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Abstract

This paper is to show how mechanical theorem proving can
be used to verify even complex and heuristic programs like
mission critical expert systems. Our approach is mechanical
in two ways: The basic idea of runtime result verification is
to validate each program result (at runtime) rather than to ver-
ify the program itself beforehand. Filtering each result by a
sufficient algorithmic correctness predicate guarantees partial
correctnessof the modified program, if successful checking is
proved to imply correctness of the result. We use a mechani-
cal theorem prover to prove the latter fact.

Introduction
The effort of proving the correctness of AI systems seems
often not justifiable. Heuristics and programming tricks are
necessary to solve complex problems successfully. Mathe-
matical induction then often fails because the algorithms to
be verified get too complex and tricky. This applies in partic-
ular to many knowledge-based systems. On the other hand,
we feel a strong need for verification in particular for safety-
or mission-critical software.
In (Goerigk, Gaul, & Zimmermann 1998) we propose a

checker-based approach to software verification which ex-
ploits the idea of runtime result checking (Blum, Luby, &
Rubinfeld 1989) for verification. It is applicable if partial
correctness of the application suffices. Partial correctness
can be proved by a-posteriori runtime result verification. In
the present paper we describe the application of this ap-
proach to the mechanical verification of an expert system,
which is used as a safety critical tool for certifying rail-
way control components. We use the ACL2 theorem prover
(Kaufmann & Moore 1994).
The Relais Master (DTK 1996; Lange, Möller, & Neu-

mann 1996) is an expert system for computing test-plans for
relay assembly groups that control railway systems. It is
used in the engineering phase of such devices in order to
(more automatically) provide support for hardware-in-the-
loop tests. The test-plans are generated from circuit descrip-
tions. Later, they are to be automatically executed by a test-
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roboter in order to check the correct electrical behavior of
the device.
Although digital circuits get more frequently used today,

at least many German railway systems are still controlled by
relay blocks. In order to guarantee a sufficiently high level
of safety, these devices need regular maintenance, and in
particular, a re-certification of every single physical device
is required within regular time intervals.

Runtime Verification of Results - Getting the Idea
Let us assume a transformational program y := �(x) (or
� for short) to be specified by pre- and post-conditions� ���
and ���� �� for inputs � and outputs �. Instead of proving
the partial correctness (cf. (Hoare 1969; Jones 1990))

�� ��� � � :=� (�) ����� �� �

of the program � itself – i.e., if � holds for �, and if � suc-
cessfully terminates on � with result �, then � holds for �
and � – the idea is to modify the program and add a checker
predicate which rejects incorrect results. That is to say, we
construct a sufficient algorithmic formulation ����� � of the
post-condition� and prove

������ ��� �� � ���� �� � ��� �� �

We call this property the checker correctness. It is now a
simple exercise to prove that the modified program � �, which
additionally checks the post-condition and rejects any incor-
rect result, is partially correct with respect to � and �:

�� ��� �
� �� � ��� � �� � ������ ��� �� then abort fi

����� �� �

Of course we additionally have to guarantee, that running
� does not corrupt ������. In our case, we run a separate
checker program on ASCII representations of � and �, not
modifying the expert system at all.

The Relais Master – A Safety Critical AI Tool
The Relais Master1 automates the time-consuming and er-
ror prone manual test-plan construction. After scanning the

1The system has been developed by the German company DTK
(Hamburg) in cooperation with the Laboratory for Artificial Intel-
ligence (LKI) at the University of Hamburg, Germany.
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circuit, the engineer transforms it into an internal graph rep-
resentation, and the system then generates a set of mea-
surements between terminal contacts of the device (the test-
plan). Each measurement is augmented with information
about the required state of relay contacts (open or closed).
The test roboter will later pneumatically switch the relays.
We have the following requirements for the generated test-
plan:

� It should be complete for the circuit, i.e., it should con-
tain every test necessary to detect any combination of any
number of defects in the relay group. (soundness)

� It should be “good” in the sense that it does not require
too many relay switching operations, because the mainte-
nance interval is mainly triggered by the estimated num-
ber of switches. (quality)

The first property is safety-relevant, whereas, fortunately,
the second is not, although it is as important for practical
usability and makes the use of AI techniques adequate for
the problem. But for safety we only need soundness. In fact,
this observation is crucial to our checker-based approach:
Soundness can quite easily be checked for a given test-plan,
whereas the test-plan generation is complicated and has to
assure quality as well.
The input of the Relais Master is a circuit description

which actually is manually constructed from a scanned cir-
cuit plan. Figure 1 shows a very small example and the Ascii
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Figure 1: A sample circuit. Relais �� has two contacts, 	�
and 	�, and �� has contacts 	� and 	�. If �� is not excited
(released), contact 	� is closed (i.e., is to conduct), whereas
	� is open (i.e., is to isolate). Topological connectors are
abstractions from wiring and soldering, for 
 ports, at least

� � connections have to conduct.

representation of the internal object-oriented Relais Master
data structure is a Lisp-s-expression of the form:

(((�� released ((�� closed) (�� open)))
(�� released ((�� closed) (�� closed)))
(�� released ((�� open)))
(�� released ((�� open)))
�� �� �� ��)

((�� ��) (�� ��) (�� �� �� ��) (�� �� �� ��)
(�� �� ��) (�� �� �� �� ��) (�� �� �� �� ��)

(�� �� ��) (�� �� �� �� �� ��)
(�� �� �� �� �� ��))

((con �� �� () (�� �� �� ��))
(con �� �� () (�� �� �� ��))
(iso �� �� (��) (�� �� ��))
(con �� �� (�� ��) (�� ��))
(iso �� �� (�� �� ��) (��))
(iso �� �� (�� �� ��) (��))
(con �� �� (�� �� �� ��) ())
(iso �� �� (�� �� ��) (��))
(iso �� �� (�� ��) (�� ��))))

The first sub-list contains the contacts and terminals, the
second is the graph structure of the circuit (every single node
is followed by the list of direct neighbors), and the third list
is the set � of measurements (conduction or isolation be-
tween two terminals, e.g. �� and ��, with a certain state, i.e.,
a set of excited and a set of released relays).
In the following,
 will refer to the circuit description (the

first two sublists), and � will refer to the third sublist, i.e.,
the test-plan. 
 represents the input of the Relais Master,
and � its output. 
 and � together form the input of the
correctness predicate ������.

The Correctness Requirement
For simplicity, we just consider relay groups that contain
terminals, connectors (wires, soldering points etc.) and re-
lay contacts as elements. Diodes, resistors and capacitors
are left out. So in our case, the generated test-plan only con-
sists of conduction and isolation tests. Note however, that
relay contacts are part of relays, so can not be switched in-
dependently, and the test-roboter can only measure between
terminals (outside connectors).
Since later the certification is supposed to be mainly per-

formed automatically, the generated test-plan and hence the
Relais Master is safety critical. We need the following guar-
antee:

Every defect of any relay contact, connector or terminal
of the physical device will be detected by at least one
measurement of the test-plan.

The combination of the generated tests must assure, if suc-
cessful, that every single element is individually tested to
work properly, i.e., to conduct (terminals, connectors and
relay contacts) and isolate (relay contacts) if supposed to. In
that case, we call the test-plan � complete for the circuit 
.
The crucial point is, that this is a partial correctness re-

quirement for the Relais Master program (R for short): If
it successfully generates a test-plan � for a given circuit 
,
then we want � to be correct. Let � �
� characterize regular
circuit descriptions, and let��
� � � define � to be complete
for 
. Then we may formalize the correctness requirement
for R by

�� �
� � � :=R(
) ���
� � � � �

Partial correctness requirements are typical for tools used in
the construction of safety critical applications. We do not



want to prove that the tool never fails. But we want to guar-
antee that any given result is correct, i.e., that the tool is
partially correct w.r.t. the correctness requirement for its re-
sults.

The Checker and its Verification
We will now construct (and verify) a predicate ����� � on
circuits 
 and test-plans � which checks � to be complete
for 
, i.e., which guarantees the postcondition ��
� � � to
hold.
The checker is a Lisp program. Inputs are s-expressions

representing
 and � (as in the above example). 
 is a graph
with nodes for every element, � is a set of either conduction
or isolation tests between two terminals in a given state of
the relay contacts.
A successful conduction test between �� and �� guarantees

one conducting path (we do not know which), whereas a
successful isolation test guarantees every path to isolate. In
both cases, however, this might well be due to a defect. The
checker proceeds in five steps:

1. The circuit representation
 is transformed into a handier
internal graph representation.

2. Each test in � is replaced by the set of all paths between
�� and �� in
 together with its type.

3. Every contact of each path in a test is augmented with the
corresponding should-be-state (open or closed).

4. Assuming all tests to succeed, we get true logical propo-
sitions about physical conduction of (sets of) paths in
the concrete device; simple logical transformations give
us true propositions about individually tested single ele-
ments.

5. Finally, we check that indeed every circuit element is in-
dividually tested. If not, the checker aborts.

The Checker Program
The checker is written in the subset of applicative Common
Lisp supported by the Boyer/Moore theorem prover ACL2
(Kaufmann & Moore 1994). ACL2 stands for “A Compu-
tational Logic for Applicative Common Lisp”. It is a logic,
a theorem prover and also an applicative programming lan-
guage. As a logic, ACL2 is an essentially quantifier-free
first order logic of total recursive functions. As a theo-
rem prover, ACL2 is an industrial strength successor of the
well-known Boyer/Moore theorem prover Nqthm (Boyer &
Moore 1979).

Step 1. The first step is to transform the graph structure
of the circuit (see the above example) into in handier form
adding the topological connectors as nodes. We define a
functionmake-graph such that, given a circuit 	, (make-
graph 	) returns the new graph structure. We will later
prove that each edge in 	 is an edge in (make-graph 	)
and vice versa, hence, that the two graph representations are
(essentially) eqivalent.
Actually, the example representation above is already the

result of this step. The original Relais Master generated rep-
resentation of
 and � is much larger and hard to read.

Step 2. The second step is to replace the terminal contacts
�� and �� of each conduction of isolation measure � in the
test-plan � by a set �	 of paths between �� and �� . The func-
tion find-paths returns all paths (lists of nodes) in � be-
tween terminal �� and ��. We will later prove, that each path
between �� and �� in � is a path in (find-paths �� �
��) and vice versa.

Step 3. With respect to a given measurement � in � , each
relay contact has a corresponding should-be-state, i.e., it
should conduct (is closed) or isolate (is open) depending on
the ground state of the relay, the ground state of the contact,
and whether the relay is to be excited or released in the par-
ticular measurement. Each contact 	� in each path expres-
sion is augmented by its should-be-state, i.e., is replaced by
either 	����� or 	������� .
In our example, this procedure finally returns the follow-

ing augmented measurement path list (for simplicity, we
omit the topological connector expressions, and we use 	���
and 	��� for 	������� and 	����� , respectively):

((con (�� ��))
(con (�� �

��
�

���� ���� ��) (�� ���� ���� ���� ��))
(iso (�� �

��

�
���� ���� ���� ��))

(con (�� �
��

�
���� ���� ��) (�� ���� ���� ���� ��))

(iso (�� �
��
�

���� ���� ��) (�� �
��
�

���� ���� ��))
(iso (�� �

��

�
���� ���� ���� ��))

(con (�� ���� ���� ���� ��) (�� �
��

�
���� ���� ��))

(iso (�� ���� �
��
�

���� ���� ��))
(iso (�� ���� �

��

�
���� ��) (�� ���� �

��

�
���� ��)))

This representation is computed in two steps. First,
(switch-contacts � 
) computes a list � of anno-
tated contacts, and then, (make-state-paths � �)
produces the annotated list �	 of paths from the test-plan � .

Step 4. Assuming that isolation is the logical negation of
conduction, we can read the above expression as a logical
formula ���� � ���

� � � � � ���
of logical path list for-

mulas ���
, which are disjunctions of conjunctions (path for-

mulas ��) of atomic propositions for conduction measures,
respectively their negations for isolation measures.
If a path � conducts (i.e., �� � ����), then every contact

in that path conducts. If a path isolates (i.e., ��� � ����),
then at least one contact isolates. Using these facts and
some simple laws of the propositional calculus (such as
e.g. deMorgan’s law) we can transform ���� into a sim-
pler formula �, such that � �� 	������� (respectively
� �� �	����� ) is easily checkable for any contact 	�. This
transformation is computed by (transform ����), and
we will later prove that validity of ���� implies validity of
(transform ����).

Step 5. The final step is just to check that 	������� and
�	����� is a logical consequence of ���� for every contact
	� of the circuit (including terminals and single connections
of topological connectors).



Verification of the Checker
In order to verify the Relais Master program according to
our verified runtime result verification approach, it remains
to prove ������ to be sufficient to guarantee �, i.e.,

������ �
� � � � ���� �� � �
� � � �

We prove that the checker program returns ���� only if the
measures in � are sufficient to guarantee that every contact
	� in 
 is individually tested both to conduct, if it should be
�	
��� , and not to conduct, if it should be 
��
 . Terminals
and single connections of topological connectors can be seen
as special �	
��� contacts.
Note, that for safety it is again sufficient to prove partial

correctness of the checker, i.e., the checker might fail even if
� holds. We have to prove, that the test-plan � is complete
for the circuit
, if the checker returns true for 
 and � .
We cannot go intomuch detail of the proof, but let us com-

ment on the ACL2 theorems proved for each of the steps.
Every of the five steps above is implemented by a set of
ACL2 functions. The first three steps are syntactical trans-
formations which are proved to be sound and complete.

Step 1. For the first step, we prove equivalence of the two
graph representations; that is to say: If (topology 	)
extracts the graph part of the checker input (see the example
above), and if (make-graph 	) returns the transformed
graph representation, then any edge between nodes � and �
is an edge in the original graph (topology 	) if and only
if it is an edge in the transformed graph (make-graph
	):

Theorem 1 [equivalence of circuit and graph]

(thm
(iff
(circuit-edgep � � (topologie �))
(graph-edgep � � (make-graph �))))

Step 2. The second step is to prove that the function
find-paths is sound and complete, i.e., (a) that every
found path is a path in the graph � between terminal � � and
terminal �� , and (b) that every path in � is found. For that,
we prove the two theorems

Theorem 2 [soundness (a)]

(thm
(implies (in-graphp �� �)

(path-listp
(find-paths �� � ��)
�))))

Theorem 3 [completeness (b)]

(thm
(implies

(pathp � �)
(member-equal �

(find-paths
(car �) � (car (last �))))))

Step 3. The first of the theorems for step 3 below is to
prove (in any of eight cases) that the annotation of each con-
tact with its corresponding should-be-state is correct. For
each measure � and relay � we prove that any contact 	
is correctly annotated, i.e., that (switch-contacts �

) contains 	 with the correct should-be-state. So for in-
stance, if � is to be excited in �, if the ground state of
� is non-excited, and if the ground state of �’s contact
	 is open, then 	 is to be �	
��� for �. We prove that in
this case 	������ is a member of (switch-contacts �

):

Theorem 4 [one of eight theorems for switch-contacts]

(thm
(implies (and (excitedp � 	)

(not (ground-excitedp 	))
(ground-openp �) ...)

(member-equal �������

(switch-contacts � 
))))

We have omitted some additional technical well-formedness
conditions, which are necessary to let the prover mechani-
cally prove this theorem. The next theorem is to prove that
make-state-paths produces a correctly annotated path
list �	, i.e., for any contact 	 in � with state �� from � we
find 	�	 in �	:

Theorem 5 [correctly annotated path list]

(thm
(implies (and (member-member-equal � �)

(member-equal ��� �) ...)
(member-member-equal ���

(make-state-paths � �))))

In the final theorem for this step we prove that despite this
change, the structure of � is preserved by make-state-
paths, in particular, that �	 does not contain any contact
not already contained in � :

Theorem 6 [structural equivalence]

(thm
(struct-equivp p (make-state-paths p s)))

Step 4. We prove, that the logical interpretation of the an-
notated path lists as a ���� formula � is invariant under
the logical transformation transform. Given a semantics
functionsemwhich defines the meaning of� (in an assigne-
ment � which maps propositional variables to truth values),
we prove that for any �,



Theorem 7 [correctness of the logical transformations]

(thm
(implies (sem 
 �) (sem (transform 
) �)))

holds. Since we assume the original formula ���� to be
validated by the successful execution of the test-plan, i.e.,
to be ����, this direction is sufficient. We only depend on
(transform �) to be ���� as well. Actually it is not
hard also to prove semantical equivalence, though.

Step 5. We omit the fifth and final step, which is to prove
that the checker ������ does not answer ���� unless the list
of checked contacts, connectors and terminals is equal to the
list of all elements of the circuit, i.e., unless these two lists
are equal.
Note that all our (and many other) theorems have been

mechanically proved by the ACL2 theorem prover. That is
to say, the entire proof is mechanically checked (Bartsch
2000). The checker program is much simpler in many re-
spects than the Relais Master expert system, much smaller,
and it is a predicate written in the clean and abstract func-
tional Lisp subset ACL2.

RelatedWork
We used a-posteriori runtime result verification to mechan-
ically prove the trustworthiness of results of a knowledge-
based tool of industrial relevance. The proofs can be found
as part of (Bartsch 2000). Although not generally applica-
ble, our approach demonstrates a very practical method use-
ful in order to incorporate verification into the engineering
of AI systems, in particular for safety-critical tools. Dou-
ble checking the results is often surprisingly easy compared
to the effort necessary to construct solutions. It is a well-
known method to increase trust in results of computations.
Our approach adopts this method for software verification.
Note that, e.g. in embedded and real-time safety-critical sys-
tems engineering, checker programs are sometimes called
observers used to ensure state consistency. Our checkers are
result checkers for transformational programs, though.
The crucial part of our verified checker program can be

seen as a problem specific tautology or model checking
(E.M. Clarke & E.A. Emerson 1981; J.P. Queille & J. Sifakis
1981): Successful hardware-in-the-loop test according to the
generated set � of measurements will guarantee a circuit de-
pendent set of logical formulas to be true, and our checker
program basically checks the particular formula

��
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�
 �

��

���

��� �

��

���

�	������� � � 	����� �

(for all � terminals, � topological connectors and all 
 relay
contacts) to be a logical consequence of that set of formulas.
If so, the set � is complete for the given circuit, i.e., the
(finite) set � of test cases is sufficient for certification of the
devices.
Runtime result verification (Goerigk, Gaul, & Zimmer-

mann 1998; Pnueli & Traverso 1999) is strongly related to

program checking (Blum, Luby, & Rubinfeld 1989), and our
case study is an application in the field of testing safety crit-
ical devices. However, our main focus is on verification of
the checker program that guarantees correctness of the test
case generator (the Relais Master expert system), and for
that we use classical inductive theorem proving. In contrast
to e.g. (Jeron & Morel 1999), where test case generation is
based on model checking, our approach does not rely on par-
ticular techniques used in the expert system itself. While
program verification and model checking might well find
their limits for complex (and large) applications, we strongly
believe that (verified) runtime result verification scales up to
real world applications in certain mission critical domains –
not only for safety but also for security.
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