
Determining Software Models That Are Less Incorrect

Leona F. Fass

Abstract

We describe our theoretical behavioral modeling research in
specific domains where finite-state models really can be found.
There, with precise model-based design and perfect model
checking, we obtain correct results by constructive inference,
adequate testing and verification. In actual software develop-
ment we find these results can only approximately apply. Still
we show they can assist in software design that is “less
incorrect”, consistent with the results of theoreticians and
practitioners working in actual model-based design and model
checking.

Introduction: Our Approach to Modeling

Model-based software design is a formal approach to de-
veloping better specifications and thus, better software.
Model checkers, on the other hand, are formal tools that
can assist in determining whether (and where) a specifi-
cation, or specified software, may be (in)correct. Such
formal methods are beneficial to software designers and
developers, providing mathematical foundations for
systematic discovery of software defects. Since we
believe that complex software designs always will have
errors and flaws, we concur with Cherniavsky’s
“Popperian” view (Cherniavsky 1987) that discovery of
defects is a positive event. For, once detected inevitable
defects can be corrected, leading to development of better
software…with behavior that is “less incorrect.”
 Techniques and problems related to designing and de-
veloping software have fallen within our investigative
scope as we have sought generalized methods for
correctly representing or modeling knowledge. Our
interest developed as we devised a theory of learning,
which might require acquisition of an infinite body of
knowledge by finite means. For example, a language may
consist of a (possibly) infinite set of sentences, all of
which might be represented by a finite syntactic model.
Such a generative model might be a finite grammar that
could produce all, and only, the language’s sentences.
Such a recognitive model might be a finite-state device
accepting any sentence that is in the language, and
nothing that is not. If precisely the language is the correct
behavior of the grammar or recognizer, then we consider
acquisition of either model to be acquisition of the entire
language, by finite means. Once the model is acquired
the (possibly) infinite set of the language’s sentences is
acquired, in the sense that it is completely characterized.
 We might also consider a formula or finite set of
computational rules to be the finite means of acquiring an

infinite body of mathematical knowledge. E.g., by
learning a correct, finite set of rules for adding integers,
an infinite table of sums is theoretically acquired. For,
given any integers, it would be known how to compute
their sum correctly, even if that specific addition problem
had never been observed before.
 As another example we might consider the design of
an actual, physical machine to be the representation of a
never-ending behavioral stream. A finite vending ma-
chine, correctly designed, could “perpetually” produce
output beverages for input funds. (Today’s automated
machines signal for service calls when they recognize
their own maintenance needs!) An elevator in a three-
story building could be correctly designed as a finite-state
device, transitioning from state-to-state, as it travels trip-
after-trip, day-after-day, from floor-to-floor.
 Similarly, a finite correct program or software system
might represent an infinite set of operations or computa-
tions, each of which achieves a specified program- or
system-goal. This could be the case for a simple program
designed to take any two input integers and compute their
sum; or industrial applications with domains considered
by (Iscoe et al 1992); or the complex business systems
with nonterminating e-commerce processors described in
(Wang et al 2000). If a behavioral specification could be
precisely developed, and software constructed to be
correct (i.e., fulfilling that specification) then a given pro-
gram or system might be interpreted as a finite model of
an infinite body of knowledge. For, that software itself
would represent, finitely, every possible example of how
it should behave.
 Here we describe our theoretician’s approach to
correctly determining behavioral models, beginning with
some domain-specific results noted in (Fass 1989, Keller
1992, Fass 2000) and proceeding to our attempts to adapt
our work to the general area of software design. We first
showed that within a particular problem domain a finite
model could be inductively constructed, adequately
tested, and finite-state verified, in the sense we describe.
We found these results should theoretically assist in
developing correct software, for if a complete behavioral
specification exists, and if finite correct fulfilling software
exists, then our techniques should determine it,
effectively. But as we discuss, we inevitably discovered
that in reality our results can only approximately apply.
Hence we describe how our model-based design, and our
version of model checking for correctness, at least can
establish that some software is less incorrect. We
conclude that our findings compare favorably with those

From: AAAI Technical Report SS-01-04. Compilation copyright © 2001, AAAI (www.aaai.org). All rights reserved.

of theoretical researchers and practitioners who have
sought correct software through model-based
development and model checking.

Our Original Modeling Results

We initially had great success designing finite models of
knowledge within a constrained formal linguistic domain,
determining syntactic models from behavioral examples.
There we showed that an entire linguistic behavior could
be precisely specified, and a finite language model effec-
tively constructed, from a sample of how it should
behave. We then showed that a potential model could be
conclusively tested to determine, from a sample of how it
should and should not behave, whether (or not) it is
correct.
 To obtain these results we analyzed some of the
structures within the infinite linguistic domain, to deter-
mine what distinguishes those elements that are structures
in a specific (CF) language from those which are not. We
then showed that for any element of the structural domain,
it could be decided whether that element was in the
“correct” (i.e., within the language structures) or
“incorrect” (i.e., within the complementary domain
structures) behavioral set. Next we showed that, based on
behavioral membership, the entire linguistic domain could
be partitioned into a finite set of congruence classes.
Each class consisted of all domain elements that, relative
to the specified linguistic behavior, “always behaved in
the same way” (They could indistinguishably appear
within the same linguistic structures). Every domain
element was a member of exactly one such behavioral
congruence class. By determining the classes we could
precisely and completely specify the infinite linguistic
behavior by finite means.
 We were able to establish that for any such specified
behavior a finite (grammatical or recognitive) syntactic
model exists and may be effectively constructed, with
components corresponding to the behavioral classes just
described. We then showed that a specific minimal finite
model could be inductively inferred, and constructed,
from an appropriate, finite, correct behavioral sample.
(Since a finite set of congruence classes completely
specifies the linguistic behavior, a finite set of represen-
tatives of each of the classes proves to be sufficient in-
formation for construction of a minimal model). The
syntactic model provides another way to specify the
infinite linguistic behavior by finite means.
 Motivated by (Cherniavsky 1987) we next showed that
a correct behavioral model might also be determined
through effective tests. For, within our constrained
linguistic domain, we found that not only could we
finitely represent all correct behavior, we could also
finitely represent all behavior that was not correct. We
had just defined that finite correct behavioral sample from
which a minimal model could be found. We now

determined that this sample, and its finite relative
complement (within the constrained domain) provided
sufficient positive (correct) and negative (complementary)
examples to define an adequate, conclusive set of tests.
 If a potential minimal model failed to produce all of
the positive behavior in the specified examples, or
produced any of the complementary, negative behavior
specified, incorrectness would be detected, and the
potential model could be revised. But if no specified
experiment detected incorrectness, our process provably
guaranteed the potential model to be correct. Finitely
representing all the ways the potential model might fail,
and finding none, by default the model would be finite-
state verified (Clarke 2000).
 Thus in our initial research involving the constrained
linguistic domain (as detailed in Fass 1989, Fass 2000),
we established that a minimal behavioral model exists,
and that there are many ways to determine it. If the model
can be inductively constructed from a finite positive
(correct) behavioral sample, then a potential such model
may be adequately tested for incorrectness and, perhaps,
by default verified. Furthermore, the finite positive
behavioral sample sufficient for inference determines the
finite (positive and negative) behavioral sample for
conclusive, effective tests.
 Once we obtained these “perfectly correct” domain-
specific modeling results we attempted to generalize them
to other problem areas. Next we describe our discoveries,
as we sought to similarly infer, test or verify “perfectly
correct” software, from specified behavioral-domain
examples.

Adapting Our Research to Software Design

When we sought to adapt our techniques for infer-
ence/testing/verification to the application area of
software design, we realized why our original (linguistic
domain) results had been so satisfying. The constraints
we had imposed to convey the (linguistic) behavior
actually had forced our modeling results. With these
constraints the design problem became completely
specifiable (every behavioral element corresponded to
some model component) and the behavior finitely
realizable (hence the finite characterizing model exists!)
with membership decidable (hence correct behavior is
distinguishable from its complement). Our domain
constraints enabled us to characterize all possible positive
behavior, and all possible negative behavior by finite
means.
 Within the present context we classify our “perfect”
design approach as model-based. For, we analyze the
behavioral domain to determine its finite (perhaps forced)
underlying structure. We then exploit the structure to
determine a finite characterization. Our testing and/or
verification approach is “perfect” model checking, in the
sense that all possible behavior is represented in a finite

(positive and negative) sample so that the comparative
checking process concludes, effectively. In the
constrained linguistic domain a precisely characterizing
behavioral model exists, and either approach enabled us
to find it. Such results are domain-specific only in the
sense that they are applicable in any behavioral domain
that can be completely specified by a finite device (Fass
2000).
 Now, how do these theoretical results adapt in the
practical application area of software development?
Designing a program or complex software system that
fulfills a specification is “just” a problem of constructing
or determining a correct behavioral model. Any given
software producing a specified behavior is obviously a
finite entity or “device”. It would be nice to infer such
software from a finite sample of the correct behavior, as
specified. If we could, we should then also be able to
adequately test potential software from a finite
characterizing sample of correct behavior and its
complement (also defined by the specification). Hence
software could be “verified”.
 But the constraints applied in our theoretical work do
not exist in “real life” software development and design.
Furthermore many decisions we would like to make in
assessing software correctness just cannot be made. It is
well know that the behavioral equivalence of a program
and its specification is generally undecidable. A
specification is never complete, if it exists at all. And in
general there is no adequate test set that can conclusively
determine if software is incorrect. When “real life”
testing detects no errors, this does not mean that the
software is validated or verified. More likely, this means
that there is something wrong with the tests (Arthur 1999,
Cherniavsky 1987, Gargantini and Heitmeyer 1999, Wang
et al 2000, Weyuker 1983). Faced with such obstacles,
software developers do the best that they can.
 Our constrained inference/testing/verification results
can assist current software developers even without
guaranteeing correctness, for we can rigorously show
some software components to be “approximately correct”.
That is, if a subcomponent of a software system really is
representable as a finite-state device, we can show there is
a behavioral data sample from which that subcomponent
can be inferred. If correct and incorrect behavior can be
distinguished, we can define a data sample with which a
potentially correct subcomponent can be adequately
tested. This was essentially shown by (Weyuker 1983)
for programs computing arithmetic problems, only for
mod 4. Another example might be the lexical analyzer
component of a compiler, typically represented as a finite-
state machine. We are able to infer and test such, given
enough computation space and time.
 Now, such successful inference would only produce a
software subcomponent that is correct, thus
approximating correctness in the greater software system.
Testing a subcomponent, relative to the greater system

would only be “approximate testing”. Detecting and
correcting subcomponent defects might verify the
subcomponent. But in relation to the greater software
system, it would, at best, establish the software to be “less
incorrect”.
 We believe that “approximate correctness” based on
formal mathematical foundations (as we have described)
is an improvement on unfounded, ad hoc, software
development results. If such approximating correctness
can determine that software is “less incorrect”, we
consider this a better result than ad-hoc assessment of
software design, not provably correct at all.

Conclusions: Related Research

We are gratified to see our beliefs confirmed in recent
formal approaches to software development, in research
of practitioners as well as theoreticians. The well-
intentioned quest for perfectly correct software has been
gradually replaced by the goal of improving design, or at
least detecting and correcting more errors. We find this in
the areas of specification (Gunter et al 2000, Wing 1992)
and model-based design (Aida et al 1999, Iscoe et al
1992, Keller 1992); model checking (Clarke et al 1989,
Emerson and Lei 1986, Gargantini and Heitmeyer 1999,
Henzinger et al 1992, Wang et al 2000) and
validation/verification (Arthur et al 1999, Clarke 2000,
Moore 2000, Vardi 1987).
 Researchers eliciting user requirements to develop
specifications find they are delimited by properties of
varying system environments, and subjected to human
(user) commission/omission errors. Testers and
simulators find they can never categorize all correct
behavior, let alone all the ways a system can go wrong.
Verifiers and theorem-provers, even for finite-state
software approximations, prove to involve such time-
consuming human intervention, they cannot be put to
practical use. Automated model checkers are useful for
verifying certain system properties such as safety and
liveness (Gunter et al 2000, Henzinger et al 1992, Wang
et al 2000), and may force finite-stateness to obtain
mathematically provable results. But, due to formula size
in symbolic checkers, and “the state explosion problem”
in explicit-state checkers, even this approximating
technique is constrained by computational space and time.
 Thus researchers seeking software coverage to
determine correctness find model checking is best
reserved for system subcomponents that are mission-
critical (Clarke 2000, Gargantini and Heitmeyer 1999,
Wang et al 2000). They are satisfied, instead, when a
model checker detects specification errors and traces
software faults. As in our own modeling research, they
(Gargantini and Heitmeyer 1999, Moore 2000, Wang et al
2000) find that a process to determine correctness also
defines error-detection tests.

 When J. Strother Moore (Moore 2000) was asked how
his recent automated verification process for hardware
components differed from his earlier verification of
software, he noted there was no difference. In either case
it was not the entity (hardware, software) being verified;
what was verified was its mathematical model! So, even
when mathematical foundations can conclusively
establish correctness of a model, this is still an
approximating result. Thus, we believe it is a realistic
goal to develop software with the foundation of a sound
mathematical model that guarantees it to be less incorrect.
The adaptation of our original modeling results, as
described above, should help to achieve that goal.

References

Aida, T. et al. 1999. “Model-Based Specification and
Generation of Programs”, AAAI-99 Workshop on Intelli-
gent Software Engineering, Orlando, FL July 1999, 1-6.

Arthur, J.D. et al. 1999. “Evaluating the Effectiveness of
Independent Verification and Validation”, IEEE
Computer, Vol 32, No 10, October 1999, 79-83.

Cherniavsky, J.C. 1987. “Computer Systems as Scientific
Theories: a Popperian Approach to Testing”, Proc. Of the
5th Pacific Northwest Software Quality Conf., Portland
OR, October 1987, 297-308.

Clarke, E. et al. 1989. “Compositional Model Checking”,
Fourth Annual Symposium on Logic in Computer Science
(LICS), IEEE, June 1989, 353-362.

Clarke, L., 2000. “Finite State Verification: An
Emerging Technology”, abstract of Invited Presentation,
SIGSOFT 2000 Intl Symposium on Software Testing and
Analysis, Portland OR, August 2000, ACM SEN Vol 25,
No 5, 146.

Emerson, E. A. and C-L Lei, 1986. “Efficient Model
Checking in Fragments of the Propositional Mu-Calcu-
lus”, First LICS Symposium, IEEE, June 1986, 267-278.

Fass, L.F., 1989. “A Common Basis for Inductive
Inference and Testing” Proc. of the 7th Pacific Northwest
Software Quality Conf., Portland OR, September 1989,
183-200.

Fass, L.F. 2000. “Establishing Software ‘Correctness’ by
Logical and Algebraic Means”, Proc. of the 5th Joint Conf
on Information Sciences, Atlantic City, NJ, February
2000, Vol I, 639-642.

Gargantini, A and C. Heitmeyer, 1999. “Using Model

Checking to Generate Tests from Requirements Specifi-
cations”, 7th European Software Engineering Conf/ ACM
SEN Vol 24, No 6, November 1999, 146-162.

Gunter, C. et al, 2000. “A Reference Model for Require-
ments and Specifications”, IEEE Software, Vol 17, No 8,
May/June 2000, 37-43.

Henzinger, et al, 1992. “Symbolic Model Checking for
Real-time Systems” Seventh Annual LICS, IEEE, June
1992, 39-406.

Iscoe, et. al., 1992. “Model-Based Software Design”,
appears in (Keller, 1992), 72-77.

Keller, R (Ed.) 1992. Notes of the AAAI Workshop on
Automating Software Design: Domain Specific Software
Design, San Jose CA, July 1992, NASA Ames Research
Center AI Research Branch TR FIA-92-18.

Moore, J.S, 2000. “Machines Reasoning about Ma-
chines”, Invited Presentation, AAAI 2000, Austin TX,
August 2000 and private communication September 2000.

Vardi, M. 1987. “Verification of Concurrent Programs:
The Automata Theoretic Framework”, Second LICS,
IEEE, June 1987, 167-176.

Wang, W. et al, 2000. “E-Process Design and Assurance
Using Model Checking”, IEEE Computer, Vol 33, No 10,
October 2000, 48-52.

Weyuker, E.J., 1983. “Assessing Test Data Adequacy
through Program Inference”, ACM Trans. On Program-
ming Languages and Systems, Vol 5, (1983), 641-655.

Wing, J.M. 1992. “Specifications in Software Develop-
ment”, Seventh Annual LICS, IEEE, June 1992, 112.

Leona F. Fass received a B.S. in Mathematics and Sci-
ence Education from Cornell University and an M.S.E.
and Ph.D. in Computer and Information Science from the
University of Pennsylvania. Prior to obtaining her Ph.D.
she held research, administrative and/or teaching posi-
tions at Penn and Temple University. Since then she has
been on the faculties of the University of California,
Georgetown University and the Naval Postgraduate
School. Her research primarily has focused on language
structure and processing; knowledge acquisition; and the
general interactions of logic, language and computation.
She has had particular interest in inductive inference
processes, and applications/adaptations of inference
results to the practical domain. She may be reached at
Mailing address: P.O. Box 2914

 Carmel CA 93921
 lff4@cornell.edu

