
Model-based Verification for Automatic Synthesis of Real-time
Controllers

Extended Abstract

Robert P. Goldman, David J. Musliner, Michael J. S. Pelican
Honeywell Laboratories
3660 Technology Drive
Minneapolis, MN 55418

{goldman; musliner; pelican}@htc.honeywell.com

Introduction
We have developed a novel technique for automatically
synthesizing hard real-time reactive controllers using
model-checking verification. Our algorithm builds
a controller incrementally, using a timed automaton
model to check each partial controller for correctness.
The verification model captures both the controller de-
sign and the semantics of its execution environment.
If the controller is found to be incorrect, information
from the verification system is used to direct the search
for improvements. This paper describes how our con-
troller synthesis process uses verification, and explains
in detail how we model the execution of the real time
subsystem of the CIRCA intelligent control architec-
ture.

We are developing autonomous, flexible control sys-
tems for mission-critical applications such as Un-
manned Aerial Vehicles (UAVs) and deep space probes.
These applications require hybrid real-time control
systems, capable of effectively managing both dis-
crete and continuous controllable parameters to main-
tain system safety and achieve system goals. Using
the CIRCA architecture for adaptive real-time con-
trol systems (Musliner, Durfee, & Shin 1993; 1995;
Musliner et al. 1999), these controllers are synthesized
automatically and dynamically, on-line, while the plat-
form is operating. Unlike many other intelligent con-
trol systems, CIRCA’s automatically-generated con-
trol plans have strong temporal semantics and provide
safety guarantees, ensuring that the controlled system
will avoid all forms of mission-critical failure.

CIRCA uses model-checking techniques for timed
automata (Alur 1998; Yovine 1998) as an integral part
of its controller synthesis algorithm. CIRCA’s Con-
troller Synthesis Module (CSM) incrementally builds
a hard real time reactive controller from a description
of the processes in its environment, the control actions
available and a set of goal states. To do this, the Con-
troller Synthesis Module must build a model of the

controller it is constructing that is faithful to its exe-
cution semantics, and use this model to verify that the
controller will function safely in its environment.

CIRCA
The CIRCA architecture is intended to provide intelli-
gent control to autonomously-operating systems.1 To
do this, CIRCA must operate at multiple time scales.
CIRCA must be able to reason about the profile of a
mission as a whole. For example, if CIRCA is operat-
ing an Uninhabited Combat Aerial Vehicle (UCAV), its
mission-level planning must be able to reason about is-
sues like fuel use and navigation to its goal. At a lower
level, CIRCA must have a controller that is able to
react to threats and opportunities that arise in its im-
mediate environment. For example, when targeted by
enemy radar, the CIRCA-controlled UCAV must carry
out countermeasures (e.g., release chaff) and initiate
evasive maneuvers. Furthermore, CIRCA must guar-
antee that these reactions will be taken in time. It is
not enough to eventually release chaff; CIRCA must
inspect its environments for threats sufficiently often,
and must react to those threats within specified time
bounds.

CIRCA employs two strategies to manage this com-
plex task. First, its mission planner decomposes the
mission into more manageable subtasks that can be
planned in detail. Second, CIRCA itself is decom-
posed into two concurrently-operating subsystems (see
Figure 1): an AI Subsystem (AIS) reasons about high-
level problems that require powerful but potentially un-
bounded computation, while a separate real-time sub-
system (RTS) reactively executes the AIS-generated
plans and enforces guaranteed response times. The AIS

1 CIRCA has been applied to real-time planning and con-
trol problems in several domains including mobile robotics,
simulated autonomous aircraft, space probe challenge prob-
lems (Musliner & Goldman 1997) and controlling a fixed-
wing model aircraft (Atkins et al. 1998).

93

From: AAAI Technical Report SS-01-04. Compilation copyright © 2001, AAAI (www.aaai.org). All rights reserved.

Real-Time I_.....
Subsystem

~
Figure 1: Basic CIRCA architecture.

AI Subsystem

Adaptive Mission
Planner

Controller Synthesis
Module

contains the CSM, which is the focus of this paper, as
well as the mission planner and some support modules,
none of which we will discuss here.

The Controller Synthesis Module (CSM) bridges
mission-level planning and reactive control. It takes
descriptions of a phase of a system mission and dy-
namically, automatically, synthesizes a set of reactions
that maintain the system’s safety and move it towards
its goals. When this controller is operating, the CSM
will be working to generate controllers for other phases
of the mission.

The Controller Synthesis Module

The CIRCA CSM builds reactive discrete controllers
that observe the system state and some features of
its environment and take appropriate control actions.
In constructing such a controller, the CSM takes a
description of the processes in the system’s environ-
ment, represented as a set of transitions that modify
world features and that have worst case time charac-
teristics. From this description, CIRCA incrementally
constructs a set of reactions and checks them for cor-
rectness using a timed automaton verifier.

The real-time controllers that CIRCA builds sense
features of the system’s state (both internal and exter-
nal), and execute reactions based on the current state.
That is, the CIRCA RTS runs a memoryless reactive
controller. Given the above limitation on the form of
the controller, the controller synthesis problem can be
posed as choosing a control action for each reachable
state (feature-value assignment) of the system. This
problem is not as simple as it sounds, because the
set of reachable states is not a given -- by the choice
of control actions, the CSM can render some states
(un)reachable.

Indeed, since the CSM focuses on generating safe
controllers, a critical issue is making failure states un-
reachable. In controller synthesis, this is done by the
process we refer to as preemption. A transition t is
preempted in a state s iff some other transition t~ from
s must occur before t could possibly occur.

Note that the question of whether a transition is pre-
empted is not a question that can be answered based
on local information: preemption of a transition, t in a

state, s is a property of the controller as a whole, not
of the individual state. For example, to know when a
bomb is going to go off in a room with you, you can’t
just consider how fast you can throw the bomb out the
window -- you must also consider how long its timer
has been running before you got to the state in which
you will throw it out the window. It is this non-local
aspect of the controller synthesis problem that has led
us to use automatic verification.

Representing a control problem

To describe a domain to CIRCA, the user inputs a set
of transition descriptions that implicitly define the set
of possible system states. These transitions are of four
types:

Action transitions represent actions performed by
the RTS.

Temporal transitions represent the progression of
time and continuous processes that may need to be
preempted.

Event transitions represent world occurrences as in-

stantaneous state changes.
Reliable temporal transitions represent continu-

ous processes (such as the operation of a control law)
that may need to be employed by the CIRCA agent.

For example, Figure 2 shows several transitions used
in a situation where CIRCA is to control the Cassini
spacecraft in Saturn Orbital Insertion.2

CSM algorithm

At the highest level of abstraction, the controller syn-
thesis algorithm is as follows:

1. Choose an element of the set of reachable states
(at the start of controller synthesis, only the initial
state(s) is(are) reachable).

2. Choose a control action (an action or a reliable tem-
poral) for that state.

3. Invoke the verifier to confirm that the (partial) con-
troller is safe.

4. If the controller is not safe, use information from the
verifier to direct backtracking.

5. If the controller is safe, recompute the set of reach-
able states.

6. If there are no unplanned reachable states (reach-
able states for which a control action has not been
chosen), terminate successfully.

7. If some unplanned reachable states remain, loop to
step 1.

Figure 3 provides a simple "comic-book" illustration
of the process of controller synthesis. Initially (i), there

2The problem is taken from Erann Gat’s "From the
Trenches" (Gat 1996).

94

(i)

(iv)

(,)

BACKTRACK

(v)

-®
(iii)

FAILURE~

(vi)
Figure 3: A simple example of controller synthesis.

;; the action of switching on an Inertial
;;Reference Unit (IRU)
ACTION start_IRUl_warm_up

PRECONDITIONS: ’((IRUI off))
POSTCONDITIONS: ’((IRUI warming))
DELAY: <= 1

;; the process of the IRU warming
RELIABLE-TEMPORAL warm_up_IRUl

PRECONDITIONS: ’((IRUI warming))

POSTCONDITIONS: ’((IRUI on))
DELAY: [45 90]

;;sometimes the IRUs break without warning
EVENT IRUl_fails

PRECONDITIONS: ’((IRUI on))
POSTCONDITIONS: ’((IRU1 broken))

;; if the engine is burning while the active
;; IRU breaks, we have a limited amount of
;; time to fix the problem before the
;; spacecraft will go too far out of control
TEMPORAL fail_if_burn_with_broken_IRUl

PRECONDITIONS: ’((engine on)(active_IRU IRUI)
(IRUI broken))

POSTCONDITIONS: ’((failure T))
DELAY: >= 5

Figure 2: Example transition descriptions given to
CIRCA’s planner.

is only one state reachable, the initial state. In (ii), the
CSM has chosen a control action (dashed line) for the
initial state (planned states are shaded gray), that will
carry the system to a goal state, sl (goal states are
indicated by bold outlines). There is also a temporal
transition (double line) that may carry the system
sP. In (iii), we see the CSM decide to assign no-op as
the control action for sl. This is permissible because sl
is a safe state (there are no transitions to failure from
that state), and is desirable because sl is a goal state.
In (iv), the CSM attempts to complete the controller
synthesis process by assigning an action to s2 that will
carry the system to s3. However, this action does not
preempt the transition to the failure State (black). This
triggers a backtrack (v), and the system chooses an al-
ternative action (vi) that will carry the system to sl
(instead of s3). This alternative action does preempt
the transition to the failure state (dark bar superim-
posed on the transition arrows), so the controller is
safe. (vi) shows how the set of reachable states may
vary as the controller synthesis process proceeds: at
this point s3 is no longer reachable, since the CSM has
chosen not to employ the action that made it reach-
able in (iv). All reachable states have been planned
for, so the controller synthesis process has terminated
successfully.

During the course of the controller synthesis run
above, the CSM will have employed the verifier mod-
ule after each assignment of a control action (i.e., after
ii, iii, iv and vi). However, at stages ii, iii and iv,

95

the controller is not complete. At such points we use
the verifier as a conservative heuristic by treating all
unplanned states (e.g., s2 in iii) as if they are "safe
havens." Unplanned states are treated as absorbing
states of the system, and any trace that enters these
states ends and is regarded as successful. When the
verifier indicates that a CSM-generated controller is
unsafe, the CSM will query it for a path to the distin-
guished failure state. The set of states along that path
provides a set of candidate decisions to revise.

Acknowledgments

This material is based upon work supported by
DARPA/ITO and the Air Force Research Laboratory
under Contract No. F30602-00-C-0017.

References

Alur, R. 1998. Timed automata. In NATO-ASI Sum-
mer School on Verification of Digital and Hybrid Sys-
tems.

Atkins, E. M.; Miller, R. H.; VanPelt, T.; Shaw, K. D.;
Ribbens, W. B.; Washabaugh, P. D.; and Bernstein,
D. S. 1998. Solus: An autonomous aircraft for flight
control and trajectory planning research. In Proceed-
ings of the American Control Conference (A CC), vol-
ume 2, 689-693.

Gat, E. 1996. News from the trenches: An overview of
unmanned spacecraft for AI. In Nourbakhsh, I., ed.,
AAAI Technical Report SSS-96-04: Planning with In-
complete Information for Robot Problems. American
Association for Artificial Intelligence. Available at
h~tp ://www-aig. j pl. nasa. gov/home/ga~/gp, html.

Musliner, D. J., and Goldman, R. P. 1997. CIRCA
and the Cassini Saturn orbit insertion: Solving a
prepositioning problem. In Working Notes of the
NASA Workshop on Planning and Scheduling for
Space.

Musliner, D. J.; Goldman, R. P.; Pelican, M. J.; and
Krebsbach, K. D. 1999. SA-CIRCA: Self-adaptive
software for hard real time environments. IEEE In-
telligent Systems 14(4):23-29.

Musliner, D. J.; Durfee, E. H.; and Shin, K. G. 1993.
CIRCA: a cooperative intelligent real-time control ar-
chitecture. IEEE Transactions on Systems, Man and
Cybernetics 23(6):1561-1574.

Musliner, D. J.; Durfee, E. H.; and Shin, K. G. 1995.
World modeling for the dynamic construction of real-
time control plans. Artificial Intelligence 74(1):83-
127.

Yovine, S. 1998. Model-checking timed automata. In
Rozenberg, G., and Vaandrager, F., eds., Embedded
Systems. Springer Verlag.

96

