‘([tank,liquid,level],+,[tank,out,flow])’ could 
propagate out of the pipe unit to cause a potential effect in 
a downstream unit in a plant. 
 In order for a consequence to occur it must either: 
1. be directly linked to a fault. 
2. result from a fault causing a deviation to propagate 

within a unit model. 
3. be linked to the inports or outports of the unit model. 

This is so that deviations may propagate in to the unit 
to cause the consequence. An example of this last case 
for a tank model would be: 

 
([tank,deviation,[moreFlow,out]],+, 
[tank,consequence,vessel emptying]) 
 
Any consequences not fulfilling these criteria are 
unreferenced attributes as they will never occur.  An 
unreferenced consequence is linked to a deviation without 
a cause. 
 Deviations without causes may be present in deviation 
linked to consequence arcs (described above).  They may 
also be present in deviation linked to deviation arcs in 
which the deviation does not initiate at a boundary port.  
Deviations initiating at boundary  ports are assumed to 
have a cause.  The cause may propagate into the unit via its 
boundary ports from elsewhere in the plant. For example,  
the deviation ‘in1,flow’ in the arc “([tank,in,flow], +, 
[tank,liquid,level])” may be caused by a fault propagating 
into the tank unit from an upstream unit when the tank unit 
is present in a plant description. 
 For a given model, Equipment Model Builder maintains 
lists of deviations with no effect and deviations without 
causes.  Each new arc added or deleted is checked to see if 
it causes these lists to require updating.  A user may access 
these lists from a drop-down menu. 

Missing Propagation Paths 
In order for unit models to function correctly within a plant 
model deviations in process variables will need to be able 
to propagate through them. This means that process 
variable deviations need to be able to propagate from a 
units inports to its outports and from its outports to its 
inports. Exceptions to this are models for the source and 
outlet of the plant.  Some unit models may not propagate 
all deviations.  For example, an open tank will not 
propagate an increase in flow from its outport to its inport.  
However most units will propagate most deviations.   
 Equipment Model Builder identifies process variables 
with no propagation path through a unit model and 
provides the user with a list.  This does not mean that the 
model is  not complete if there are process variables with 
no propagation path. For example, in the case of the open 
tank there is no propagation path for flow from the tanks 
outports to its inports.  It only means that the model might 
be not be complete. The list is intended to act as a memory 
aid for a user.  This list of process variables with no 
propagation paths will help to ensure that the unit models 
behaviour is plausible.    

Correctness Techniques 

Correctness is checked for by identifying wrong 
information, looking for conflicting information within the 
model and preventing the entry of illegitimate attributes 
into the model.  Deviations with no effect and deviations 
without causes may also occur because they contain wrong 
information.  
 Conflict may occur within the component model when 



there is more than one possible path through the SDG and 
the paths have contradictory effects.  The following SDG 
will be used to illustrate this: 
 
 
 
 
 
 
From this SDG two propagation paths may be traced 
between the fault ‘leak’ and ‘out,flow’.  The two paths are: 
 
 
 
 
 
 
For the first path the effect of a leak is a decrease of  
‘out,flow’.  For the second path the effect is an increase of 
‘out,flow’.  The qualitative analysis results in two 
contradictory paths with the first path having the correct 
influence.   
 In order to deal with ambiguities a heuristic that is 
commonly used is that when there is more than one acyclic 
path through the SDG the shortest path is used.  A 
technique has been devised which allows the user to check 
that the shortest path within the component model leads to 
correct model behaviour.  To avoid duplication of work 
this method utilises the QUEEN system  (Chung 1993).  A 
file of queries to test the effects of the shortest paths within 
the model is prepared.  This file and the component model 
are given to the QUEEN system.  The user checks the 
output from QUEEN to ensure that the model functions 
correctly.   
 Within the unit model, deviations may propagate to 
cause effects along four different types of path.  The 
deviation may propagate: 
 
1. from a boundary port to a boundary port; 
2. from a fault to cause a consequence; 
3. from a fault to a boundary port; 
4. from a boundary port to cause a consequence. 
 
Equipment Model Builder prepares an exhaustive list of 
queries to test for shortest paths between all the two node 
combinations which might occur within the model.  The 
tool tests all possible paths.  Not all of the paths tested for 
may exist.   To provide a base for describing these queries 
a simple model is given below (in text).  It is intended for 
illustration only. 
  
  
frame(pipe isa unit, 
           [  inports info  [ in ], 
       outports info  [ out ], 
        propLinks info [ 
 
        %propagation 

 
        arc([in,pressure],+,[out,pressure]), 
        arc([out,pressure],+,[in,pressure]), 
        arc([in,temperature],+,[out,temperature]), 
        arc([in,flow],+,[out,flow]), 
        arc([out,flow],+,[in,flow]), 
 
         
   %faults 
       arc([fault,'partly blocked'],-,[out,flow]), 
        arc([fault,['leak into vacuum system', 
   vacuum]],+,[in,pressure]), 
 
       %consequences resulting from faults 
        arc([fault,'leak to environment'],+,[ 
   consequence,['contaminate environment', toxic]]), 
    arc([fault,'leak to environment'],+,[consequence,  
   loss of material’]), 
 
       %consequences resulting from deviations 
   arc([deviation,[morePressure,in]],+, 
   [consequence,'possible rupture']) 
        ] 
     ] 
). 
  
 To verify type (1) paths a complete list of process 
variable deviations is prepared for every boundary port.  
Queries are prepared to test for shortest paths between each 
of the process variable deviations at a boundary port and 
each of the process variable deviations at the other 
boundary ports within the model.  Examples of some of the 
paths queried for the pipe model shown are ‘in,pressure’ 
propagating to ‘out,pressure’,  ‘in,pressure’ propagating to 
‘out,temperature’ and ‘out,pressure’ propagating to 
‘in,pressure’.  Queries are also prepared to test for shortest 
paths for deviations propagating from a boundary port back 
to the same port but a different process variable, e.g. 
‘in,flow’ propagating to ‘in,temperature’.  Queries are not 
set up for deviations propagating from a boundary port 
back to the same variable at the same port, e.g. ‘in,flow’ 
propagating to ‘in flow’. 
 To verify type (2) shortest paths Equipment Model 
Builder compiles a list of  faults from the fault linked to 
deviation arcs within the model.  Equipment Model 
Builder also creates a list of  consequences contained in the 
deviation linked to consequence arcs within the model.  
Consequences contained in the fault linked to consequence 
arcs are not added to the list as the shortest paths 
propagating to these consequences are known.  Queries are 
prepared to test for the shortest paths between each of the 
faults in the fault list and each of the consequences in the 
consequence list.  The paths queried for the pipe model 
would be ‘partly blocked’ propagating to ‘possible rupture’ 
and ‘leak into vacuum system’ propagating to ‘possible 
rupture’. 
 For type (3) paths queries are written to test for shortest 
paths from each of the faults in the fault list to each of 

  out,flow              fault,leak 
   - 

                  fault,leak  in,flow out,flow 
    +       + 

 - + 
in,flow out,flow + 

Fault, leak 



process variable deviations at each of the boundary ports. 
Examples of some of the paths queried for the pipe model  
are  ‘partly blocked’ propagating to ‘in,pressure’, ‘leak into 
vacuum system’ propagating to ‘in,pressure’ and ‘leak into 
vacuum system’ propagating to ‘out,temperature’.   
 To test type (4) paths queries are prepared to test for 
shortest paths between each of the process variable 
deviations at each of the boundary ports and each of the 
consequences in the consequence list.  Examples of paths 
queried for the pipe model would be ‘in,pressure’ 
propagating to ‘possible rupture’, ‘in,temperature’ 
propagating to ‘possible rupture’ and ‘out,pressure’ 
propagating to ‘possible rupture’. 
 As all possible shortest paths within the model are tested 
for, the user is able to see where paths do not exist as well 
as where they do.  The omission of an arc may mean that a 
path does not exist where the user might expect to find one.  
QUEEN returns the shortest path and (where relevant) the 
effect of this path.  The effect is not relevant for type (4) 
paths.  The value of the deviations propagating into the 
unit’s boundary ports in these paths is not known. 
Therefore it is not known whether these deviations will 
have an effect (i.e. cause a consequence) or not. QUEEN’s 
output enables the user to check that both the shortest path 
and the effect are correct.   
 The technique for verifying the shortest path is intended 
to be the final verification procedure performed upon the 
model.  Errors which could result in missing or incorrect 
shortest paths such as deviations with no effect and 
deviations without causes are detected prior to this test to 
reduce the number of problems found.  The model at this 
stage should be complete and correct to the best of the 
user’s knowledge.  The user tests the unit model using the 
technique for verifying the shortest path.   If any errors are 
found within the model the user will correct them and test 
the model again. A cycle of testing and correcting the 
model is carried out until the user is satisfied with it. 
 The layout of Equipment Model Builders front end 
interface prevents the user from entering illegitimate 
attributes.  For example, the user is prevented from 
entering an arc containing a deviation which propagates 
through a port to influence itself at the same port, e.g. 
([in,flow], +, [in,flow]). 

Conciseness Techniques 

Equipment Model Builder checks for conciseness by 
testing for redundant information and preventing the 
addition of duplicated information to the model.  
Deviations with no effect and deviations without causes 
might be present because the information they contain is 
redundant.  Equipment Model Builders user interface 
prevents the addition of duplicate arcs to the model. 

Case Studies 

Two case studies are presented to assess whether the 

verification techniques are effective.  The application 
QUEEN (Chung, 1993) was employed to demonstrate the 
use of the models created by using Equipment Model 
Builder.  For each test case models of the plant units were 
built and verified using Equipment Model Builder.  These 
models plus a description of the plant topology were 
supplied to QUEEN. 

Plant Descriptions 
The test cases are public domain examples of plant 
systems.  The first case consists of the purification section 
of a plant producing benzene (Wells and Seagrave, 1976).   
The second case is an olefin dimerisation plant (Lawley, 
1974). 

Benzene Purification System. This purification system 
forms part of a plant producing benzene by the catalytic 
dehydroalkylation of toluene (Wells and Seagrave, 1976).  
The test case was restricted to the purification section of 
this plant in order to provide a relatively small example.  
The plant description used is given in figure 1.  The 
distillation column (T101) separates the toluene and 
benzene components in its feed.  The benzene is produced 
as the top product and the toluene as the bottom product.  
The top product is condensed by cooling water in 
exchanger E104 and then collected in reflux drum D103.  
The benzene is pumped by pump P101a from the reflux 
drum and is divided into a reflux stream and a product 
stream.  The product stream is cooled by cooling water in 
exchanger E105 before going to storage.   
 Pump P101b is spare.  All the valves in the system have 
open apertures.  Figure 1 differs from the Wells and 
Seagrave plant in that there is no kick-back line from the 
P101 pumps and control facilities are omitted.  The control 
facilities are omitted as Equipment Model Builder is 
currently unable to create unit models that have control 
structures. 



 
Figure 1. Benzene Purification System 

 

Olefin Dimerisation Plant. The plant description of this 
test case is given in figure 2 and is based on figure 1 from 
Lawley (1974).  Pumps J1a and J2a are working, pumps 
J1b and J2b are spare.  Valves 5, 6, 9, 13 and 14 have 
closed apertures.  All other valves in the plant have open 

apertures.  Notable differences between this plant 
description and Lawley’s example are the omission of 
kickback lines from the J2 pumps, the pressure relief 
valve on the heat exchanger and of control facilities for 
the plant.  

 



 

Figure 2. Olefin Dimerisation Plant 

 

Evaluation of the Verification Techniques 
Verification of the models was found to be useful. The 
techniques found to be of greatest benefit were those used 
to check for deviations with no effect, deviations without 
causes and the technique for verifying the shortest path.  
The presence of deviations with no effect or deviations 
without causes provided a clear indication that the model 
created was faulty.  It was found most useful to check for 
the presence of deviations with no effect and  deviations 
without causes when the model was considered to be 
complete to check that it was not faulty.  
 Verifying the shortest path presented a different view of 
the model, thus allowing mistakes to be detected. This 
technique detected the following types of errors: 
• simple mistakes; 
• unexpected paths; 
• missing arcs. 
Simple mistakes caused paths to be present where they 
were not expected.  An example of a simple mistake 
located in the models created for the case studies is: 

‘arc([in,level],+,[out,flow])’, should be 
 ‘arc([in,flow],+,[out,flow])’. 
 
This is an entry error caused by the user selecting the 
wrong variable from a menu. 
 Unexpected pathways occur when arcs the user has 
entered into the model interact in a way which the user did 
not expect.  For example when creating a divider model for 
the case studies, assume the user has entered the following 
arcs: 
‘arc([out2,flow],+,[in,flow])’ 
‘arc([in,flow],+,[out1,flow])’ 
 
The divider model is instantiated as ‘divider1’ and 
‘divider2’ in both the benzene purification system and 
olefin dimerisation plant. The arcs shown are both 
individually correct but lead to the path: 
 
 
 
The effect of this path would be for an increase in ‘out2, 

  out2,flow    in,flow out1,flow 
   +      + 



flow’ to increase ‘out1,flow’.  This may be not intended to 
occur within the model. 
 Missing arcs may be detected when expected 
propagation paths in the model are not found or when 
unexpected propagation paths are found.  For example, if 
‘arc([out2,flow],-,[in,flow])’ were missing from the divider 
model the unexpected propagation path shown above 
might result. 
 A limitation with the technique for verifying the shortest 
path is that it is exhaustive.  All possible paths within the 
model are tested for.  This results in a large numbers of 
queries generated and a large amount of information for 
checking.  Possible ways of simplifying the results would 
be: 
• to list positive output (where paths exist) in a separate 

file to negative output; 
• to allow the user a choice of which results to view. 
  
 The user may not wish to view all of the results 
generated. The user may only wish to look at paths which 
contain more than two arcs or those containing a certain 
process variable deviation.  Looking at paths containing 
two or more arcs would detect errors caused by the 
unforeseen interaction of arcs, which the user may feel to 
be the most likely source of error. 
 The user may feel it is only necessary to view paths 
containing a certain process variable.  For example, if a 
heatexchanger were being modeled the user might decide 
that only the shortest paths containing the process variable 
deviation temperature were of interest.  The other paths 
might be assumed to be correct.  If a blanketedvessel 
model were being created by extending a closedvessel 
model the user might wish to limit the results to those 
shortest paths containing pressure.  These paths would be 
present as a result of new arcs added when the closed 
vessel model was extended.  Other shortest paths within 
the blanketedvessel model would already have been 
verified as the arcs containing these paths would have been 
copied from the closedvessel model.  The closedvessel 
model would have been verified when it was created.  The 
user may also wish to condense the results viewed in other 
ways.  Providing a choice would allow the user to restrict 
the output to those results of interest.  

Conclusions 

Verification is necessary to detect modelling errors which 
may give rise to wrong results when the models are 
utilised. The aim of verification is to ensure as far as 
possible that a model is complete, correct and consistent.  
In order for a model to be consistent it must be correct and 
concise.  
 A series of verification techniques for signed directed 
graph models has been described.  Case studies have 
demonstrated these techniques to be of use.  However, 
some modelling errors may still remain as a user may be 
unaware what information is missing or incorrect. 
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