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Abstract 
 

   The following describes work in progress on a testing 
system for a large common sense knowledge base.  How 
this testing system is relevant to the requirements of 
validation of intelligence is described.  Four kinds of 
validation tests are explained: challenge tests, regression 
tests, knowledge base integrity tests, and rumination-
based tests.  The ontology of these tests and its 
accompanying software package is intended for use with 
Cyc, a large rule based system with common sense and 
natural language capabilities. 

 
Part I: Commonsense, Large Rule-Based 

Systems and Validation 
 

This work starts with the postulate that for at least some 
application domains, an approach to validation that is less 
rigorous than traditional formal software verification 
techniques is appropriate.  Cyc, I shall argue, is in such a 
domain. 
 

Cyc is a large rule-based system being constructed at 
Cycorp (www.cyc.com).  At current count Cyc contains 
over 1.2 million assertions which relate more than 100,000 
concepts to each other.  Each such assertion is expressed in 
the representation language of Cyc, called CycL, a variant 
of first order predicate calculus with enhancements (see 
http://www.cyc.com/cycl.html for details). 
 

Intelligence Validation for Commonsense Systems 
 

In order to verify or validate a software system, one needs 
as complete and precise a specification of system  
requirements as possible.   The more stringent the 
verification desired, the more precise the requirement 
specification needs to be.  Such completeness and precision 
is problematic if one’s application domain is commonsense 
reasoning. As the following use cases indicate, 
commonsense reasoning requirements involve inherent 
vagueness or ambiguity. 
 

 

For example,  
         
  Fred loves France. (a) 
 
seems to correspond to a single coherent commonsensical 
assertion.  A system with commonsense reasoning capability 
should be able to derive the following from (a)  
  
 (b) Fred would probably enjoy eating French 
 food . 
 (c)  Fred would probably enjoy visiting France , 
 (d) Fred would probably enjoy chatting with 
 locals in  France. 
 
Yet, precisely what concept is referred to by the English 
word "France" in (a)?  For example, does "France" denote 
(1) a body of land  bordering on Spain, the North Atlantic 
and the Mediterranean, (2) an amalgam of regional 
lifestyles, culinary practices, artistic traditions etc or (3) the 
people who are citizens of France?  In spite of the ambiguity 
of the term "France", we require of our system that upon 
being given (a) it should be able to derive (b), (c), and (d) 
without asking a user of the system for more clarification 
about precisely what the term "France" means.  On the other 
hand there are other circumstances in which desired 
inferences depend on automatically picking one of the above 
three disambiguations. 
 
In addition, common sense systems should be able to reason 
with vague information.. For example, given a fact of 
everyday life such as  
 
 Men prefer not to be bald. 
 
one should be able to use such an assertion in an explanation 
as to why a given bald man went to the store to buy 
medicine for his baldness.  Being able to generate such an 
explanation is a requirement in spite of the fact that baldness 
is inherently vague or hard to operationalize. 
 
The above two use cases serve to address a point from the 
present conference’s call for participation, i.e. that “it is not 
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even clear that we know how to specify validation criteria.” 
I claim that for intelligent systems with common sense, we 
must settle for a less formal, less precise specification of 
requirements.    As the prior use cases indicate, ambiguity 
and vagueness are necessary parts of requirement 
specifications for a commonsense reasoners.  If 
requirements must contain ambiguity and vagueness then a 
formal requirement specification is impossible, making 
formal verification impossible.  Given these limitations, 
one could argue that “validation of intelligence” should be 
based on a statistical inference made based on system 
performance on a sample of behaviors.  In brief, I suggest 
that “validation of intelligence” for commonsense systems 
should be more like giving a psychological test than doing a 
proof of correctness. 
 
Common Sense and Mission Critical Systems 
 
There are a variety of mission critical applications in 
which commonsense reasoning capabilities are important.  
For example, a geopolitical crisis management system 
should be able to understand and reproduce human 
commonsensical reasoning patterns.  An evacuation 
management system should possess the emotional 
intelligence required to help people remain  calm in high 
pressure situations.  A natural language interface for an 
avionics application should understand the pilot’s 
colloquialisms.  In general, the performance of any 
mission critical system which must interface with humans 
is likely to  benefit greatly from commonsense capabilities. 
 
Validation Issues and Large Scale Projects 
 
Specification difficulties aside, another set of concerns 
derives from the sheer massive scale of the effort involved.  
Cyc is a project involving person-centuries of effort (Guha, 
Lenat 1990).  There are currently about 80 full-time 
employees working for Cycorp, at least half of which send 
KB edit operations (KB edit operations are  atomic KB 
editing events such as adding an assertion, removing an 
assertion, creating a term, giving an assertion a timestamp) 
to the main Cyc KB as part of their daily work.  Recently 
the mean rate of sending operations to the main KB was 
calculated at 1900 per day (including weekends) over a 5 
month period.  Given the sheer volume of the effort, 
multiple inconsistencies are bound creep in. 
 
In addition, from an efficiency standpoint it makes sense to 
use relatively incomplete but cheap to implement methods 
to find the easiest most glaring bugs early in a project’s 
lifetime. Assuming sufficient “progress happens”, i.e. Cyc 
nears completion and the formal model checking/model 
based validation techniques can be tractably applied to 
undecidable Cyc-like systems, then it becomes appropriate 
to proceed with such  “big hammer” software verification  
.  

techniques. 
 
To sum up, I claim that for commonsense systems, 
validation of intelligence should not be a binary either/or 
decision. The ambiguity and vagueness inherent in 
specification of commonsense reasoning requirements 
forces us to follow a validation procedure based on 
performance across a possibly randomly sampled set of use 
cases.  Secondly, even if that claim is incorrect in some way 
and advanced  formal validation techniques could somehow 
be tractably applied to a large Cyc-like system (e.g. based 
on some fruitful hybrid of model based reasoning and model 
checking) it seems to make the most sense to only apply 
such relatively expensive techniques towards the end of a 
project when system change rate is lower or when hard to 
detect bugs are being sought out. 
 

Part II: Specifics of the Cyc Testing System 
and Techniques Validating the Intelligence of 

Cyc 
 

This section describes a working system that can validate (or 
assess) Cyc’s intelligence.  For reasons described above, the 
system performs validation of Cyc’s intelligence as a graded 
measure based on tests derived from use case type 
requirements. 
 
System validity is established by measuring different aspects 
of Cyc's performance on a set of tests.  The hope is that by 
beginning to measure this performance across many 
different dimensions with more and more tests, strides will 
be made in the direction of more comprehensively validated 
commonsense reasoners. 
 
The Cyc Testing System has two main parts: a software part 
and a knowledge base (KB) part.  The KB part contains a 
large number of test objects which make declarative 
assertions about system requirements.  Each test object 
describes a desired system behavior in CycL.  The software 
part operates on a given KB test object in the appropriate 
manner.  For example, depending on the assertions 
associated with a particular test object, the Cyc testing 
system may make calls to the inference engine or to one of 
several natural language parsing systems.  It may compare 
current to prior results along any of several performance 
dimensions such as number nodes traversed, time elapsed, 
or results obtained.  More details of the kinds of properties 
one may associate with KB test objects are described under 
the next subheading. 
 
The Cyc Testing System can be invoked by a system user in 
a wide variety of ways.  It is also automatically invoked in 
nightly testing runs. Results of particular tests and 
summaries of test suites can be automatically emailed to 
interested parties.  



Test Ontology 
 
Typically tests are represented as a reified first class 
objects in the knowledge base (exception: rumination-
based tests, described below, do not yet have any explicit 
knowledge base objects associated with them).  The testing 
ontology for the kinds of tests described below allows one 
to associate numerous types of properties with a given test.   
For example, one may wish to describe which knowledge 
engineers are responsible for which tests, what kind of 
inference parameters should be involved with a given test 
(such as depth of backchaining, time, the context or 
"microtheory" which should be visible to the inference 
engine when a given test is run) past performance of a 
given test, and more.  One declaratively asserts this kind of 
information to the knowledge base (KB) in a manner very 
similar to the way one ontologizes “normal” common 
sense or expert knowledge.  For example, one may use 
standard knowledge engineer interface tools, and 
eventually, free-form natural language.  
 
Additional of the Cyc Test ontology shall be described 
under headings which outline four kinds of test which are 
important to validating Cyc. 
 
Regression Tests 
 
Regression tests derive their name from software 
engineering.  One might have a set of inferences or natural 
language parses that one has worked on for various demos, 
contracts, etc.  One uses a regression test if one wishes to 
make sure that such inferences or parses continue to work 
correctly (and within optionally specified resource 
bounds).   Thus, unlike Challenge Tests (see below) a 
Regression Test is, by definition, known to have worked 
correctly at some time in the past.  Thus, if a given 
Regression Test fails, it most likely means that a KB 
editing operation or inference engine code patch was done 
which caused that test to fail.  We typically desire to run 
such tests frequently so as to be quickly informed of any 
breakage and to minimize the candidate set of 
KB/inference engine changes which could have caused the 
breakage. 
 
The CycL name for one such test that has been in the 
system since October of last year is CST-Pratt6aRunMt.  The 
assertion 
 

(isa CST-Pratt6aRunMt  NightlyKBAskRegressionTest) 
 

means that this test is one which is run once per night 
automatically in virtue of certain properties of 
NightlyKBAskRegressionTest omitted from this paper.  Since 
this test, and 120 others like it is of the “nightly KB Ask” 
sort as opposed to, for example, the “nightly natural 
language parsing”  sort. 

it checks a particular call to the Cyc inference engine, rather 
than, e.g. a call to one of Cyc’s natural language parsers. 
 
An English representation of what CST-Pratt6aRunMt iis 
supposed to test can be gleaned from the following 
assertion: 
 
(testQuestionEnglish CST-Pratt6aRunMt “Can human adults run?”). 
 
Together,  the following two assertions 
 
(testQuestionCycL CST-Pratt6aRunMt  
 (typeBehaviorCapable HumanAdult Running doneBy)) 
 
(testAnswersCycL CST-Pratt6aRunMt (((T T)))) 
 
mean that when the inference engine is set to work on the 
query (typeBehaviorCapable HumanAdult Running doneBy) it is 
expected to return “true”. (More precisely, we expect “true” 
as an answer to the CycL query only when a set of inference 
engine parameters are appropriately set.  The parameters can 
either be explicitly asserted or inherited from other parts of 
the testing ontology.  A detailed listing of what these 
parameters are would be beyond the scope of this paper.)  
Rending those two assertions in English, one could say that 
the English target answer to the question “Can human adults 
run?” is “yes.” 
 
Test objects which are of type NightlyKBAskRegressionTest 
should, by definition, be run automatically once per night.  
Such automatic testing has been happening since late Spring 
2000.  An added feature of the testing system is that the 
knowledge engineers can be automatically informed via 
email if any tests for which they are responsible have 
broken.  The Cyc testing system can utilize KB information 
such as  
 

(testCyclistsResponsible CST-Pratt6aRunMt RichardM) 
 
and  
 

(eMailAddressText RichardM "richardm@cyc.com") 
 
in order to send email to the correct places. 
 
If a given test stops behaving as desired, on a run of the  
regression tests, for example, a facility called the  Breakage 
Pinpointer can determine which recent KB edit operation, if 
any, caused the test to stop working.  The breakage 
pinpointer does this simply by looping through the 
following procedure: 
 

(0) Start up a new Cyc image at the beginning 
of yesterday’s sequence of KB edit operations. 

 
(1) Given yesterday's sequence of KB edit  
operations, execute the next N of them in 
order. 



 
 (2) run the test 
 
 (3) if the test works, do (1) again else 
 return the information that the breakage 
 occurred between the operation just run  
 and the Nth -1, inclusive. 
 
By setting N to 1 (for brief tests) or using larger N (for 
time consuming ones) coupled with a binary search 
technique one can automatically narrow down on the exact 
operation which caused the breakage.  
 
In sum, use of regression tests can facilitate validation of 
intelligence by quantifying, giving timely notice of, and 
locating newly added system defects. 
 
Challenge Tests 
 
Roughly speaking, a challenge test is analogous to a "quiz" 
given to human students.  In contrast with Regression 
Tests, an arbitrary Challenge Test is not necessarily 
expected to work successfully. Rather, the purpose of 
Challenge Tests are to characterize Cyc's abilities or to 
focus and stimulate work on enhancing Cyc's abilities.  
This kind of test is relevant to system validators would be 
interested in issues such as: 
 
 Is Cyc able to answer question X?  
 

 Is the Cyc recursive block parser able to 
correctly parse the phrase P? 

 
 What percentage of the instantiations of question 
 type Y is Cyc able to correctly answer?   
 

 Suppose that a week's worth of a given 
knowledge engineer's activity was focused on 
implementing a  general solution to the 
question battery Z (a  "teach set").  How much 
did Cyc's performance on that battery 
improve?  How well did that week's worth of 
 knowledge engineering generalize to the "test 
set" battery Z' (of which the knowledge 
engineer was   unaware)?  Further, suppose 
that later a different knowledge engineer, was 
set to work on the challenge question battery 
W.  How much of the early knowledge was 
able to be used in the later ontologization 
effort associated with W? 

 
In Cyc the testing ontology distinguishes between  
questions nstances and parameterized questions -- whole 
classes of tests which vary along some specified set of 
parameters.  See (Cohen, Chaudri, Pease, and Schrag 
1999) for more on this topic. 

All else being equal, a more flexible KB can be  more 
quickly modified to meet a new set of challenges.  Likewise, 
a more flexible knowledge base axiomatization should 
generalize to unseen "test set" cases.  Lastly, more 
knowledge re-use should be attainable from a flexible 
knowledge base.  For these reasons, performance data on 
challenge tests may be said to measure the flexibility of a 
knowledge base.  Since common sense systems should 
accommodate new knowledge and new problems efficiently, 
flexibility is arguably an aspect of the definition of validity. 
 
KB Integrity Tests 
 
The third kind of test is termed a kb integrity test.  With 
such tests, one declaratively describes structural properties 
of the knowledge base which one wishes to monitor.  The 
purpose of such tests is not so much to state desirable end-
user functionality.  Rather, such tests are akin to measures of 
good "KB housekeeping".  A KB with high integrity is  
easier to maintain and augment. 
 
One very fundamental KB integrity test checks the syntactic 
well-formedness of a given KB assertion.  Another higher 
level KB integrity test looks for the appropriate relationship 
between argument types of predicates which are in a 
subsumption relationship.  For example, 
 
      (implies (brothers ?X ?Y)(siblings ?X ?Y)) 
 
In English this could be described as  
 
      If two people are  brothers, then they are siblings. 
 
Thus the predicate brothers is subsumed by siblings.  The 
argument type for brothers is MalePerson.  The argument type 
for siblings is Person.  The integrity constraint to be checked 
by this test is that the argument type of a subsumed 
predicate, e.g. brothers should be no more general than the 
argument type for the subsuming predicate, e.g. siblings.  If 
MalePerson is asserted to be a specific kind of Person, then 
this integrity constraint is not violated. 
 
The Quality Control Group at Cycorp is responsible for 
preventing too many integrity violations from cropping up.  
Email messages are automatically sent to the members of 
this group by the same nightly testing mechanism that the 
above mentioned nightly kb ask regression tests use. 
 
Rumination-Based Tests 
 
The goal of rumination-based testing is to allow discovery 
of particular deductions that Cyc can make that were 
otherwise unanticipated.  Discoveries can be welcome 
surprises about assertions comingling in unanticipated but 
desireable ways or undesirable interactions between 
incompatible assertions.  An overall quality measure of such 



deductions suggests how well knowledge base content 
synergizes. 
 
The following anecdote of an exploratory foray into 
rumination-based testing methods shows how the 
technique works.  The Cyc system was set to backchain on 
the following cycl query: 
 
  (feelsTowardsEvent ?agent ?emotion ?event-or-object ?level). 
 
("Does anyone feel any emotion to any degree about any 
event or any object.") 
 
Results of the query were cached and the procedure was 
repeated several times.  There were hundreds of 
conclusions, the vast majority of them were correct, even 
surprising in some cases. For example, Cyc inferred that 
Queen Elizabeth II feels loyalty towards England, that 
various Cycorp employees loved their spouses and their 
children, and that Abraham Lincoln felt fear at the time of 
his assassination. In a microtheory devoted to the beliefs of 
Christianity the system even inferred that God loves his 
son Jesus Christ. 
 
But, what was most amusing and not very intelligent 
seeming was the following deduction. 
 
(D) (feelsTowardsEvent HillaryClinton Dislike BillClinton None) 
 Hillary Clinton feels zero dislike towards Bill Clinton. 
 
Translating these axioms into psuedo English the givens 
responsible for the above deduction can be stated as 
follows: 
 
 (G1) Spouses love each other. 
 
 (G2) Love and dislike are contrary emotions. 
 
 (G3) If ?PERSON1 feels emotion ?E1 towards 
?PERSON2 and ?E2  is contrary to it, then the level at 
which ?E2 is felt is zero. 
 
 (G4) Bill Clinton is Hillary Clinton's spouse. 
 
Each one of the above givens may appear roughly correct 
standing on its own.  However, when chained together they 
led to the conclusion (D) which most people would rank as 
false. 
 
There are several possible repairs for such a deduction: 
 
(1) Split apart the concept Love into at least two forms, 

one would denote a brief "in the moment" feeling 
inconsistent with dislike.  The second would denote a 
long term affective disposition frequently felt by 
spouses which is not necessarily  

  (2) Add an exception to (G1) such that it reads 
 
(G1)  Spouses love each other except in cases of infidelity. 
 
Then add a representation of  the Monica Lewinsky affair to 
the  Cyc KB. 
 
In this way, a kind of introspection test or open-ended 
querying may be used to evaluate the overall synergy of a 
KB, locate problematic assertions or terms, and, thereby 
obviate particular improvements.  A crude measure of this 
synergy or reliability could be simply by taking the ratio of 
deductions judged invalid vs. valid by some human judges 
based on their intuitions about what seems commonsensical. 
 
Having introduced the general nature of rumination-based 
testing, a more complete rendering of this technique follows.  
First, one specificies a rather open ended inferencing task or 
series of tasks for the system to perform within (user 
specified) bounds of specified computational resources 
constraints (e.g. time limit,  maximum deduction chain 
length, contexts in which to perform the deduction etc).   
Exactly what sorts of tasks may be performed are described 
below.  Because rumination-based tests may take several 
hours on current standard desktop PC machines at Cycorp 
they are best done at night. 
 
Secondly, once such a task is completed, knowledge 
engineers perform a quality control analysis on the resulting 
deductions.  Human evaluators look at the results of such a 
procedure and rate deductions along quality dimensions 
such as "Was the deduction common-sensical." or "Did the 
deduction seem an interesting demonstration of Cyc's 
capabilities or was it merely a banal obvious fact."  In 
certain cases there are so many deductions made, that the 
best one can do is randomly sample the set of deductions 
and make statistical generalizations about the entire set. 
 
There are several techniques for generating a sampling the 
resource bounded deductive closure of a given aspect of the 
KB.  The simplest method involves forward chaining all 
rules in a given context or set of assertions.  Another method 
involves simply backchaining on the consequent of every 
rule in the given assertion set.  A third method involves 
repeatedly picking one rule at random, instantiating its 
antecedent, picking another rule and backchaining on its 
consequent. A fourth method, called "Open Ended Asks", 
involves repeatedly picking an arbitrary n-ary predicate, 
P(X1,X2, ...Xn) and asking the inference engine for all 
bindings of X1, X2, ...Xn . 
 
On a recent run, this latter technique, i.e. open ended asks, 
were performed on 634 arbitrarily chosen predicates.  6229 
deductions were made over an 8 and a half hour test run.  
My informal quality control analysis suggested that  the  
 



frequency of non-commonsensical to commonsensical 
deductions was between 1 in 10 and 1 in 1000.   
 
In addition, the results were spot checked for interesting 
non-commonsensical deductions which could be easily 
described in this article.  One such deduction which caught 
my eye showed up in natural language browsing mode 
exactly as follows: 
 
  "Vienna is wet." 
 
Rendered in CycL viewing mode the assertion appears as 
follows: 
 

(wetnessOfObject CityOfViennaAustria Wet) 
 

The deduction, shown exactly as it appears in the interface 
is shown below: 
 
Argument : Deduction #395917 
 
      (implies  
            (and  
                (touches ?U ?X)  
                (isa ?U ?TYPE)  
                (genls ?TYPE LiquidTangibleThing))  
            (wetnessOfObject ?X Wet)) in BaseKB 
      (touches DanubeRiver CityOfViennaAustria) in 
 WorldGeographyDualistMt 
     :ISA (isa DanubeRiver LiquidTangibleThing) in InferencePSC 
     :GENLS (genls LiquidTangibleThing LiquidTangibleThing) in 
 InferencePSC 
 
In colloquial english the above can be rendered as follows: 
 
   Vienna is wet because: 
 
   (1) The Danube River touches the City of Vienna.  
   (2) The Danube River is a Liquid.  
   (3) If a liquid touches an object, then that object is wet. 
 
After identifying this infelicitous combination of 
assertions, it was decided to create a new attribute called 
PartiallyWet whose meaning was that at least some part of 
the object was wet but not necessarily the entire object.   
(3) was then re-written as:  
 
   (3)  If a liquid touches an object, then that object is at 
least partially  wet. 
 
More rigorous measurements using this technique are in 
order.  
 

Conclusion 
 
Although commonsense reasoning capability is arguably a 
desirable property of mission critical systems, difficulties 
associated with the specification of commonsense 
reasoning requirements suggest that the validation of the  

"intelligence" of such systems should be done in a way 
which differs from traditional software systems.  Because of 
such limitations, rather than creating a precise, general and 
complete specification, the best one can hope for is that 
validation criteria be delineated by performance across a 
comprehensive set of salient use cases.  Intelligence validity 
dimensions of regression, flexibility, internal consistency 
and synergy were sketched.  With further deployment of the 
ontology based testing system and thorough analysis of 
results obtained, there is hope for validity measures that go 
beyond the impressionist formulations outlined above. 
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