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Abstract

There is a broad consensus that the representa-
tions used by a cognitive agent must be grounded
in external reality through a sensori-motor appa-
ratus. These representations must also be suffi-
ciently similar to those used by other agents in the
group to enable coordinated action and communi-
cation, and they must be acquired autonomously
by each agent. This paper first tries to clarify the
terminology and issues involved. Then it argues
that language plays a crucial role in the learning
of grounded representations because it is a source
of feedback and constrains the degrees of freedom
of the representations used in the group. The idea
of a language game is introduced as framework for
concretising the structural coupling between con-
cept formation and symbol acquisition and some
experiments are briefly discussed.

1 Defining the problem

Given the terminological confusion in the cognitive sciences
it is worthwhile to define more precisely the issues we try
to address.

1. In computer science, a representation is a physical
state of a machine (computer memory for example) which
acts as a "stand in” for something else. The physical state
becomes thus a means to store information and physical
processes operating over the state can implement whatever
representational transformations we wish to enact. Thus
a representation of a number in a computer is a configura-
tion of digital states. Calculation takes place by changing
these states. Objects, concepts, actions, etc. can like-
wise be represented in an artificial agent by postulating
internal states for each of these. Cognitive processes like
decision-making, language parsing, object recognition, etc.
can then be conceived as physical operations over these in-
ternal states.

A representation (both the physical medium chosen and
the convention used to map information onto this medium)
is arbitrary with respect to what one wants to represent.
The only requirement is that the mapping is systematic
and that processes operating over a representation are con-
sistent with respect to the mapping that has been adopted.
Thus we can not only use binary representations of num-
bers but also hexadecimal representations, and make use
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of marks on a laser disk as well as electromagnetic states of
an electronic circuit as the state medium. Note that once
we are at the level of physical states and physical processes,
no additional homunculus is involved to ”interpret” repre-
sentations.

In neuroscience parlance, the equivalent of the computer
science notion of a representation is the notion of a neu-
ral correlate. This is a biological state (for example the
activation of a neuron or set of neurons) which stands for
something else, like a control signal for an arm, the recog-
nition of a concept, experience of the color red, etc. Neu-
ral processes operating over these physical states, usually
thought to take the form of the selective propagation of
signals through a network, are the neural correspondence
of the physical operations carried out over computational
states.

So even if computational implementations are very dif-
ferent from biological implementations, the notion of rep-
resentation is similar in AI and (cognitive) neuroscience.
Using representations and operations over representations
to explain cognitive functions seem now so natural and ob-
vious that it is difficult to follow philosophers who claim
that cognition does not involve representations. Perhaps
they simply have not understood what representations are
or are using the notion of representation in another way.

2. We say that a representation is grounded when there
is an autonomous process that transforms sensations (i.e.
data flowing from sensors or motors into internal states)
into internal representations and transforms internal repre-
sentations into motor activations. Through these ground-
ing processes, the agent can coordinate his activities with
the world and other agents. The representation need not
be an exact, full, veridical representation of the world, and
it can be analog or categorial, but it needs to be suffi-
ciently detailed and faithful to support the agent’s inter-
action with the world and others.

Grounding is trivially achieved for devices like a calcu-
lator. The user pushes buttons which directly activate in-
ternal representations. It is obviously much more complex
for representations about the world. Sensors reflect physi-
cal properties of the environment which are not necessarily
those that the agent needs to focus on. The information
is hidden or incomplete in the sensory-motor data and re-
quires complex processing to get out. Often there is not
enough information in the sensory data and so representa-
tions have to be hypothesised in a top down fashion and



mapped onto the sensory-motor data.

In a lot of (pre 1990) Al work the problem of grounding
was (temporarily) abstracted out by supplying the repre-
sentations directly to the computer and only focusing on
the processing aspect. This was a useful strategy for a
while but it has been rightfully criticised because not all
the representations assumed by early Al programs can be
grounded on a physically embodied robot [4], [31]. For
example, it is far from obvious that abstract geometric
representations about the world, as envisioned by David
Marr [20], can be extracted from real world images given
the available resources. This has lead to a healthy move
towards simpler representations and better exploitation of
bodily interaction [23]. We should nevertheless keep in
mind that many experiments which involve complex rep-
resentations - even from the very beginning of Al - have
considered the problem of grounding these representations.
A typical example is the SRI Shakey robot [22] which was
a model for many subsequent robotics efforts. So there is
nothing in the notion of representation that makes them
inherently not groundable. It is only that the grounding
of representations is a very non-trivial and difficult tech-
nical problem involving a whole arsenal of statistical and
pattern recognition techniques and that not every abstract
representation can be grounded.

3. Representations are symbolised when there are exter-
nal tokens (speech sounds, gestures, scratches on a piece
of paper, configurations on a display) that are associated
with the representation and used for external communica-
tion with another agent. The relationship is entirely con-
ventional. Sender and receiver must agree, but there are
in principle endless possibilities. The process of relating a
representation to its symbolisation and vice-versa must be
carried out autonomously by each agent. We say that a
symbol is grounded iff its representation is grounded.

The relations considered so far are summarised in the
semiotic square depicted in figure 1. By sensation, I mean
the perceptual or motor data streams that directly connect
the agent to the world. By representation I mean a concep-
tual representation useful for decision making, language or
other cognitive tasks. The semiotic square is reminiscent of
the semiotic triangle familiar from the semiotic literature
[9] which relates world, concept, and symbol. The relation
between a symbol and the world is the reference relation.
The relation between a symbol and a concept is the mean-
ing relation. In the philosophy of language literature, the
reference relation and the meaning relation are studied as
such, independently of how this relation is established by a
cognitive agent. This kind of research in formal semantics
is of interest when one wants to investigate how a symbol
system can in principle be related to the world, but is a
very different topic from the one considered here.

The problem of symbolisation is trivially solved by a cal-
culator which transforms the internal representation of a
number into an external representation on a display and
which displays on the buttons the conventional representa-
tions of numbers so that users know which button to push.
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Figure 1: The semiotic square summarises the relation be-
tween world, sensation, representation, and symbol.

It is extraordinarily difficult in the case of natural lan-
guage, because the conventions are not universal, they are
open-ended, and involve a non-trivial multi-level mapping
from representations to symbols.

Just for clarification, it is perhaps important to sharpen
in this context the notion of symbolic processing, as it
has been used in AI. Symbolic processing means that a
set of symbols, possibly without any relation to the world,
such as postulated in a logical calculus, is mapped onto in-
ternal representations and the internal representations are
processed conform to given symbol manipulation rules, for
example the rules of natural deduction of the predicate cal-
culus. The outcome of processing is then translated back
into symbols. A logic programming systems such as PRO-
LOG or a functional programming language like LISP pro-
vide this facility. They can handle millions of symbols and
their compilers optimise for fast symbolic processing. This
technology is of enormous value for building non-trivial
cognitive agents but does not address in itself grounding
nor learning,.

4. Learning grounded representations means that the
agent allocates states for certain representations but also
- and more importantly - that the agent learns to use the
representation appropriately, more specifically (1) the abil-
ity to relate the representation to the world through the
sensori-motor apparatus, and (2) the use of the represen-
tation for some purpose, such as making a decision about
the next action to take.

Learning a symbolisation means to acquire the relation
between representations and symbols as required for com-
munication in a specific community. The agent must ac-
quire the ability to activate the intended internal represen-
tations given a set of symbols or to select a set of symbols
to symbolise a particular representation.

Learning a semiotic system means to acquire both
grounded representations and their symbolisations, i.e.
the relation between world, sensation, representation, and
symbol. This is the problem that the child faces when
growing up in a language community and the problem that
concerns us further in this paper. We take this problem to
be equivalent to the symbol grounding problem.

2 Two approaches

The first approach to the symbol grounding problem is to
follow a divide-and-conquer strategy. This assumes that
there is first of all a process that learns grounded repre-



sentations. Once the representations are in place, it then
postulates a second independent process that associates
symbols with the already acquired representations. It has
been suggested that this is the way symbol grounding hap-
pens in humans [12] and various experiments have been
done following this approach [8].

However a second approach is possible, as first suggested
in Steels [27], [29], in which there is a strong structural
coupling between the two. This means that learning rep-
resentations and learning their symbolisation go hand in
hand and influence each other. A representation that has
been learned can be the subject of symbolisation but com-
munication through symbols provides important feedback
to representational learning.

In my opinion the structural coupling approach is the
only viable way to explain the massive build up of rep-
resentations and symbols that humans use and it can be
profitably used in artificial systems. This approach seems
paradoxical at first because instead of solving two difficult
problems one by one, we try to solve both of them at the
same time, which intuitively seems to be even more diffi-
cult. Here are the reasons why I nevertheless believe that
a structural coupling approach is better.

There are many ways to learn grounded representations,
but broadly speaking mechanisms fall into two classes: un-
supervised or supervised learning. In the case of unsu-
pervised learning, clustering techniques (possibly imple-
mented as neural networks such as the Kohonen network)
extract from a series of data invariances that are then
equated with interesting representations. However we note
two things: (1) not all representations of interest to a cog-
nitive agent are reflected as invariants in sensori-motor
data, and (2) often there is more than one possible way
to cluster the data depending on the dimensions that are
considered.

The latter generates the problem that if different agents
each independently develop representations about the
world, there is no guarantee that they arrive at mutually
compatible representations. Today the experimenter care-
fully designs the features that are input to the learning sys-
tem, carefully selects appropriate example sets, and then
tweaks parameters until an appropriate clustering comes
out. This is not quite the autonomous learning that we
would hope for. To do otherwise however has turned out
to be very difficult indeed, particularly if the sensory-input
is really taken in its raw form, i.e. bitmaps captured by
a camera, motor states, the audio signal directly coming
from a microphone, etc.

In the case of supervised learning, the agent is given a
series of cases as well as feedback whether the representa-
tions being developed are appropriate with respect to some
task. Thus if the task is classification, the agent would be
given examples and counterexamples, if the task is action
in the world, the agent gets a feedback signal whether the
action was successful (as in reenforcement learning algo-
rithms). Because the task can incorporate some form of
coordination with other agents, it is in principle possible
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to steer the acquisition of representations in such a way
that they are compatible with those used by others, by in-
corporating in the feedback some element that is related
to representation sharing. But the critical question here is:
Where does the feedback come from? In real world circum-
stances, feedback is never direct and obvious, specifically
not concerning internal representations. Feedback comes
only through the use of a representation, generating the
well known credit assignment problem. If the designer has
to carefully determine feedback and prepare the example
sets, then we are missing something fundamental.

There are many users of representations. For example
for planning actions, particularly at a microlevel (like for
grasping an object), the agent needs adequate categorisa-
tions of reality dedicated to that task. So action execution
can be a possible provider of feedback and is undoubtly a
force guiding concept formation. Language is another big
user of representations because before anything can be said
the world must be conceptualised in the way that has been
lexicalised and grammaticalised in the language (and this
can differ substantially from one language to another [24].
But language is not only useful because it provides repre-
sentational feedback, it also helps a community of agents
to settle on similar representations. This is why we have
emphasised this in our work.

The next section describes the processes involved in
some more detail.

3 Learning symbolisation

There exists a large literature on learning grounded repre-
sentations which includes the algorithmic machine learning
[21] and neural network literature as well as statistical pat-
tern recognition techniques [3]. In contrast, it is only in
the past few years that work has intensified studying how
the relation between representations and symbols might be
acquired. First in computer simulations (see examples in
[14]) and then in experiments on robotic agents (see e.g.
[33], Billard and Dautenhahn, [32]). So far, representations
and symbols have been taken to be atomic, although some
researchers have been considering structured representa-
tions and symbols ([15], [1], [30]). Generally speaking, this
research on symbol learning converges on the same sort of
solution [28]: Agents need an associative memory storing
relations between representations and symbols. One rep-
resentation can be associated with many symbols, and one
symbol with many possible representations. Each associ-
ation has a score which denotes how well the association
reflects the consensus in the group, as far as the agent
can tell. So the agent’s lexicon consists of triples <r,s,m>
with r the representation, s the symbol and m the score.
The agents implement the following behaviors (called the
Naming Game):

1. Speaker behavior. Suppose that the speaker needs to
find a symbol for communicating representation R. The
speaker collects all associations <r,s,m> in his lexicon
where R = r, and picks out the one with highest score



m. s is then the symbol to be communicated.

2. Hearer behavior. Suppose that the hearer receives
the symbol S. He then collects all associations <R’,s,m>
where s = S in his memory. The association with the
highest score m is chosen and R’ is hypothesised to be the
meaning of s.

Assume that speaker and hearer then get feedback on
whether R = R’ (more on feedback later). If R = R’ the
game is successful and both agents increase the score of the
association they used and decrease the score of competing
associations. These are those associations of the speaker
with the same representation but a different symbol, or
those associations for the hearer with the same symbol
but a different representation. If the game is not successful,
both agents decrease the score of the association they used.

It can be shown that an agent acquires a set of conven-
tions in a group given these behaviors (see [28]). Moreover
if agents take turn being speaker and hearer and a speaker
is allowed to invent a new symbol occasionally when he
does not have an association yet to symbolise a particu- o
lar representation, a set of conventions can establish itself
from scratch in the population (figure 2). It would bring
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us too far from the topic of this paper to explain why this
mechanism works, but in short the rules of the game em-
body a self-organising positive feedback loop. Associations
that are successful become even more so because their score
goes up, so that they become used even more frequently

Figure 2: A meaning-form diagram which graphs for a
specific meaning all the possible forms and their score. A
winner-take-all situation is clearly observed. X-axis shows
language games and y-axis the score of forms. There is a
steadily growing population reaching 1500 agents towards

and hence propagate in the rest of the population. The dy- the end
namics is similar to that of ant societies self-organising a
path or to increasing returns as studied in non-equilibrium

€conomics.

4 Learning semiotic systems

Let us now focus on the coupling of this symbol acquisition
process with the learning of a grounded representation. I
will take object-recognition as example task with instance-
based learning ([21], ch 4) as the method to learn the rep-
resentations of the objects. Let us assume that for every
object known to the agent, there are a set of views stored
as vectors in the n-dimensional feature space (figure 3). An
object is recognised by a nearest neighbor match. When a
new image has been captured and segmented, the closest
stored view is retrieved and the object is found with which
this view is associated. Feedback either confirms that the
image indeed contains or does not contain the object. In
both cases a new view can be stored to refine or correct
future object-recognition. As in all supervised learning al-
gorithms, the question is where the feedback is going to
come from. This is where language becomes relevant.
When a child is learning to recognise the object ball,
it is initially not clear at all what counts as a ball. A
non-supervised clustering algorithm that would accidently
hit the right internal representation of a ball is almost ex-
cluded. In practice, parents point to various examples of
a ball (or various situations which generate different views
of the same ball) and then say the word ball. The child

Figure 3: Different views of a ball stored as instances in
the object memory.
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may ask for a ball, and get it. She may be asked to give
the ball and get feedback whether she gave the right ob-
Ject, She may hear another child say ”Where is my ball”
and get a response, and so on. Each verbal interaction
where a symbol is used in a specific situation, is an oppor-
tunity not only to learn the symbol-representation relation
but also the representation-sensation-world relation. Note
that there is never explicit feedback on the representation
itself, only on the total: representation + symbolisation as
used in a specific verbal interaction. We call such a verbal
interaction a language game. One language game relevant
for object-recognition is the ”Look Game”.

The Look Game

1. Shared attention. By pointing, eye gazing, moving
an object or other means the speaker draws the visual at-
tention of the hearer to the topic. The speaker emits a
word aiding to share attention, like ”look”, and observes
whether the hearer gazes towards the topic. Based on this
activity, both agents are assumed to each have an image
that includes the object (although their views on the object
will of course be very different).

2. Speaker behavior. The speaker then recognises the
object with a nearest-neighbor match using his own object-
memory, yielding a representation of this object R. The
speaker then collects all associations <r,s,m> in his lexicon
where R = r, and picks out the one with highest score m.
s is then the symbol to be communicated.

3. Hearer behavior. The hearer receives the symbol
S and collects all associations <R’,s,m> where s = §S in
his memory. He also performs object-recognition using his
own object-memory yielding the representation R”.

4. Feedback.

4.1. If the hearer does not have an association in memory
for S, this means that S designates a new object. So the
hearer creates a new object O and stores the image segment
as a view of O. He then stores a new association between
O and S in this lexicon.

4.2. If the hearer has an association in memory for S with
R’ = R”, then the score of this association is increased and
the score of competing associations (i.e. other associations
involving the same symbol S) are decreased. The image
segment can be stored as a new view of R”.

4.3. If the hearer does not have an association in memory
for S with R’ = R”, then this means that S designates a
new object. The hearer performs the same action asin 4.1.

When this game is being played the agents can be shown
to acquire not only a memory to recognise the different
relevant objects in their environment (relevant from the
viewpoint of verbal interaction with others) but also to
acquire the

Many similar language games can be invented. Each of
them combine the use and learning of grounded representa-
tions as well as the use and learning of a symbolisation for
these representations. We have put this methodology in
practice in a number of experiments, using various robotic
bodies, ranging from Lego-based small mobile robots [33],
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to steerable cameras in a ”talking heads” experiment [29]
and four-legged dog-like AIBO robots. In each experi-
ment a certain game was defined and consecutive games
played to test language learning and representation learn-
ing. In the more recent experiments on the AIBO robot,
we have started to combine many different games and also
addressed the problem of interaction with humans. We are
also extending this methodology for humanoid robots.

5 Conclusions

This paper advocates a tight structural coupling between
processes for learning grounded representations and learn-
ing symbolisations of them. Both constrain each others’
degrees of freedom and enable the learner to get feedback
about the adequacy of a representation. Qur experiments
in simulation and on real robots have sufficiently demon-
strated that applications can be constructed in a straight-
forward way using these principles. At the moment we
are specifically targeting research on language games for
humanoid robots.

This work raises many additional interesting issues. For
example, there has been a longstanding debate between na-
tivists who claim that language learning amounts to learn-
ing labels for existing categories and relativists such as
Whorf who claim that each language implies a different
categorisation of reality. The structural coupling of con-
cept formation and language acquisition advocated in this
paper explains how a relativistic view is not only possi-
ble but unavoidable. If language enables and influences
the learning of representations then it is easy to see how
representations can become language specific. Of course
representations are still strongly constrained by the world
and tasks carried out in the world as well - they are not
completely conventional or arbitrary. But they need not
be innate to explain how they can become shared.
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