
Heavy-Tailed Behavior and Randomization in Proof Planning

Andreas Meier� Carla Gomes� Erica Melis�
� Fachbereich Informatik, Universität des Saarlandes

66041 Saarbrücken, Germany
�ameier�melis�@ags.uni-sb.de

� Computer Science Department, Cornell University
Ithaca, NY 14853, USA

gomes@cs.cornell.edu

Proof Planning Proof planning considers mathematical
theorems as planning problems. A proof planning prob-
lem is defined by an initial state specified by the proof as-
sumptions, the goal state given by the theorem to be proved,
and a set of planning operators called methods. Finding a
proof corresponds therefore to searching for a sequence of
planning operators that derive the theorem from the assump-
tions. In the proof planning system �MEGA (Benzmueller et
al. 1997) the traditional proof planning approach is enriched
by incorporating mathematical knowledge into the planning
process (see (Melis & Siekmann 1999) for details). In par-
ticular, methods represent mathematically meaningful infer-
ence steps and can be specific for a mathematical domain.

We explore the domain of the residue classes over the in-
tegers ((Meier, Pollet, & Sorge 2000)) using a proof plan-
ning approach. We apply �MEGA to solve large testbeds
of algebraic problems of a residue class set ��� (e.g.
�����������������) over the integers together with a binary
operation Æ (e.g. ��� ��) such as ��� is closed with respect
to Æ, ��� is associative with respect to Æ etc. The results
of these proofs are in turn used to classify a given structure
����� Æ� in terms of the algebraic structure it forms, i.e.,
whether it is a semi-group, monoid etc. Moreover, another
classification process divides given residue class structures
into equivalence classes of isomorphic structures. During
this classification process we have to prove proof obligations
stating that two structures are isomorphic or not. Our exper-
iments show that the hardest problem instances correspond
to problems stating that two structures are not isomorphic
(non-isomorphism problems). For some instances the plan-
ner generates long proofs, with long run times, while for
other (similar) instances the planner generates short proofs,
with short run times. Since we are not able to find a heuris-
tic rule that enables us to control the unpredictability of the
planner’s performance, we apply randomization and restart
techniques to boost the search process and increase the solv-
ability horizon for such non-isomorphism problems.

Heavy-Tailed Problems and Randomization Combina-
torial search methods often exhibit a remarkable large vari-
ance in performance on problems of the same complexity
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class. That is, a given search method might solve one prob-
lem instance quickly, whereas, on another (similar) prob-
lem instance, it may take a long time to solve it. This un-
predictability in the run time of the search methods can of-
ten be explained by so-called heavy-tailed cost distributions
(Gomes et al. 1998). Heavy-tailed distributions are char-
acterized by a non-negligible probability of runs that take
significantly longer than average. A technique to elimi-
nate heavy-tailed behavior and the unpredictability in the run
time of the underlying search method is to add randomiza-
tion to the search procedure combined with a restart strategy
to take advantage of short runs.

Recent work demonstrates that several hard combinato-
rial search methods show heavy-tailed behavior and that ran-
domization and restart techniques can help boost the search
(i.e., to decrease the mean solution costs) as well as solve
formerly unsolved problem classes. In particular, the tech-
nique proved successful for hard scheduling and planning
problems in constraint satisfaction and propositional satisfi-
ability formulations (see (Gomes et al. 1998) and (Gomes,
Selman, & Kautz 1998)).

Experiments with �MEGA We formulated a suitable
proving technique for non-isomorphism problems using
planning methods encoding suitable steps combined with
so-called control rules that capture domain knowledge. We
applied �MEGA with this proving technique on a testbed of
��	 non-isomorphism problems of identical complexity. We
were able to solve about �
��% of the problems with a time
bound of 
�		 seconds. Moreover, we found some of the
proofs within a few seconds whereas other proofs took much
longer. Similarly, we found that some proofs were consider-
ably longer than others, or needed considerably more back-
track steps.

Afterwards we added a stochastic element to this proving
technique by randomizing the selection of choices ranked
equally good by our search heuristic. We repeatedly ap-
plied the randomized version of our proving technique to
one problem of our testbed. The randomized version of our
proving technique was successful in about 
�% of the prov-
ing attempts (again with a time bound of 
�		). The plot
of the run time distribution of the successful runs is given
in Fig. 1: the figure shows a curve which is characteristic
of heavy-tailed distributions, with a long tail stretching over
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Figure 1: Running Time Cost Distribution

several orders of magnitude.
Based on our our (deterministic) experiments on the full

testbed and on the randomized experiments on one problem
instance, we found a time bound of �		 seconds to be a suit-
able cutoff value for a restart strategy of the randomized
version of our proving technique. We applied the result-
ing restart strategy to the full testbed of ��	 problems and
we were able to solve all but  problems (this corresponds
to a success ratio of about �
��%, as opposed to the initial
67.5%) with a mean time considerably smaller than the one
produced by the deterministic planner, and also with proofs
much shorter in length.

Conclusion Our experiments show the effectiveness of
our randomized proof planning approach by showing a sig-
nificant improvement in performance over a testbed of 160
non-isomorphism problems. In particular, with our ap-
proach, a much larger fraction of problem instances is solv-
able (from 67.5% to 97.5%; 2hr time limit per proof) and a
variety of proofs is generated for each problem instance.

Our work demonstrates that randomization and restarts
can be successfully applied to deduction systems. We be-
lieve these results are very promising and might apply to
other problem domains using deduction techniques such as
e.g., software verification.
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